
Work experience versus Refactoring to Design Patterns:
A Controlled Experiment∗

T.H. Ng
Dept. of Comp. Sci.

City University of
Hong Kong

cssam@cs.cityu.edu.hk

S.C. Cheung†

Dept. of Comp. Sci. & Eng.
Hong Kong University of
Science and Technology

scc@cse.ust.hk

W.K. Chan‡

Dept. of Comp. Sci.
City University of

Hong Kong
wkchan@cs.cityu.edu.hk

Y.T. Yu
Dept. of Comp. Sci.

City University of
Hong Kong

csytyu@cityu.edu.hk

ABSTRACT
Program refactoring using design patterns is an attractive approach
for facilitating anticipated changes. Its benefit depends on at least
two factors, namely the effort involved in the refactoring and how
effective it is. For example, the benefit would be small if too much
effort is required to translate a program correctly into a
refactorized form, and whether such a form could effectively
guide maintainers to complete anticipated changes is unknown. A
metric of effectiveness is the maintainers’ performance, which can
be affected by their work experience, in realizing the changes.
Hence, an interesting question arises. Is program refactoring to
introduce additional patterns beneficial regardless of the work
experience of the maintainers? In this paper, we report a controlled
experiment on maintaining JHotDraw, an open source system
deployed with multiple patterns. We compared maintainers with
and without work experience. Our empirical results show that, to
complete a maintenance task of perfective nature, the time spent
even by the inexperienced maintainers on a refactorized version is
much shorter than that of the experienced subjects on the original
version. Moreover, the quality of their delivered programs, in
terms of correctness, is found to be comparable.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
object-oriented design methods; D.3.3 [Programming
Languages]: Language Constructs and Features – patterns

General Terms
Design, Languages, Experimentation

Keywords
Controlled experiment, refactoring, design patterns.

1. INTRODUCTION
To implement change requests, software maintainers should be
able to comprehend the potential necessary changes and modify
the program accordingly [3]. They may apply the notion of design
patterns to facilitate anticipated changes. A popular catalog of
design patterns is proposed by Gamma et al. [12], in which each
records a design solution that has been developed and refined from
prior design experience, solving a class of recurring problems in
an object oriented approach. Design patterns encourage the best

practices [5] and are widely used in the industry. For instance,
JUnit [15] uses the Composite pattern, and J2EE EJB [13] and
Microsoft COM [19] use the Factory Method pattern.

A popular means to introduce and use design patterns in a program
is via program refactoring, which is an important driving force
behind enhancing program flexibility for anticipated changes [4].
To tackle different aspects of the anticipated changes, maintainers
may deploy multiple design patterns in the program [12][26][27].
Systematic instructions [11][16] and tool support [22] have been
proposed to assist and automate the refactorization process.

Refactoring is a behavior-preserving transformation [16]. Since
its total automation is impractical, program refactoring is largely
an error-prone manual process. In addition, whether such program
refactoring would actually facilitate the anticipated changes is
unknown. Intuitively, the performance of maintainers in realizing
the changes could depend on their work experience. However, as
we review in Section 2, the relationship between work experience
and program refactoring has not been adequately studied. An
interesting question thus arises. Would refactoring a program
using design patterns (in)conclusively supersede the effect of work
experience to guide maintainers to complete a maintenance task,
or vice versa?

We empirically investigate the above question. In our controlled
experiment, we replicated the realization of three maintenance
tasks of perfective nature on two functionally equivalent programs,
with and without design patterns to facilitate the required changes.
We selected JHotDraw [14], an open-source medium-sized
software program that had been deployed with multiple design
patterns, as the testbed. For each task, we compared the following
two approaches, involving those subjects (i.e., maintainers) with
and without work experience.

• The subjects in the first approach performed the task directly
on the original program.

• The subjects in the second approach performed the task on a
refactored version of the original program using additional
design patterns to facilitate the required changes.

* The work described by this paper was partially supported by grants
(Project nos. CityU 1195/03E and HKUST 6187/02E) from the Research
Grants Council of the Hong Kong Special Administrative Region, China.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

† All corresponding should be addressed to S.C. Cheung at the Department
of Computer Science and Engineering, Hong Kong University of Science
and Technology, Clear Water Bay, Hong Kong. Tel: (+852) 23587016.
Fax: (+852) 23581477. Email: scc@cse.ust.hk.
‡ Parts of the work were done while W.K. Chan was with the Hong Kong
University of Science and Technology before August 2006.

SIGSOFT’06/FSE-14, November 5-11, 2006, Portland, Oregon, USA.
Copyright 2006 ACM 1-59593-468-5/06/0011…$5.00.

Our results show that when using the second approach,
maintainers complete the change task faster than when using the
first approach, regardless of their work experience. In addition, the
qualities of their delivered programs, in terms of the number of
detected functional failures, are found to be comparable. The main
contribution of this paper is to provide the first set of experimental
results that support the use of design patterns in refactoring real-
life software for anticipated changes.

The rest of this paper is organized as follows: Related work will
be discussed in the next section, followed by an explanation of our
methodology in Section 3. Then, we analyze the experimental
results in Section 4, and discuss the factors affecting the validity
of our results in Section 5. We conclude our work in Section 6.
2. RELATED WORK
This section presents the related work regarding the benefits of
deploying design patterns and regarding change tactics.

2.1. The Benefits of Deploying Design Patterns
There are a number of empirical studies on the various issues
related to the deployment of design patterns. These include
whether the deployment of design patterns could reduce the
occurrence of faults in a program, build a stable program in face of
changes, and ease the understanding of software design. The issue
related to the work experience of maintainers, however, has not
been studied.

Vokáč [28] investigated, in the same C++ program, whether
classes participating in design patterns are less faulty than those
not participating in any design patterns. Vokáč studied the
Decorator, Factory Method, Observer, Singleton, and Template
Method patterns. The results showed that codes designed with the
Observer and Singleton patterns were faultier, and the codes
designed with the Factory Method pattern were less faulty. No
conclusion could be drawn for the Decorator and Template
Method patterns. Vokáč concluded that the deployment of design
patterns does not guarantee fewer faults for classes participating in
design patterns. However, with reference to the real-life situations
where faults exist in typical industrial software products, he
observed that codes designed with the Observer and Singleton
patterns were areas with irreducible, significant complexity. Thus,
these codes warrant special attention in design and implementation.

To evaluate whether programs having design patterns would be
less subject to changes, and hence intuitively more stable, Bieman
et al. [6][7] performed two studies to examine that, when design
patterns were deployed, whether classes that participated in design
patterns would have lower change frequency than the other classes.
Five (C++ and Java) software systems, with one up to 37 versions,
were examined. Twelve design patterns were examined in total.
Among the five systems, four indicate negative outcomes and one
presents positive outcomes. These results [6][7] confirmed that the
deployment of design patterns cannot facilitate changes of all
possible types [9]. Gamma et al. [12] also expressed that each
design pattern may only be useful for specified, not arbitrary,
maintenance problems.

