REMOVING TRIVIAL ASSIGNMENTS FROM PROGRAMS

by

Bernard Mont-Reynaud

STAN-CS-76-544
MARCH 1976

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

Renoving Trivial Assignments from Prograns

Bernard Mnt - Reynaud

Abst r act

An assignment X <« Y in a programis "trivial" when both X and Y
are sinple program variables. The paper describes a transformation which
renoves all such assignnments froma program P, producing a program P
whi ch executes faster than P but usually has a larger size. The nunber
of variables used by p' is also mnimzed. Wrst-case analysis of the
transformation algorithmleads to nonpol ynom al bounds. Such inefficiency,
however, does not arise in typical situations, and the technique appears to

be of interest for practical conpiler optimzation.

Keywords and phrases: optimzing conpilers, program optimzation,
program transformation, program schemas,
register allocation, renamings of variables.

CR categories: 4,12

This work was supported by a graduate fellowship fromthe |BM
Corporation; the National Science Foundation, grant MCS 72-03752 ACZ,
at Stanford University, and the Ofice of Naval Research, contract
NOOO1Lk-75-C -0816, at Stanford Research Institute.

1. [ntroduction.

An assignnent X « Y in a programis "trivial" when both X and Y
are simple program variables. An enpirical study of FORTRAN prograns
conducted by D. Knuth [1] suggests that trivial assignments occur quite
frequently in practical programs. Such assignments are also introduced
when rewriting recursive definitions as iterative ones. In this paper
we consider a transformation which renoves all trivial assignnents from
prograns. The method can be inpractical in pathological cases, but
behaves quite efficiently in nost typical situations. It is thus of
interest for practical conpiler optimzation.

Let us consider Euclid' s algorithmfor conputing the greatest

common divisor of two nonnegative integers:
gcd(A B) = (if B=0 then A else gcd(B, A nod B))

Here x nmod y denotes the remainder of the integer division of x by y .
This concise recursive definition is easily inplemented in iterative form

(see Figure 1).

INPUT (A, B)

Figure 1. Flowchart GCDL.

The program GCD1 perforns one test and three assignments for each
iteration. Two of the assignments, C- B and A~ C, are trivial,
that is, both the left- and right-hand sides are sinple program
variables. W will show how to transformany flowhart involving trivial
assignnents into an equivalent flowchart which has no such assignnents.
For exanple, there is a flowhart for Euclid s algorithmin which only
one test and one assignnment are needed for each iteration. Consider
Fl owchart GCD2, shown in Figure 2. Note that every execution of the |oop
in GCD2 corresponds to two iterations in GCD1. This will be called

2-fold loop unrolling.

F
A~ A nod B
|B-—BerdA

Figure 2. Fl omchart Gcp2.

- The reader should convince hinself that the two flowharts are indeed
equivalent, in a rather strong sense: The conputation performed by Gcp2
Is step-wise identical to that performed by Gcpl, except for renamings of
variables and the omission of trivial assignnents. W observe that GCD2

runs faster and uses fewer variables than gcpl.

Such optimizations can be carried out systematically, using the
techni que described below Since the transformation is independent
of the interpretations of the programvariables (e.g., as integers) or
of the primtive operations (e.g., the nod operation), it is best
viewed as a transformation of program schemas. W introduce basic
concepts and notations for discussing flowhart schemas and describe
an algorithmto transform them into schemas without trivial assignments.
The algorithmis then strengthened to minimze the nunber of
variables used. The inclusion of the technique in a practical system
(e.g., an optimzing conpiler) raises some difficulties which are
di scussed briefly. The examples given in Appendices A-E illustrate further

aspects of this technique.

2. Basi ¢ Concepts and Notations.

2.1 Flowchart Schemas.

In this section we briefly define a certain class of flowhart schemas.
This class is essentially equivalent to those used in classic papers
on the subject [2, 3]; minor differences in notation are introduced for
convenience in stating and illustrating our transformations.

A flowchart schema (or sinply a schema) is a directed graph whose
nodes represent conputational instructions or boolean tests. |t uses a
setofvariables, X = {Xl,Xz, ...,XN} ; a set of function synbols,

F = {fl’f2’°"} (including constants); and a set of predicate synbols,
P = [pl,pe,...}. In the following we let x stand for a finite
sequence of elements of X ; for exanple, x may be (XE,Xl,Xh,Xl) .

