
REMOVINGTRIVIALASSIGNMENTS FROM PROGRAMS

bY

Bernard Mont-Reynaud

STAN-CS-76-544
MARCH 1976

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

Removing Trivial Assignments from Programs

Bernard Mont-Reynaud

Abstract

An assignment X + Y in a program is "trivial" when both X and Y

are simple program variables. The paper describes a transformation which

removes all such assignments from a program P , producing a program Pr

which executes faster than P but usually has a larger size. The number

of variables used by P' is also minimized. Worst-case analysis of the

transformation algorithm leads to nonpolynomial bounds. Such inefficiency,

however, does not arise in typical situations, and the technique appears to

be of interest for practical compiler optimization.

Keywords and phrases: optimizing compilers , program optimization,

program transformation, program schemas,

register allocation, renamings of variables.

CR categories: 4.12

This work was supported by a graduate fellowship from the IBM
Corporation; the National Science Foundation, grant ES 72-03752 AOj,
at Stanford University, and the Office of Naval Research, contract
NOOOl4-75-C -0816, at Stanford Research Institute.

1

1. Introduction.

An assignment X + Y in a program is "trivial" when both X and Y

are simple program variables. An empirical study of FORTRAN programs

conducted by D. Knuth [l] suggests that trivial assignments occur quite

frequently in practical programs. Such assignments are also introduced

when rewriting recursive definitions as iterative ones. In this paper

we consider a transformation which removes all trivial assignments from

programs. The method can be impractical in pathological cases, but

behaves quite efficiently in most typical situations. It is thus of

interest for practical compiler optimization.

Let us consider Euclid's algorithm for computing the greatest

common divisor of two nonnegative integers:

gcd(A,B) = (if B = 0 then A else gcd(B, A mod B)) .

- Here

This

(see

x mod y denotes the remainder of the integer division of x by y .

concise recursive definition is easily implemented in iterative form

Figure 1).

B +A mod B

Figure 1. Flowchart GCDl,

2

The program CCDl performs one test and three assignments for each

iteration. Two of the assignments, C + B and A + C , are trivial,

that is, both the left- and right-hand sides are simple program

variables. We will show how to transform any flowchart involving trivial

assignments into an equivalent flowchart which has no such assignments.

For example, there is a flowchart for Euclid's algorithm in which only

one test and one assignment are needed for each iteration. Consider

Flowchart GCD2, shown in Figure 2. Note that every execution of the loop

in CCD2 corresponds to two iterations in GCDl. This will be called

2-fold loop unrolling.

A + A mod B

F
d 4

B + B mod A
t

I

Figure 2. Flowchart CCD2.

- The reader should convince himself that the two flowcharts are indeed

equivalent, in a rather strong sense: The computation performed by GCD2 I

is step-wise identical to that performed by GCDl, except for renamings of

variables and the omission of trivial assignments. We observe that GCD2

runs faster and uses fewer variables than CCDl.

3

Such optimizations can be carried out systematically, using the

technique described below. Since the transformation is independent

of the interpretations of the program variables (e.g., as integers) or

of the primitive operations (e.g., the mod operation), it is best

viewed as a transformation of program schemas. We introduce basic

concepts and notations for discussing flowchart schemas and describe

an algorithm to transform them into schemas without trivial assignments.

The algorithm is then strengthened to minimize the number of

variables used. The inclusion of the technique in a practical system

(edh an optimizing compiler) raises some difficulties which are

discussed briefly. The examples given in Appendices A-E illustrate further

aspects of this technique.

2. Basic Concepts and Notations.

2.1 Flowchart Schemas.

In this section we briefly define a certain class of flowchart schemas.

This class is essentially equivalent to those used in classic papers

on the subject [2, 3 1; minor differences in notation are introduced for

convenience in stating and illustrating our transformations.

A flowchart schema (or simply a schema) is a directed graph whose

nodes represent computational instructions or boolean tests. It uses a

setofvariables, x = CXl’X2, "VI(N) ; a set of function symbols,

F = (fl,f2,...] (including constants); and a set of predicate symbols,

p = CPl,P2"'4 l In the following we let 2 stand for a finite

sequence of elements of X ; for example,

Then we let fk(x) and p,(x) stand for fk(X3,X1,X4,Xl)

and pk(X3,Xl,X4,Xl) , with fkeF and pkeP . Let X. and Xj be1

arbitrary variables in X .

We consider the following kinds of nodes.

trivial assignment node:

(proper) assignment node:

effect node: f&)

test node:

CJ
xi *x.

J

Tl-&--JF

start node:

stop-node:

Flowchart schemas are constructed by combining one start node with

_ one or more nodes of the other kinds.

These definitions are largely self-explanatory except for the

role of effect nodes. Effect nodes may represent operations such as

alter"lng data structures or printing intermediate results, which do not

affect the values of the schema's variables. More generally the interpre-

tations of function and predicate symbols are allowed to have side-effects

as long as all changes to the values of the variables Xi are explicitly

made by assignments.

5

The flowcharts GCDl and GCD2 are examples of schemas in our class.

(Note that A mod B should really be written mod(A,B) to fit our

definitions; similarly we need to write equalzero for the test

B = 0 .> The example given in Appendix A illustrates the use of

effect nodes in representing destructive operations on data structures.