Conventional wisdom suggests that the deployment of design
patterns would result in additional flexibility [8]. Prechelt et al.
[21] (in 2001) and Vokáč et al. [29] studied whether deploying a
design pattern would still be useful when it is not directly related

to an immediate maintenance problem. The deployment of the
Abstract Factory, Composite, Decorator, Observer and Visitor
patterns was investigated. In each study, both positive and
negative scenarios were found. However, the reported results of
two studies are conflicting. Prechelt et al. [21] discovered a
negative scenario on deploying the Observer pattern and a positive
scenario on deploying the Decorator pattern, but Vokáč et al. [29]
reported a contrary result. Vokáč et al. [29] concluded that the
question of whether the deployment of design patterns is
beneficial cannot be generally answered, but depends on which
problems and the way design patterns are deployed.

Our work is closely related to the above two studies [21][29]. Like
theirs, our experiment assigned human subjects to perform change
tasks on two functionally equivalent programs, with and without
artificial instrumentation of design patterns. Unlike theirs, while
the two studies focused on whether deploying a design pattern is
beneficial (in terms of time spent and functional correctness) when
it is not directly related to the target change tasks, our experiment
focused on whether refactoring a program using additional design
patterns to manage the anticipated changes related to the design
patterns supports faster maintenance by less experienced
maintainers. The two studies [21][29] also compared a program
having no design patterns with a refactored program comprising at
most two design patterns. This is a zero-to-many comparison. In
our experiment, we compared a program comprising a dozen of
design patterns with its refactored version instrumented with
additional design patterns. Last, but not the least, the two studies
ensured that subjects in different working groups have similar
technical backgrounds. They examined the usefulness of using
different design patterns in different change tasks. In contrast, our
experiment assigned those subjects with and without work
experience into distinct groups. We studied the dominance
between work experience and refactorization using design patterns.
Hence, our experiment is original and complementary to these two
studies.

Prechelt et al. [20] (in 2002) evaluated whether explicit
documentation of the deployment of design patterns would ease
maintainers to perform change tasks in terms of time spent and
functional correctness. The deployment of the Composite,
Observer, Template Method, and Visitor patterns was investigated.
Their results show that, with the support of the explicit
documentation of deployed design patterns, maintenance is
completed faster or with fewer faults. In our experiment, since the
original deployed patterns in JHotDraw have been documented in
the open source repository (Source Forge [25]), the
documentations are explicitly passed to the subjects. However, to
avoid the potential effect of pattern documentation on the
instrumented design pattern in the refactored version, we did not
explicitly inform the subjects about the deployment of the
instrumented design patterns. As a result, the subjects needed to
discover by themselves which deployed design patterns support
their change tasks at hand. Further details of materials presented to
the subjects will be described in Section 3.9.

2.2. Change Tactics
Let us overview the types of change tactics. According to Bass et
al. [4], three types of change tactics may be used to facilitate
software changes. They are localizing changes, preventing ripple
effect and deferring the binding time.

In the object-oriented paradigm, a design pattern factorizes its
solution of a recurring problem into separate classes, known as
participants [21]. Each participant is a class whose details are
hidden and encapsulated. Some design pattern supports the
addition of functionalities as subclasses of these participants. In
this way, a design pattern localizes changes directly, which is also
one of the objectives of these design patterns [12]. The basic
mechanisms of design patterns are the use of abstract interfaces to
confine the ripple effects of change, and the use of dynamic
binding and polymorphism to defer the binding decision between a
caller object and an object being called.

In addition to these direct benefits of object-oriented techniques,
design patterns are characterized by their provision of hooks [12].
Hooks in design patterns aim to collectively facilitate maintainers
to easily add new classes that behave like target participants of the
design patterns. Following up this concept of hook [12], we
concretize a hook to be a (expected) method of a participant (i.e., a
class), which implements specified sequences of method
invocations as stated in the concerned design patterns. For
example, the Composite pattern [12] defines a unified interface for
both primitives and their containers, and let subclasses define their
respective specific implementations. The Composite pattern gives
subclasses hooks for providing new kinds of primitives and
containers [12], because newly defined subclasses can integrate
seamlessly with the existing participants of the design pattern.
Clients do not need to be changed for the newly defined subclasses.
The Factory Method pattern defines an interface for creating an
object, but let subclasses decide which class to instantiate. Similar
to the hooks provided by the Composite pattern, the Factory
Method pattern gives subclasses hooks to provide new kinds of the
objects to be created [12].

3. METHODOLOGY OF EXPERIMENT
This section presents the planning and operation of our experiment.

3.1. Hypothesis
If a deployed design pattern provides hooks to perform a change
task, we say that the design pattern supports the task. In this
experiment, we studied the following two approaches to perform a
change task that is not supported by any design patterns in the
original program:

• Direct Approach: When the change task is needed,
maintainers perform the change task by directly revising the
original program.

• Refactoring Approach: The original program has been
refactored using additional design patterns to support the
change task in advance. Maintainers perform the change task
by revising the refactored version.

Table 1. Quantitative comparison of our approach and related work

Study
Description metrics of
the target program of
maximum size

Type of target
programs used Number of subjects

Prechelt et al. [21] and
Vokáč et al. [29] 683 LOC in 13 classes Self-developed 44 human subjects

Prechelt et al. [20] 560 LOC in 11 classes Self-developed 96 human subjects

Vokáč et al. [26] 505367 LOC in 2047
classes Industrial 153 program revisions

Bieman et al. [6][7] 753000 LOC in 7573
classes Industrial 39 program revisions

Our approach 14342 LOC in 207
classes

One open source and
one refactored from the

open source version
118 human subjects

The hypothesis of this experiment is as follows:

• Null Hypothesis (H0): With regard to the same change task,
there is no significant difference between using the direct
approach and using the refactoring approach.

• Alternative Hypothesis (H1): With regard to the same change
task, there is a significant difference between using the direct
approach and using the refactoring approach.

3.2. Requirements of Our Experiment
To ensure that the appropriate phenomena were studied, the
methodology of our experiment needed to meet two specific
requirements: realism and replication [24].

a) Realism. To test the hypothesis, we needed to study a situation,
which is representative amongst realistic change tasks to be
performed on software programs. In practice, we needed to
find (i) a program large enough to be developed by a number
of people over multiple evolution cycles, and (ii) some change
tasks that are challenging enough to require maintainers to
spend a significant amount of effort investigating the program.

b) Replication. The successful implementation of the selected
change tasks could be heavily influenced by the nature of the
task, the programming language used, and other factors
independent of the maintainers, so we needed to control the
change tasks and the tools in which the work is performed.