Then we let £ (x) and p, (x) stand for £, (XaX 5 X),X,)

and p, (X3,X;,X),X)) , with feF and peP . Let X and X, be
arbitrary variables in X .

W consider the follow ng kinds of nodes.

trivial assignment node: X, «—Xj

(proper) assignnment node: X5 « fk(}-c)

ef fect node: fk(i)

test node: T @ F

start node:
st op- node:

Fl owchart schemas are constructed by conbining one start node with

. one or nore nodes of the other kinds.
These definitions are largely self-explanatory except for the
role of effect nodes. Effect nodes may represent operations such as
altering data structures or printing intermediate results, which do not
affect the values of the schema's variables. Mre generally the interpre-
tations of function and predicate synbols are allowed to have side-effects

as long as all changes to the values of the variables X; are explicitly

made by assignments.

The flowcharts GCD1 and GCD2 are exanpl es of schemas in our class.
(Note that A nod B should really be witten nod(A B) to fit our

definitions; simlarly we need to wite equalzero for the test

B = 0.) The exanple given in Appendix Aillustrates the use of

effect nodes in representing destructive operations on data structures.

2.2 Renam ngs of Variables.

The use of renamings of variables, that is, mappings fromthe set
X ‘={X1,X2,,,.,XN} of variables into itself, is central to our technique.
The rel evance of such renam ngs to problens of register allocation has
al ready been noted el sewhere [4]. In our case we allow many-to-one
mappings. In terms of register allocation, this may be called register
shari ng: at sone point in the execution of a program a single register
hol ds the values of several variables.

W also nake use of partial mappings, or total mappings from x into
XU{w} , where w stands for "undefined'. A typical renamng of
X = {%,y,2,t} is the mapping S defined by S(x) = S(y) =7y,
S(z) =w and S(t) =z :

Xyzt)
Yy w2z
or sinply S=(y y wz) since the upper lineis held constant for a

W can wite S = (, extending the notation for pernutations,

gi ven schema. There are (N+1)N di stinct renanings of X when |x| = N.

It is convenient to borrow fromthe vocabul ary of register allocation
when describing properties of renamings. For the current exanple, we say
that the variables x and y are found in the "register” y . Register
y is "shared" since it holds nore than one variable. Registers x and
t , which hold no variable, are said to be "available" or "free". This
suggestive termnology, however, does not linmt the technique to register
machines, or to cases where there are enough registers to hold all program

variables. The actual register allocation and generation of appropriate

| oad and store operations, on a register machine, are not considered
here.

Gven a renamng S of the set X of variables, and a functiona
termf(2) , where x is the argument list (a sequence of elements of X),
we use f(s(x)) to denote the expression obtained by sinultaneously
substituting s(x;) for X, , . s 8(x) for Xg i f(x) . This
not ati onal convenience also applies to predicates and to the specia
functions |INPUT and RETURN used in the start and stop nodes. It

is defined only when o does not appear after the substitution.

3. Basic Algorithmfor Renoving Trivial Assignnents.

3.1 A Sinple Exanple

Before considering the algorithmin its full generality, let us folicw
its operation on a sinple exanple of a straight-line flowchart. (See

Figure 3.) The input flowhart has three variables x , vy, z . W

begin the construction of the output flowchart by copying the start node

and we use (x y w) for initial mapping since z has no value so far;
x and y mght as well be mapped to thenselves. Processing the trivia

assignnent node z « x results in changing the mapping to (x vy x),

BULDYDS SUTT-3USTBILGS B JC UOTARWIOISUBRILIL ¢ 9JNnITd

A

s pminaty G

(x £ 2)
(x¢£¢2)8 - & & (z¢£¢%)3 o £
(x £ z
(x€Lx)F - 2 < (z¢£%)3 - x
(x £ x
dON -| - — X - Z
(m £ x)

\

JIBYOMOTI ndang Sutddew qusIgn) 3IeYOMOTI nduT

reflecting the fact that z is now found in register x . This node,

like all trivial assignments, needs no counterpart in the output flowchart;
it is convenient to use a no-operation (NOP) node for this case.

Next we process the assignnent x « f(x,y,z) . Its counterpart has the
right hand side f(x,y,x) , obtained by the obvious substitution of
registers for the corresponding variables. For the left hand side, we
can't use register x since it is currently shared by variables x and z .
But register z is free, so we can use it to hold the value f(X,y,Xx)

The mappi ng changes to (z,y,x) , reflecting the fact that x is now
found in register z . The right hand side of the transformof the
assignnent y < g(x,y,z) is nowclearly g(z,y,x) . For the left hand
side, we can use y since it is not shared. The mapping i s unchanged.