These requirements are however conflicting [24]. When we
include more change tasks in the study, we have to control more
factors that might influence the results. This makes it harder to
collect sufficient amount of data for analysis that aims to explain
the inherent complexity of the phenomenon to be observed [24]. In
view of this, we settled on an experimental setting that could be
favorably compared to those adopted by the related work. A
comparison is given in Table 1. The comparison is based on the
size of the programs studied, number of subjects, and design
patterns involved. Since some studies investigated more than one
target program, one comparison criterion is the size of the largest
target program. Compared with the related work involving only
human subjects, our experiment was conducted with more subjects
and using a larger target program in size. In addition, amongst the
listed work, our experiment is the only one using an open source
system as a target program, whose results are amenable to be

Figure 1. Screen shots of programs that fulfil the change tasks

replicated by others. Also, more design patterns are deployed in
the target program than those reported in the related work. On the
other hand, we had chosen three changes tasks to be performed on
the target program and each of these change tasks requires us to
spend at least three hours for completion. Based on this
quantitative comparison, our experimental design contributes to an
acceptable level of realism. More details about the target program
and the change tasks are presented in the next two sections.

3.3. Target Program
In our experiment, we used the JHotDraw drawing editor [14] as a
vehicle to test the above-mentioned hypotheses. JHotDraw is an
open source system written in Java. Using the metrics plug-in of
Eclipse for code analysis, the version we used (JHotDraw version
6.0-beta2) consists of 14342 noncomment, nonblank lines of
source code, distributed over 207 classes in 10 packages. Up to
this version, there have been 24 developers implementing
JHotDraw. JHotDraw was registered at Source Forge [25], a
popular repository of open source systems, as an open source
system on 10th October, 2000. JHotDraw has been deployed with
a dozen of design patterns described by Gamma et al. [12], namely
Adaptor, Command, Composite, Decorator, Factory Method,
Mediator, Observer, Prototype, Singleton, State, Strategy, and
Template Method. The deployment of these design patterns is
explicitly mentioned in JHotDraw’s Application Programming
Interface (API) documentation. In addition, the preliminary
version of JHotDraw was developed by the first author of [12]. As
a result, JHotDraw is an excellent candidate to conduct design
patterns research. In fact, JHotDraw has been used as an
illustrative example or a case study in various existing work
[1][23].

3.4. Change Tasks
The change tasks on JHotDraw employed in our experiment are
described as follows:
a) Audit. A new menu “Audit” needs to be added. This menu

would support a new option “Record Action History”. After
the option is enabled, log messages of the following actions
would be displayed on the console (see Figure 1 (left)):
• Creating a figure such as a text, rectangle, round rectangle,

ellipse, line, polygon, and (elbow) connection.
• Moving a created figure.

ch as cut, paste, duplicate, delete,

b) Im Option” needs to be added. This

c) ” needs to be added. This

played in the tool bar

Al ks are perfective. In general, a change task

 change

ge to the console after

b) statements that determine the physical location of

c) texts
for a graphical component.

• Performing a command su
group, ungroup, send to back, bring to front, undo, redo,
align and change attribute.
age. A new menu “ToolBar

menu would support a choice of “Small” or “Large”,
determining the size of the icons displaying on the buttons of
the tool bar (see Figure 1 (middle)).
Language. A new menu “Language
menu would support a selection of “English”, “Traditional
Chinese”, and “Simplified Chinese”. When a language is
selected, the text appearing in the following graphical
component will be translated accordingly (see Figure 1 (right)):
• The title of the software program
• The menu bar
• Tool tip text dis
• The status bar

l the three change tas
can be adaptive, corrective, and perfective [18]. An adaptive task
handles changes in the environment such as changes in the
operating system and database management system, to name two.
Unlike a corrective task which fixes bugs, a perfective task
improves a system’s emergent qualities such as performance,
functionality, and maintainability. Our experiment focuses on
perfective tasks because various studies [2][18] report that
perfective tasks frequently occur in software lifecycles.

To test the hypotheses, we ensured that the three employed
tasks are not facilitated by the design patterns that have been
deployed in the JHotDraw (version 6.0-beta2) program. To
validate this, we identified in the program the following
statements, which needed to be modified to carry out the change
tasks, and checked if these statements play any roles in the
documented design patterns of JHotDraw.

a) Audit. All statements that print a messa
the user performs an action that changes the drawing panel of
JHotDraw.
Image. All
an image file for an icon displayed on the toolbar.
Language. All statements that determine the rendering of

3.5. Refactoring Process
e process of refactoring JHotDrawTh using design patterns

d , restructuring of

gn
academic literature.

Observer patterns.

al version
g procedures used

factoring Procedures

covere three phases: selection of design patterns
JHotDraw, and testing for functional equivalence [11]. To ease
explanation, let us refer to the JHotDraw program before and after
refactoring as the original and refactored version, respectively.

3.5.1. Selection of Design Patterns
The selection of design patterns was based on the types of desi
patterns and the occurrence of pattern names in
The first criterion ensures design patterns of different types of
purpose are selected. The second criterion ensures that the chosen
design patterns had some practical relevance.

The design patterns to which JHotDraw is refactored include the
Composite, Decorator, Factory Method, and
Composite and Decorator are object structural patterns, Factory
Method a class creational pattern, and Observer an object
behavioral pattern. Vokáč [26] presented a ranking of design
patterns according to the occurrence of pattern names. Our
selected design patterns are the top four of the ranking.

3.5.2. Restructuring of JHotDraw
For each change task, we separately refactored the origin
of JHotDraw. Table 2 summaries the refactorin
to support each change task. The details of the selected procedures
are presented by Kerievsky [16]. The goal of the refactoring is to
support a change task so that the statements outlined in Section 3.4
for the change task are allocated in the concrete participants that
represent hooks as described in the specification of the
instrumented design patterns.

Table 2. Our refactoring procedures on JHotDraw
Change Task Re

Audit • Extract special case logic into Decorator

Image

• Replace hard-coded notifications with
Observer

• Introduce polymorphic creation with
Factory Method

Language

 • Replace hard-coded notifications with
Observer

• Replace one/many distinctions with
Composite

3.5.3 stin
To validate whethe toring procedure preserves the

a rmed both

t. The first set
cts enrolled in an undergraduate-level Java

g Kong

. For example, if a

bjects (in terms of year)

. Te g for Functionally the Same
r the refac

function lity of the original programs, we have perfo
category partition testing and code inspection. During category
partition testing, we have ensured that the selected test cases cover
the entire graphical user interface of JHotDraw for minimal
functional operability. We used the original program of JHotDraw
as the oracle. During inspection, we have ensured that the design
patterns instrumented in JHotDraw conform to the structure and
collaboration in their original specifications [12].

3.6. Subjects
There are two sets of subjects in our experimen
consists of 55 subje
programming course offered by the Hong Kong University of
Science and Technology. These subjects were full-time
undergraduates with no formal work experience in industry. We
refer to this group of subjects as inexperienced subjects.

The second set comprises 63 subjects enrolled in a postgraduate-
level software engineering course offered by the Hon
University of Science and Technology. These subjects have
already obtained their first degrees in computer science or
equivalent. They were full-time software developers with at least
one year’s work experience in the industry. We refer to this group
of subjects as experienced subjects.

In addition to general work experience, one may compare subjects
with and without knowledge about JHotDraw
program is implemented in Java and designed using an object-
oriented paradigm, the experience in Java and object-oriented
concepts may affect the performance of subjects to maintain the
program. To address this issue, we present a comparison of the
programming background between inexperienced and experienced
subjects in Table 3. The experienced subjects on average have
much more work, Java programming and object-oriented design
experience over the inexperienced ones. Further analysis could be
done on whether the subjects are familiar with design patterns, the
deployed design patterns or other factors. They are however not
within the scope of this paper.

Table 3. Experience comparison between inexperienced
and experienced su

Experience Inexperienced
subjects

Experienced
subjects

M Meean: 0 an: 5.66 Work
S S.D

ing in
industry .D.: 0 .: 4.74

Mean: 0.48 Mean: 3.25 Java S.D.: 0.94 S.D.: 2.80
Mean: 2.13 Mean: 4.15 Object-or ed

co
ient

ncepts S.D.: 1.01 S.D.: 2.92

3 ig
We ubject e groups, pared the

p level (instead of the individual

subject group,

.7. Task Ass
divided s

nment
s into thre and com

experimental results at the grou
level). Groups 1, 2 and 3 consisted of 63 experienced subjects, 31
inexperienced subjects and 24 inexperienced subjects, respectively.
Table 4 shows the allocation of change tasks on different program
versions to subject groups. In the task allocation exercise, we
ensured that groups with and without experience respectively
performed one change task using the direct approach and another
using the refactoring approach, so that the performance of
different groups using different approaches can be compared. As
shown in Table 4, there are two such comparisons.

Ideally, the experimental design should be a 2 × 2 full factorial
design, that is, for each change task assigned to a
the subject group is partitioned into two subgroups taking the
direct approach and the refactoring approach, respectively. A
limitation of our design as compared with this full factorial design
is that fewer data points would be available for analysis. However,
there was a pragmatic reason for our design. Our experiment was
carried out as part of two software engineering classes, one with
experienced subjects and another with inexperienced subjects. In
each class, we abided by a course policy to conduct the same
assessment of every subject’s performance. One simple alternative
is to assign experienced subjects to take the direct approach and
inexperienced ones to take the refactoring approach for only one
single change task. If the latter class of subjects performs better,
one may conclude that program refactoring using additional
design patterns is a more dominant factor than work experience.
Nonetheless, this simple experimental design makes an

assumption that experienced subjects must perform better than
inexperienced ones; otherwise an interesting hypothesis would be
difficult to formulate. To relax this assumption, we assigned
experienced subjects to the refactoring approach and
inexperienced ones to the direct approach for another change task.
Furthermore, since we could split the inexperienced subjects into
two groups, we repeated the above procedures using different
change tasks for inexperienced subjects. This enabled us to set up
an experiment to obtain more types of data points under our course
policy.

Table 4. Task assignments to subject groups
Comparison Task Approach Group

Direct 1 Image Refactoring 2
Direct 2 A

Audit Re g factorin 1
Direct 1 Language Re g factorin 3
Direct 3 B

Audit Re g factorin 1

3.8.
Three types of v s are d the expe ent,

 and dependent

a programs.
s the program to be modified.

 Audit.

er different

b) Inde
•
• ence.

For ials presented to subjects to
e as follows:

 a

b)

sfully using Eclipse.

ing

3.10
To p , one week was

hour information
irst information session

cumentation and class hierarchies of the program to be

s using the refactoring

e also requested to report the time spent on their

esents the data collected during the experiment and
yz nce of the subjects. The measurements are
i ber of failed functional test cases, and the

e to Refactor

Variables
ariable efined for

 variables.
rim

independent, controlled

a) Controlled Variables.
• Eclipse is used as the integrated development environment

due to its popularity in industry to develop Jav
• JHotDraw is used a
• Java is the programming language used, due to the

selection of JHotDraw as the target program.
• Change tasks for JHotDraw: Image, Language, and

Although there are three change tasks, we compare the
performance of different subject groups und
approaches with regard to the same task. As a result,
change tasks are controlled variables.
pendent Variables.
The direct and refactoring approaches.
Subjects with and without work experi

c) Dependent Variables.
• Time spent to complete a change task.
• Number of failed test cases.

3.9. Materials
each task assignment, the mater

a program version werperform a change task on

a) Requirements Specification. Subjects were required to
achieve functional correctness for the change task. In order to
specify the functional requirements clearly, we used
demonstration program that implements the change task and
deemed it as a functionally correct version. This program was
presented to the subjects. To avoid plagiarism of the program,
the program was a binary executable in obfuscated Java
bytecode, so that a decompiled version of the binary
executables is incomprehensible. We explicitly specified in
the requirements that a submission of the decompiled version
of the obfuscated code was prohibited and should
automatically lead to zero marks. With our analysis of the
decompiled version, the effort needed to understand the
decompiled version is more than that to modify the given
version to complete a change task.

Source Code. The source code of the program to be modified
was presented to the subjects. The source code was in a form
that can be compiled and run succes

c) Documentation. The API documentation of the program to
be modified was presented to the subjects. The UML models
of each class hierarchy generated by reverse engineer
tools were also presented to the subjects.

. Experiment Procedures
repare the subjects for the task assignments

two one-devoted to education. This consists of
sessions for each group separately. The f
was a tutorial to use Eclipse, to ensure they could compile and run
the program to be modified successfully themselves. The second
information session explained the task assignments assigned to
them.

During the information session, we executed the demonstration
program to describe the functional requirements. We also showed
the API do
modified, where the API documentation mentions the design
patterns deployed in the open source version of JHotDraw. As
each group was to perform different tasks on different program
versions, we emphasized that the programs to be modified for
different tasks were different and reminded them to perform each
task based on the given program version.