Copying the stop node with variables renanmed conpletes the transformation.

3.2 Case of Loop-free Schemas.

The algorithm uses the auxiliary recursive function TASS (for
"renove Trivial ASSigmments"). Thisfunction takes two argunents:
a reference o to a node in the input flowhart, and a mapping S .
The call TASS(a,S) creates a new node in the output flowhart and
returns a reference «a.s to that node. The algorithmis defined by six
transformation rules, one for each kind of node. The first rule initializes
the conputation, and the remaining five rules define the recursive function
TASS. Gven the current mapping S, the node o (on the left) is
transformed to the node «.s (on the right). The letters g and y stand

for references to nodes in the input flowhart.

3.2.0 Start node:
C amn (i) - C e @)
B , TASS (B, S,)

where S, is the initial mapping a. (i f uex then u else w) .

3.2.1 Trivial assignnent node:

X, - X, = NOP
1 J l
B TASS(B,8")

where ' = xu.(if u = Xy t hen S(Xj) el se S(u))

3.2.2 Effect node:

£(x) = £(s(x))
B TASS(B, S)

3.2.3 Test node:

=

B8 Y TASS(B,9) TASS(7, S)

10

5.2.4 Assi gnnent node:

X, = £(%) = 5'(x;) = £(8(x))
! | L
B TASS(B,8")

where 8' is deternined as follows. Let s" be the mapping

w.(if u = X, then w else S(u)) . Choose R arbitrarily anong the
free registers of s" (note that there is at |east one such register).
Let s' be the mapping au.(if u = X, then Relse S'(u)) . (The reason

we define 8' wusing 8" and not S will become clear in Section 4.2.)

3.2.5 Stop node:
-

The rules 3.2.0 - 3.2.5 conpletely define the transformation for
| oop-free flowharts. The algorithmanounts to a forward propagation
of a mapping through the input flowchart. For each node encountered,
a copy is created in the output flowhart, with variables renamed as
dictated by the current mapping.

For sinplicity in stating the algorithm we have transforned trivi al
assignment nodes to NOP nodes. It is easy to imagine how such nodes can
be elimnated fromthe output flowhart (or better, how the al gorithm

could be adapted to avoid their generation in the first place).

11

5.5 Treatnent of Loops.

The al gorithm described so far does not term nate when the input
flowchart has a loop. This case will be handled in the follow ng way.
W strengthen the definition of TASS so that the reference (or node nane)
a.s returned by the call TASS(a,S) is canonically associated with the
pair (o,8) . The nodes @ of the input flowchart are initially given
uni que nanes. The distinct mappings S which arise during the conputation
al so have unique nanes; for exanple, they may be encoded as integers
between 0 and (1\I+1)l\l . One can construct a unique nane «.S by pairing
the names of a and S in any reasonable way. A critical property here
is that we can conpute the name .S which will be returned by the call
TASS(a,S) before we deternmine the attributes associated with that nane,
and in particular before any recursive call is made. Ve will use a
gl obal variable, CREATEDNCDES, to keep track of the set of names «.S
corresponding to all the calls TASS(x,S) perfornmed so far. Initially
CREATEDNCDES is a set of one elenent, the nane of the start node in the
output flowchart. (At the end of the process, CREATEDNCDES i s the set of
nodes of the output flowchart.)

The recursive function TASS becones:

TASS(Q,S) :
begin let «.s be the unique name canonically
associated with the pair (o,8) ;
if a.8 f£CREATEDNODES
then include a.s in CREATEDNCDES, and conpute the attributes
(contents and successors) of «.S using the appropriate
rule anong 3.2.1-3.2.5 (the successors are determ ned
by recursive calls of TASS)
el se do not hing;
return «.S as the value of the function
end

12

Termination is now insured, since every edge of the input graph is

folloned at nmost once for each of a finite nunber of mappings.

3.4 Correctness and Wrst-case Analysis.

Proving (or even stating precisely) the correctness of the algorithm
falls outside the scope of this informal paper. The idea behind the proof

is fairly sinple, however:

(a) For loop-free flowcharts it is sufficient to prove (by considering
rules 3.2.0 - 3.2.5 individual ly) that the input and output flowcharts are

| ogically equivalent.