We did not explain the details of each design pattern to the
subjects, but presented the general object-oriented concepts. We
did not explicitly inform those subject
approach about any instrumented design patterns. One may argue
that it is unfair not to present this information to the subjects, but
there were two reasons for this. Firstly, as mentioned in Section 2,
we wished to avoid any explicit pattern deployment affecting our
results. Secondly, this matches the realistic situations where
documentation often becomes non-synchronized after software
changes.

Each task assignment was carried out individually by each subject.
The subjects were given one month to complete the assignment.
They wer
assignment.

4. RESULTS
This section pr
anal es the performa
the t me spent, the num
time spent regarding only those submitted programs with no failed
functional test cases found. In particular, in the direct approach,
the time spent is the time taken by the subjects to revise the
original version of JHotDraw. In the refactoring approach, the
time spent is the time taken by subjects to revise the refactored
version of JHotDraw, plus the duration of the refactoring process
for the corresponding change tasks (Table 5 reports our self-
recorded time to refactor JHotDraw for each task). For each
measurement, a descriptive analysis is firstly presented, followed
by the associated statistical analyses.

Table 5. Time to refactor JHotDraw for each change task
Change Task Tim

Audit 3 hours
Image 5.5 hours

Language 4.5 hours

Our collected data that some subjects did not submit their
work by the dead eport the tim able 6 shows the
ratio of the nu bmitted programs and that of those

Task-Approach-Group mber of Number of

 show
line or r e spent. T

mber of su
reports which include the time spent against the total number of
subjects participating in each task assignment (c.f., Section 3.7). In
the subsequent analyses, we excluded from the data associated
with those subjects who reported only the time spent but did not
submit any programs. Statistical analysis was conducted based on
the 5 to 95 percentiles of the processed data. As such, the amount
of data processed in the subsequent analysis will be approximately
90% of those reported in Table 6.

Table 6. Number of submitted work and reports on time
spent to total number of subjects in each task assignment

Nu
Submissions Time Reports

Image-Direct-1 59 out of 63 54 out of 63
Image-Refactoring-2 24 out of 31 24 out of 31
Audit-Direct-2 30 out of 31 28 out of 31
Audit-Direct-3 23 out of 24 23 out of 24
Audit-Refactoring-1 62 out of 63 62 out of 63
Language-Direct-1 62 out of 63 61 out of 63
Language-Refactoring-3 21 out of 24 21 out of 24

4.1. Time spent
r of co ms, t
time spent. presents -

time spent on those task assignments

 hypothesis described in Section 3.1, which

cted test inputs from each partition to conduct full
n alidate functional correctness.

Tas Mean S.D.

Table 7 gives the numbe
standard deviations of the

llected progra
Figure 2

he means and
a box-and

whisker plot on the
applic ble to Comparisa on A, which compares Group 1 and Group
2 taking the direct and refactoring approaches with regard to the
same change task. For the Image task, when Group 1 took the
direct approach, Group 2 took the refactoring approach. For the
Audit task, the approaches taken by the two groups were switched.
Figure 3 depicts the results for Comparison B, exhibiting similar
results as in Figure 2.

The nonparametric nature of the data implies that the Mann-
Whitney test is applicable for hypothesis testing. Table 8 gives the
test results on the null
measures the time spent by various groups conducting the same
task using different approaches. Each test produces a result at the
five-percent statistically significance level. Together with the
descriptive data in Table 7, we conclude that the refactoring of a
program using design patterns is a dominant factor over work
experience of maintainers in terms of the time spent to complete a
change task.

4.2. Functional Failures
We performed category partitioning on the submitted programs,
and then sele
combi ation testing. We aimed to v

a) Audit. There are two equivalence classes for the Audit task.
The first equivalence class is whether the menu item “Record
Action History” is checked. Another equivalence class is the
execution of different commands displayed in the menu bar
or the tool bar, or the moving of drawn figures. For each
partition, there are 21 different kinds of scenarios. We have
developed one test case for each setting of the equivalence
classes and executed the test cases in random order. Totally,
we have 2 × 21 = 42 test cases.

Table 7. Descriptive data on time spent on each task
assignment (in terms of hour)

k-Approach-Group n
Image-Direct-1 48 11.36 6.53
Image-Refactoring-2 22 7.70 1.75
Audit-Direct-2 26 11.39 6.07
Audit-Direct-3 21 8.08 4.22
Audit-Refactoring-1 56 5.86 2.22
Language-Direct-1 55 18.31 11.92
Language-Refactoring-3 19 7.82 1.42

y of time spent regarding

 (in terms of hour)
Figure 2. Graphical displa

Comparison A

Figure 3. Graphical displa
Comparison B

Tabl s in

Crite clusion

y of time spent regarding
 (in terms of hour)

e 8. Mann-Whitney test results on the null hypothesi
terms of time spent

rion z Con
The nu

Task for Group

ll hypothesis in terms
of time spent on the Image

Group 2
2.71

1 and
The null hypothesis in terms
of time spent on the Audit
Task for Group 1 and Group 2

4.83

The null hypothesis in terms
of time spent on the Language
Task for Group 1 and Group 3

 4.57

The null hypothesis in terms
of time spent on the Audit
Task for Group 1 and Group 3

2.08

We rejected the null
hypothesis in terms of

time spent at 5%
significance level

(z > 1.96)

b) Image. Three equivalence
Image task. The first
option is changed. Thre

 classes are constructed for the
one is mber of times the toolbar

e settings are defined for this
equivalence class: 0, 1, or more. The second equivalence
class is whether or not a button on the toolbar is pressed

c)

layed on the menu bar or tool

Tab
faile
each
subj sion
as the whole achieve a lower mean value of failures. For the Audit

ring rather
than the direct approach, the number of functional failures after

wn in
Figure 4 and Figure 5.

programs. This section analyzes the time spent regarding only
 ctional st cases. These

hile Section 4.1
provide by the deadline

B, respectively. Table 12 shows the statistical test results for the

ask-Approach-Group n Mean S.D.
 the nu

whenever the toolbar option is changed. The last equivalence
class is whether a figure is created by pressing a button on the
toolbar in the final selection of the toolbar option. In total, we
have 3 × 2 × 2 = 12 test cases.
Language. The Language task is associated with two
equivalence classes. The first one is the set of all possible
combinations of the language options selected. There are
seven settings for this set. The second one is whether or not
executing some commands disp
bar or moving a drawn figure after the final selection of the
language options. We have 7 × 2 = 14 test cases in total.

le 9 shows the descriptive data on the number of functional
d test cases over a program (that is, functional failures) for
 task assignment. For each of the Image and Language tasks,
ects without work experience maintaining a refactored ver

task, Group 2 outperformed Group 1, which in turn outperformed
Group 3 in terms of the number of functional failures.

From the statistical test results presented in Table 10, we fail to
reject the null hypothesis in terms of functional failures for three
out of four tests. Together with the descriptive data as previously
mentioned, we conclude that when using the refacto

the completion of the task neither increased nor decreased.

No conclusion can be drawn on whether subjects with or without
work experience delivered less error-prone programs, and whether
using the direct approach or the refactoring approach to complete
a change task is more preferable. Similar results were sho

4.3. Time spent regarding
Functionally Correct Programs

In Section 4.1, we investigated the time spent on all submitted

those programs that passed all of our fun te
programs are considered as functionally correct. W

s an analysis of the programs submitted
that signals the end of a development phase, this section presents
an analysis of the submitted programs with best functional quality.

Table 11 shows the descriptive data on the time taken to modify a
given program correctly in each task assignment. Figure 6 and
Figure 7 present the graphical plots of the time taken to correctly
complete the task assignment for Comparison A and Comparison

null hypothesis in terms of the time spent regarding correct
programs. From Table 12, we can conclude that the refactoring of
a program using additional design patterns is a dominant factor
over work experience of the maintainers in terms of the time spent
to complete a change task without functional failures.

Table 9. Descriptive data on number of functional failures for
each task assignment

T
Image-Direct-1 53 2.49 out of 12 2.85
Image-Refactoring-2 22 0.55 out of 12 1.87
Audit-Direct-2 28 1.36 out of 42 4.89
Audit-Direct-3 21 0 out of 42 0
Audit-Refactoring-1 56 0.46 out of 42 2.43
Language-Direct-1 56 6.29 out of 14 5.49
Language-Refactoring-3 19 3.58 out of 14 5.48

 number of functional failures
ison A

Figure 4. Graphical display of
for Compar

for Compar

Table 10. Mann-Whitney
in terms of nu

Criterion

Figure 5. Graphical display of number of functional failures

ison B

 test results on the null hypothesis
mber of functional failures

z Conclusion
The null hypothesis in terms
o
f
Group 1 and Group 2

We rejected the null

level (z > 1.96)

f number of functional
ailures on the Image Task for 2.64 hypothesis in terms of

failures at 5% significance

T
of number
failures on ask for

he null hypothesis in terms
of functional 0.54 the Audit T

Group 1 and Group 2
The null hypothesis in ter
of number of functional
failures on the Langua

ms

ge Task 1.57

for Group 1 and Group 3
The null hypothesis in ter
of number of functional
failures on the Audit T

ms

ask for
Group 1 and Group 3

0.23

W l e failed to reject the nul
hypothesis in terms of

functional failures at 5%
significance level

(z < 1.96)

Table 11. Descriptive data
programs for each

Task-Approach-Group

 on time spent re rrect
task as ent (in terms of hour)

Mean S.D.

garding co
signm
n

Image-Direct-1 28 11.65 7.24
Image-Refactoring-2 20 7.7 1.83
Audit-Direct-2 2 10.87 5.58 2
Audit-Direct-3 2 8.08 4.22 1
Audit-Refactoring-1 51 5.64 1.95
Language-Direct-1 24 14.75 9.64
Language-Refactoring-3 13 7.67 1.46

Figure 6. Graphical display of
programs for Comparis

 time spent regarding correct
on A (in terms of hour)

programs for Comparis
Table 12. Mann-Whitney

in terms of time spent reg
Criterion

Figure 7. Graphical display of time spent regarding correct
on B (in terms of hour)

 test results on the null hypothesis
arding correct programs

z Conclusion
The null hypothesis in terms of
time spent regarding correct
programs on the Image Task
f

2.3

or Group 1 and Group 2
The nul
t
p
Group

l hypothesis in terms of
ime spent regarding correct
rograms on the Audit Task for

 1 a

4.51

nd Group 2
The null hypothesis in terms of
time spent regarding correct
programs on the Language
Task for Group 1 and Group 3

3.56

The null hypothesis in terms of
time spent regarding correct
programs on the Audit Task for
Group 1 and Group 3

2.29

We rejected the null
hypothesis in terms of
time ing spent regard

c orrect programs at 5%
significance level

(z > 1.96)

4.4. Further Analysis and Overall Results
sis, we also performed a manual

d programs. From all submitted
ring approach, we observed that the

s provided by instrumented design
asks at hand. In contrast, from the

the t approach, the subjects
o rm the change tasks. Since

ign patterns have supported the required
ed more

experiment.

toring approach, where the
e. We have two

e could control the
econdly,

ared with are more knowledgeable about
e in design patterns and our

 support a

cal software engineering community

Apart from the statistical analy
inspection on all submitte
programs using the refacto
subjects made use of the hook
patterns to complete the change t
submitted programs using
employed their own techniques t
the instrumented des

direc
 perfo

changes, the subjects using the refactoring approach sav
time when collecting the codes to be modified to perform the
change tasks. Thus, the observation from our manual inspection is
consistent with our experimental results regarding the shorter time
spent on using the refactoring approach.

The interesting part of our results is that regardless of the work
experience of the subjects, the time spent on using the refactoring
approach is much shorter than that of using the direct approach
even after including the duration of our refactoring process in the
refactoring approach. Moreover, the correctness of their delivered
programs does not significantly differ.

5. THREATS TO VALIDITY
Several factors can affect the validity of our

5.1. Construct Validity
Construct validity refers to the degree of which our experiment is
measuring is what it is purported to measure.

One may query why the refactoring process is performed by us
rather than the subjects using the refac
latter choice may also be a viable alternativ
reasons for this decision. Firstly, by doing so, w
number of independent variables to a manageable size. S
comp the subjects, we
JHotDraw because of our expertis
efforts in refactoring JHotDraw. We thus examine whether
refactoring a program using additional design patterns to
change task by experts of the program is beneficial. This kind of
refactoring is particularly useful to companies with high turnover
rates of software maintainers. In such a company, an expert of a
program is less likely to be available when a change task
anticipated before is really needed. Our results show that proactive
refactoring using design patterns pays off in terms of the time it
would take even a non-experienced maintainer to perform the
change task in the future.

Another issue is the power of this experiment, which refers to the
probability of rejecting a hypothesis when it is false. This
statistical information indicates the likelihood of obtaining
desirable results from this experiment. In this experiment, for each
task assignment, we have one group of at least 24 subjects and
another of 63 subjects. According to Cohen [10], a medium effect
size of 0.5 was assumed. The significance level is taken at 5% [17].
The power for our experiment is 0.53. With a power level of 0.8 as
recommended by the empiri
[17], the number of subjects required in each group would have to
be 64. A potential issue with the experiment is lack of power, but
we have ensured that the power of our experiment is favorable
compared to the related work [20][21][29].