(b) For flowcharts with |oops we consider the infinite tree schema
associated with the output schema (see Figure 4). Imtating part (a)
above, we show that the nontermnating algorithmdefined by rules
.2.0 -2.2.5 constructs an infinite tree schema which i s equivalent to
the input flowchart. Then we show that the introduction of the gl obal
vari abl e CREATEDNODES described in Section 3.3 results in a schema
Wi t hl oops, such that the associated infinite tree schema is precisely

the schema just shown to be equivalent to the input flowchart.

A rough analysis of the algorithmshows that, if n and e denot=
- the nunber of nodes and edges of the input flowhart, n* and e' the

sane quantities in the output flowchart, and § the number of variables:

» we have n' < n(N+l)N and e' < e(N+l)N ;

° the number of calls of TASS during the execution of the algorithm

is exactly e';

15

HT

A o

Figure 4.

A schema with loops and the associated infinite tree schema.

° if suitable representations are chosen for the set CREATEDNODES and

for the mappings, the total running tine is o(e'(N+loge')) .

Thus the algorithmis "efficient" in terns of the size of its output.
However the size of the output can grow nore than polynomally with the

size of the input.

L. An Inproved Algorithm

4.1 Back to the gcd Exanple.

The al gorithm described in Section 3, when applied to acpl, does not

produce GCD2, as mght be expected, but ¢cp3 (Figure 5). One may wonder

why there are two occurrences of the test , together with their

associated stop nodes; it seems that we could junp directly from the node

tB-ChelAijnitial test . The reason is that

the two tests in question are generated under different mappings: (Jﬁ‘%%)

(A.BC
ABA

the crucial fact that the variable ¢ is "dead", that is, its value is

for the first,) for the second. The basic algorithm overl ooks

no |onger needed, when we reach the test B8 =0 . The mapping shoul d have
been (ﬁ‘g’i) in both cases.

There is another difference between gcD3 and ccp2: the former uses
three variables and corresponds to a 3-fold |oop unrolling of GCD1
(ef. exercise 1.1.3 in [5], first edition, p. 465), while the latter
uses only two variables and its loop covers two iterations of GCDI.
This difference will also be removed by the inclusion of dead variable

anal ysi s.

15

f————)' C*—AmodBI

(4)

) |

RETURN (B)

RETURN(A)

Figure 5.

7

O

FIl onchart ¢cD3.

16

4.2 The Inproved Al gorithm

The reader is referred to'[6] for a general treatment of dead
variabl e analysis.
For our purposes it is sufficient to know that the "last uses" of
each variable can be identified in the programtext. Mpre precisely, we
assune that dead variable analysis has been performed prior to our algorithm
and that each node a in a flowhart schema now has an additional
attribute: last used at(a) , which is the set of variables (possibly
enpty) which becone dead at a . W need to be even nmore specific.
[f ais an assignment of the form x « f(x,y) , we consider the
foll owi ng steps:

(1) f(x,y) is evaluated: x and y 'are live.

(2) x is nowdead, since it will receive a new definition before
it is used again (possibly y also dies here).

(3) x gets a new definition, and is live again.

In such a case, we would include x in the set last used at(a) : the
new value of x mght well be placed in a register different fromthe
regi ster which held x when eval uating f(x,y) .

Rule 3.2.1 is nodified by replacing

'S8' = w.(if u = X, t hen S(Xj) el se S(u))
with
"S' = \u.(if u = X5 t hen s(xj) else if uclast used at(x)
then w else S(u)) .
Rule 3.2.4 is nodified by replacing
tg" = ju.(if u = x; then w else S(u))
with

'8" = \u.(if U elast_used at(x®) then w else S(u)) '.

17

It can be shown easily that S"(Xi)is w , Wwhether or not X; bel ongs
to last used at(a) , so that s" always has at |east one free
register R, as before

Rules 3.2.2 and 3.2.3 are nodified by replacing the recursive calls
TASS(*,8) by TASS(%,s") , where 8" is again defined as
zu. (1f u elast used at(x) then w else S(u)) . Rule 3.2.5 is unchanged.