5.2. Internal Validity
Internal validity concerns whether our findings truly represent a
cause-and-effect relationship that follows logically from the
design and operation of our experiment. One possible source of
interference is the possibility of undiscovered design patterns
deployed in JHotDraw. If our selected change tasks were
supported by these undiscovered design patterns, the contribution

 ref l program using additional design
sks would be mixed with those

 not

al code

n types and be

 deployed are not exhaustive.
Different design patterns have characteristics that lead to

ver, we have focused on the use of

t cannot be

of the actoring of the origina
patterns to support change ta
undiscovered design patterns. To address this potential issue, we
performed a code analysis on the versions that we used in the
experiment. In particular, we investigated each inheritance class
hierarchy and ensured that our selected change tasks cannot be
completed by creating new subclasses of an existing hierarchy
without replicating various existing codes in these new subclasses.
This is because the replication of existing codes in new subclasses
generally violates the philosophy of using design patterns. We
have also examined all the submitted programs and found that no
subjects utilize any undiscovered design patterns.

A criticism on the internal validity is the plagiarism problem of the
subjects. In the experiment, we found that the subjects generally
asked questions actively during the information sessions. Before
the assignment deadline, the subjects kept asking for clarification
by emails. We believe that the subjects generally completed the
tasks by themselves. Also, data analysis below the 95 percentile of
number of functional failures revealed further eliminates those
who copy their work from smarter subjects. Moreover, we did
find high degrees of code similarities across submitted programs
with functional failures using plagiarism checking tools.

Learning effects of subjects is also a potential threat. Each subject
group received three change tasks on different program versions of
JHotDraw, but all the program versions actually have a reasonable
amount of overlapping codes, especially those not participating in
design patterns. This implies that after the subjects performed the
first change task, the effort to understand the overlapping part of
the codes for the remaining tasks was reduced. To address this, we
have informed the subjects to explicitly obtain a gener
understanding before performing any tasks, and then to count this
effort towards the time spent on every change task.

Another concern is that the subjects may give up the change tasks
when they find them too difficult or take too long to complete. For
each group performing each task, at least 80% of the subjects
submitted their assignments (see Table 6).

The quality of the refactoring process also counts. We have
carefully selected the design patterns in our experiment, requiring
the selected design patterns to cover different patter
relevant practically. After pattern selection, the refactoring process
is based on step-by-step instructions determined by Kerievsky [17],
an expert in program refactoring using design patterns. We have
made the best effort to test the functional equivalence between the
original and refactored programs.

5.3. External Validity
The test of external validity questions the applicability and
generality of our findings. The applicability of our findings must
be carefully established. Only JHotDraw is used as the code base
for change tasks. Different results might be obtained from using
different programs with different requirements and natures. Also,
in JHotDraw, the design patterns

distinctive pros and cons. Howe
hooks of design patterns in our experiment. Future work will be in
the generalization of using hooks of design patterns.

Another threat to the generality of our study is the use of only
three perfective change tasks in our experiment. Although our
study involved three nontrivial tasks requiring maintainers to
investigate different system aspects (such as control-flow, state
transitions, event handling), there exist many different software
modification types. For example, a task can be adaptive, perfective
or corrective. Clearly, each type has distinct characteristics. Still,
our selected change tasks being so large that i
completely understood in a short amount of time contributes to
achieving an acceptable level of external validity.

Only Eclipse is used exclusively as the software development tool
and the programming language used is fixed as Java. These
additional factors limit the generality of the study to similar
conditions Nevertheless, Java is a popular object-oriented
programming language used in the market. Eclipse is a widely
used tool in the industry to develop Java systems.

5.4. Reliability
An open-source code base was used as our testbed. The change
tasks and our refactoring process were defined in detail. The
complete experimental materials can be obtained from
http://www.cs.ust.hk/~cssam/FSE/06.html, including the
refactored versions of JHotDraw and the demonstration programs
presented to the subjects. Thus, our reported study is replicable.

Another threat is the reliability of work experience and the time

of

al flexibility, the process of refactoring and revising the
duce faults into the program. To

spent reported by subjects. We observed that the work experience
reported by each subject largely matches the age of the subject
minus the subject’s bachelor-degree graduation year. On the other
hand, we also recorded our own time spent to prepare for the
demonstration binary codes presented to the subjects as the
reference implementation for each task. Considering that we are
experts in design patterns and knowledgeable maintainers
JHotDraw, we compare our work time with the subjects in Group
1, those with work experience. We found that our work time falls
within the 25 to 75 percentile of the time reported by Group 1.
From the collected data, the standard deviations of the time
reported across different groups are compatible, so we reasonably
believe that the time reported reflects the actual time they spent on
the assignments. Finally, we conducted our descriptive and
statistical analysis based on 5 to 95 percentile of time spent. This
has further improved the reliability of the reported time spent on
tasks.

6. CONCLUSIONS
Many design patterns are popular tactics to accommodate
anticipated design changes. They provide hooks for maintainers to
introduce new functionalities. It is thus attractive to build the
software to have such or similar types of flexibility. However,
while refactoring a program using more design patterns to support
an anticipated change appears to be an obvious choice to support
addition
refactored programs may intro
investigate this tradeoff, we have reported a controlled experiment
in this paper. Our findings show that a perfective change task can
be completed much faster using the refactoring approach. This
result is robust regardless of the work experience of the subjects.
We have also found that the number of functional failures is

largely independent of whether or not the program has been
refactored using additional design patterns to support the change
task. It provides solid evidences to employ design patterns
technology in software development.

In the future, we will further investigate whether developers with
and without work experience may make the same types of
mistakes or not. In particular, intuitively, novice programmers will
produce more diverse types of faults than experienced
programmers, because experienced programmers should have
learnt from their experience to avoid some poor styles of
programming and hence tend not to introduce certain type of faults.

Future work will also study the following research questions: Are
there any special circumstances where careful program refactoring
using additional design patterns still results in undesirable
consequences in maintenance? Is program refactoring using
additional design patterns beneficial to long-term maintenance that
involves extensive revisions? What are the general criteria to
judge whether a given refactoring task is cost-effective or optimal?

7. REFERENCES
[1] E.L.A. Baniassad, G.C. Murphy, and C. Schwanninger,

“Design Pattern Rational Graphs: Linking Design to Source”,
in Proceedings of the 25th International Conference on
Software Engineering (ICSE 2003), IEEE Computer Society
Press, Portland, Oregon, USA, Mar. 2003, pp. 352−362.

[2] S. Belmonte, J.G. Consuegra, J.L. Gavilan, and F.J. Honrubia,
“Development and Main
Case Study”, Next G

tenance of a GIS Family Products: A
eneration Geospatial Information,

[3]

[4]

 1996), IEEE

Change Proneness: An

[7]
ructure, and Program Changes: An Industrial Case

[8]

996.

[10]

[12] . Johnson and J. Vlissides, Design

[13] m/products/ejb/

Cambridge, Massachusetts, USA, Oct. 2003.
K.H. Bennett, “Software Evolution: Past, Present and Future”,
Information and Software Technology, 39(11):673−680, 1996.
L. Bass, P. Clements, and R. Kazman, Software Architecture
in Practice. Addison Wesley, 1997.

[5] K. Beck, R. Crocker, G. Meszaros, J. Vlissides, J.O. Coplien,
L. Dominick, and F. Paulisch, “Industrial Experience with
Design Patterns”, in Proceedings of the 18th International
Conference on Software Engineering (ICSE
Computer Society Press, Berlin, Germany, Mar. 1996, pp.
103−114.

[6] J.M. Bieman, G. Straw, H. Wang, P.W. Munger and R.T.
Alexander, “Design Patterns and
Examination of Five Evolving Systems”, in Proceedings of
the 9th International Software Metrics Symposium (METRIC
2003), IEEE Computer Society Press, Sydney, Australia, Sep.
2003, pp. 40−49.
J.M. Bieman, D. Jain and H.J. Yang. OO Design Patterns,
“Design St
Study”, in Proceedings of International Conference on
Software Maintenance (ICSM 2001), IEEE Computer Society
Press, Florence, Italy, Nov. 2001, pp. 580−589.
F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and M.
Stal, Pattern-Oriented Software Architecture: A System of
Patterns. Wiley, 1

[9] M.P. Cline, “The Pros and Cons of Adopting and Applying
Design Patterns in the Real World”, Communications of the
ACM, 39(10):47−49, 1996.

 J. Cohen, Statistical Power Analysis for the Behavioral
Sciences. Lawrence Erlbaum Associates, 1988.

[11] M. Fowler, Refactoring: Improving the Design of Existing
Code. Addison Wesley, 1999.

 E. Gamma, R. Helm, R

Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, 1995.

 J2EE EJB, http://java.sun.co . (Last accessed:

[14] raw/
3 Apr 2006)

 JHotDraw, http://sourceforge.net/projects/jhotd . (Last

[15] net/
accessed: 3 Apr 2006)

 JUnit, http://junit.sourceforge. . (Last accessed: 3 Apr

[16]
[17] fleeger, L.M. Pickard, P.W. Jones,

r Empirical Research in Software Engineering”,

lication Software Maintenance”, Communications of

2006)
 J. Kerievsky, Refactoring to Patterns. Addison Wesley, 2005.
 B.A. Kitchenham, S.L. P
D.C. Hoaglin, K.E. Emam, and J. Rosenberg, “Preliminary
Guidelines fo
IEEE Transactions on Software Engineering, 28(8):721−734,
2002.

[18] B.P. Lientz, E.B. Swanson, G.E. Tompkins, “Characteristics
of App
the ACM, 21(6):466−471, 1978.

[19] Mircosoft COM, http://www.microsoft.com/com/. (Last
accessed: 3 Apr 2006)

 L. Prechelt, B. Unger, M. Philippsen and W.F. Tichy, ”Two
Controlled Experiments Assessing the Usefulness of Design
Pattern

[20]

 Documentation in Program Maintenance”, IEEE

[21]
Tenance Comparing Design

7(12):1134−1144, 2001.

[23]

 13th ACM

[24]
ource Code: An

[25]

Transactions on Software Engineering, 28(6):595−606, 2002.
 L. Prechelt, B. Unger, W.F. Tichy, P. Brössler and L.G. Votta.
A Controlled Experiment in Main
Patterns to Simpler Solutions. IEEE Transactions on
Software Engineering, 2

[22] J. Rajesh, and D. Janakiram, “JIAD: A Tool to Inter Design
Patterns in Refactoring”, in Proceedings of the 6th ACM
SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP 2004), ACM
Press, Verona, Italy, 2004, pp. 227−237.

 M.P. Robillard, “Automatic Generation of Suggestion for
Program Investigation”, in Proceedings of the 10th European
software engineering conference held jointly with
SIGSOFT international symposium on Foundations of
software engineering (ESEC/FSE-13), ACM Press, Lisbon,
Portugal, Sep. 2005, pp. 11−20.

 M.P. Robillard, W. Coelho, and G.C. Murphy, “How
Effective Developers Investigate S
Exploratory Study”, IEEE Transactions on Software
Engineering, 30(12):889−903, 2004.

 Source Forge, http://sourceforge.net. (Last accessed: 3 Apr
2006)

 T.H. Ng and S.C. Cheung, “Enhancing Class Commutability
in the Deployment of Design Patterns

[26]
”, Information and

[27]

he 27 International

SAC 2003), IEEE Press, Dallas, Texas, USA, Nov.

[28]
ransactions on

[29]

Empirical Software Engineering
9(3):149−195, 2004.

Software Technology, 47(12):797-804, 2005.
 T.H. Ng and S.C. Cheung, “Proactive Views on Concrete
Aspects: A Pattern Documentation Approach for Software
Evolution”, in Proceedings of t th

Conference on Computer Software and Applications
(COMP
2003, pp. 242-247.

 M. Vokáč, “Defect Frequency and Design Patterns: An
Empirical Study of Industrial Code”, IEEE T
Software Engineering, 30(12):904−917, 2004.

 M. Vokáč, W. Tichy, D.I.K. Sjøberg, E. Arisholm, and M.
Aldrin, “A Controlled Experiment Comparing the
Maintainability of Programs Designed With And Without
Design Patterns: A Replication In A Real Programming
Environment”,

	ABSTRACT
	1. INTRODUCTION
	2. RELATED WORK
	2.1. The Benefits of Deploying Design Patterns
	2.2. Change Tactics

	3. METHODOLOGY OF EXPERIMENT
	3.1. Hypothesis
	3.2. Requirements of Our Experiment
	Target Program
	3.4. Change Tasks
	3.5. Refactoring Process
	3.5.1. Selection of Design Patterns
	3.5.2. Restructuring of JHotDraw
	3.5.3. Testing for Functionally the Same

	3.6. Subjects
	3.7. Task Assignment
	3.8. Variables
	3.9. Materials
	3.10. Experiment Procedures

	4. RESULTS
	4.1. Time spent
	4.2. Functional Failures
	4.3. Time spent regarding Functionally Correct Programs
	4.4. Further Analysis and Overall Results

	5. THREATS TO VALIDITY
	5.1. Construct Validity
	5.2. Internal Validity
	5.3. External Validity
	5.4. Reliability

	6. CONCLUSIONS
	7. REFERENCES