The resulting algorithmhas a source of nondetermnism due to the
arbitrary choice of a free register among the available registers, in the
case of a proper assignment. This nondetermnismcan be renmoved by
ordering the set X of variables and choosing the free register of
| owest possible rank in that set. The ordering is such that the input
variables (those appearing in the argunents to INWT in the start node)
precede other variables in the ordering of X . Wth these conventions,
the nodified al gorithm mnimzes the nunber of variables used; that is,
if k is the largest nunber of variables sinultaneously live at any
point in the input flowchart, then the output flowchart has at nost k
variables. Qher ways of taking advantage of the nondetermninism (for
example, to mnimze the size of the output flowchart) will not be

consi dered here.

5. D scussi on

5.1 Interest of the Technique.

The renoval of trivial assignments, as performed by the basic algorithm
does not dramatically change the time conplexity of a program |pstead,
the transformation usually reduces the constants involved in the analysis
of the program in the case of the gcd algorithm the work done by the

inner loop is reduced fromone division, one test, and three assignnents

18

to one division, one test, and one assignnent. On the other hand, trivia
assignments are quite frequent in practical prograns. In an enpirical
study of a representative sanple of FORTRAN programs [1, p 112], D. Knuth
reports that 35 percent of all assignments, oOr 25 percent of all statenents
executed, have no arithmetic operation on the right-hand side. These
percentages represent dynamc counts as the progranms were being executed,
not nerely static counts on the program text. Unfortunately [1]
does not tell how many of these assignments are indeed trivial; no
distinction is made there between sinple variables and array el enents.
The exanpl es given in Appendices A-E, particularly in Appendix ¢, should
hel p convey the potential of the technique

On a register machine, additional savings may result fromthe
reduction in the nunber of variables used. A so, independently of the
renoval of trivial assignments, the use of renamings and node copying
solves the problem of "optimzing register allocation around a loop" [7 iy
by unrolling | oops as many tines as necessary to achieve the optinization.
Surprisingly, this is done without any explicit consideration of the |oops

in the input flowchart.

5.2 Practical Difficulties.

One nmaj or drawback of the technique is that the size of the output
flowchart can exceed any fixed polynomal in the size of the input.
A remarkabl e exanmple of this behavior, due to R S. Boyer [81,1is
presented in Appendix E. There are al so cases where only mnor gains
in efficiency are obtained at the expense of nmajor increases in program
size (see Appendix D). These difficulties can be renedied in severa

ways, including (a) the use of effort bounds and cost functions to

19

deci de whether the transformation should be applied or not; (b) working
fromthe inside out, that is, beginning with inner |oops; and especially
(c) the conbination of (a) and (b).

Anot her practical difficulty, which is famliar in object code
optimzation, arises fromthe idiosyncrasies of the primtive machine
operations. For exanple, when the operation C«~ A nod B used by the
ged algorithmis inplemented using a single hardware division instruction,
one will not usually be free to choose the register C independently of A
and B . Tuning the nethod to a particular machine architecture is a

problemin itself.

5.3 Extensions.
The practical difficulties discussed in the previous paragraph point
to various inprovements and extensions of the method. Sone other

extensions under investigation are:

° Including the actual register allocation wthin the technique; in
the virtual register allocation currently performed, there is no
limt on the nunber of registers.

° Performng the transformation on an Al gol-like text (source |anguage)
rather than on flowhart schemas (intermediate |anguage).

° Defining a netaal gorithmwhich generalizes the technique descri bed
in this paper.

° Adding transformations to the class covered by the netaal gorithm
such as bool ean variable elinination and various optimizations

associated with loop unrolling.

20

Acknow edgnent s.

Wiile teaching a data structure course at Stanford University in 1973,
Edwar d McCreight showed how a certain machi ne-1anguage program for
destructive list reversal could be inproved by a rather tricky use of
loop unrolling (see Appendix A). The puzzlement created by this
i sol ated exanple notivated an investigation which eventually led to the
i deas expressed in this paper.

These results woul d never have been obtained, however, without the
i1lum nating comrents and continued encouragenent provided by the author's
thesis advisor, Donald E. Knuth. Thanks are also due to Bob Boyer,

Rob Shostak and Jay spitzen of Stanford Research Institute for enjoyable

di scussions and hel pful suggestions.

21

Ref er ences

(1] D. E Knuth, "An enpirical study of FORTRAN prograns," Software -
Practice and Experience 1 (1971), 105-133.

[2] D. C. ZLuckham, DO M R Park and M S. Paterson, "On fornalized
conputer prograns,” Journal of Conputer and System Sciences 4 (1970),

vt =2hy

[»|%. Manna, Mathematical ''heory of Conputation, (McGraw-iiill, Lyh),
448 p.

(4] L. Logrippo, "On sonme equival ence-preserving transformations in
progr am schemas," Proving and Inproving Progranms, I.R.I.A.

Synposi um hel d at Arc et Senans, France, July 1975.

[5) D. E Xnuth, Fundamental Algorithms, The Art of Conputer Programming 1
(Readi ng, Mass.: Addison-\Wesley, 1968, 2nd edition 1973), 63k pp.

[61J. Cocke and J. T. Schwartz, "Progranmmng |anguages and their
conpilers,"” Courant Institute of Mathematical Science, New York
Uni versity, 1970.

[7] K Kennedy, "Index register allocation in straight [ine code and
cimple 1 oops,”™ in Design and Optinization of Conpilers (R Rustin, ed.)
Prentice-Hall, Englewood CQiffs, w.J., 1972, 51-0k.

[8] R S. Boyer, personal comunication, Decenber 1975.

22

- Appendi x A Destructive list reversal.

The exanple in Figure Al is due to Edward McCreight of Xerox Pal o
Alto Research Center. The programtakes as input a pointer to a |inked
list, and returns a pointer to the reversed |ist, obtained by destructive
updating of the original list. The nmeaning of resetlink(P,q) is
LINK(P) « Q. The first formis used to make it clear that the correspcnding
node is an effect node, not an assignnment node. The constant null is
witten null() , i.e., as a function without argunents, to distinguish

it froma variable. The test is null(P) checks whether P = null

25

input fl owchart

output flowchart

N

| @ - m11() |

Q - null()

“(is_null(P) RETURN(Q) is null(P)
_—/ e SR ___
F F
N
[R-LIN(P) | R~ LINK(P)
A4 N
resetlink(P,Q) resetlink(P,Q)
v T
Q « P is null(R) w
F
2
P« R Q- LINK(R
|
h\74
resetlink(R,P)
Caem11(0) D—LsCrmmmn(z)
F
P « LINK(Q)
, N
[resetlink(Q,R) I

Figure A-l. Destructive list reversal.

2k

feare ue UT UMWIXBW U4 JFUTITUTLS T-4 oandtd

T+T —» T

qaIeyomcTI ndanc 9IBUOMOTI 4NndUT

*qIeYoMCTI qndano ayg 9B JUTNOOT 8acFoq JTSSWIY 3T JuTAowsd AXg 09 POgTAUL ST J2peaX auj

Lo

{peacwex 8q jouuss 3JeUOMOTI JnduTl ayg Ut T — { quewuBTsse TRIATJIG 8U3 9BUgG Wess Lew 9T ASITI Y

U)X “(T)X ABIge U UT JUSWDTS UMWIXBW 9Yq JC Xspul oya soqndwod T-g 2andtd ur oTdwexs ayJ

+f2IIB UBR UT UNWIXBW aUyq Buripuld '*g XIpusddy

25

Appendi x C. Recurrence rel ations.

The exanple in Figure C| is typical of all recurrence relations of
the form a = f(an_l,an_g,...,an_k) . The program conput es a gi ven
the value of n . The transformation results in k-fold loop unrolling

and saves k assignments per iteration. The figure illustrates the case
k =3

Cam ()

treat cases n =1, 2, 3 treat cases n =1,2, 3
and initialize Xl Xy X and initialize Xy 5 Xy z
\ 2 :
-] X), - f’(X5,X2,Xl) Xy - f(XB,X2,Xl)
F - F{
p
n < n-1 n <« n-1
Xy = X,
X, - Xy
Figure GI. Recurrence a = f(an—l’a‘n-z’an-B)

26

Appendi x D. A costly optinization.

| nput out put

PV

very
| arge
program

Figure D-I. A costly optimzation.

Figure D-1 illustrates the need for evaluating the gain in execution

time versus the gain in program size (and/or for focusing on inner |oops).

27

Appendi x_E. A pathol ogi cal case

The program shown in Figure E-I takes n inputs x e X and

lJ Xg)
returns them in ascending order of the values. The auxiliary variable x'

hel ps perform exchanges.

Figure E-I. Sorting n variables.

This flowhart has n+l variables and un-2 nodes. The transforned
flowchart has n.n!+1 nodes: the stop node, and each of the (n-l) test
nodes are copied exactly once for every permutation of the variables

X o X

l,..‘ n -

28