2.2 Renamings of Variables.

The use of renamings of variables, that is, mappings from the set

x *= cy2, l l 4☺t☺
of variables into itself, is central to our technique.

The relevance of such renamings to problems of register allocation has

already been noted elsewhere [4]. In our case we allow many-to-one

mappings. In terms of register allocation, this may be called register

sharing: at some point in the execution of a program, a single register

holds the values of several variables.

We also make use of partial mappings, or total mappings from x into

xubl 1 where w stands for "undefined". A typical renaming of

X = {x,y,z,t) is the mapping S defined by S(x) = S(y) = y ,

s(z) .= w and S(t) = z :

Z

1

Z

t t

w

We can write S = (
x y z t
YYWZ > , extending the notation for permutations,

or simply S = (y y u) z) since the upper line is held constant for a

given schema. There are (N+l) N distinct renamings of X when IX\ = N .

b

It is convenient to borrow from the vocabulary of register allocation

when describing properties of renamings. For the current example, we say

that the variables x and y are found in the "register" y . Register

y is "shared" since it holds more than one variable. Registers x and

t , which hold no variable, are said to be "available" or "free". This

suggestive terminology, however, does not limit the technique to register

machines, or to cases where there are enough registers to hold all program

variables. The actual register allocation and generation of appropriate

load and store operations, on a register machine, are not considered

here.

Given a renaming S of the set X of variables, and a functional

term f(2) , where 2 is the argument list (a sequence of elements of X),

we use f(S(2)) to denote the expression obtained by simultaneously

substituting
s(⌧l) for ⌧1 Y l ** > s(⌧.☺ for

34
in f(z) . This

notational convenience also applies to predicates and to the special

functions INPUT and RETURN used in the start and stop nodes. It

is defined only when u) does not appear after the substitution.

3. Basic Algorithm for Removing Trivial Assignments.

3.1 A Simple Example.

Before considering the algorithm in its full generality, let us I"sZos;~

its operation on a simple example of a straight-line flowchart. (See

Figure 3.) The input flowchart has three variables x , y , z . We

begin the construction of the output flowchart by copying the start node,

and we use (x y w) for initial mapping since z has no value so far;

X and y might as well be mapped to themselves. Processing the trivial

assignment node z + x results in changing the mapping to (x Y x> >

T T
IT- Ihx
I
I

T

5i+hN I

I

reflecting the fact that z is now found in register x . This node,

like all trivial assignments, needs no counterpart in the output flowchart;

it is convenient to use a no-operation (NOP) node for this case.

Neti we process the assignment x + f(x,y,z) . Its counterpart has the

right hand side f(XYYY4 Y obtained by the obvious substitution of

registers for the corresponding variables. For the left hand side, we

can't use register x since it is currently shared by variables x and z .

But register z is free, so we can use it to hold the value f(x,y,x) .

The mapping changes to (z,y,x) , reflecting the fact that x is now

found in register z . The right hand side of the transform of the

assignment y + g(x,y,z) is now clearly g(z,y,x) . For the left hand

side, we can use y since it is not shared. The mapping is unchanged.

Copying the stop node with variables renamed completes the transformation.

3.2 Case of Loop-free Schemas.

The algorithm uses the auxiliary recursive function TASS (for

"remove Trivial ASSignments"). Thisfunction takes two arguments:

a reference a to a node in the input flowchart, and a mapping S .

The call TASS&S) creates a new node in the output flowchart and

returns a reference Cx.S to that node. The algorithm is defined by six

transformation rules, one for each kind of node. The first rule initializes

the computation, and the remaining five rules define the recursive function

TASS. Given the current mapping S , the node Q (on the left) is

transformed to the node a&' (on the right). The letters @ and y stand

for references to nodes in the input flowchart.

9

3.2.0 Start node:

INWT(:)7
B

INRJT(?)7
. TASS (BY so)

where sO is the initial mapping AU. if u~k then u else w) .

3.2.1 Trivial assignment node:

TASS(&S')

where S' = hu.(if u = Xi then S(Xj) else S(u)) l

3.2.2 Effect node:

w
F?

B

3.2.3 Test node:

P(Z)73
P Y

TASS(B, S)

9
TASS(B,S) TJ=(YY S)

10

3.2.4 Assignment node:

B TASS(&S')

where S' is determined as follows. Let S" be the mapping

hu.(if u = Xi then w else S(u)) . Choose R arbitrarily among the

free registers of S" (note that there is at least one such register).

Let S' be the mapping hu.(if u = Xi then R else S"(u)) . Ohe reason

we define S' using S" and not S will become clear in Section 4.2.)

3.2.5 Stop node:

The rules 3.2.0 - 3.2.5 completely define the transformation for

loop-free flowcharts. The algorithm amounts to a forward propagation

of a mapping through the input flowchart. For each node encountered,

a copy is created in the output flowchart, with variables renamed as

dictated by the current mapping.

For simplicity in stating the algorithm, we have transformed trivial

assignment nodes to NOP nodes. It is easy to imagine how such nodes can

be eliminated from the output flowchart (or better, how the algorithm

could be adapted to avoid their generation in the first place).

11

3.3 Treatment of Loops.

The algorithm described so far does not terminate when the input

flowchart has a loop. This case will be handled in the following way.

We strengthen the definition of TASS so that the reference (or node name)

a!.S returned by the call TASS(a,S) is canonically associated with the

pair @,S) . The nodes CI of the input flowchart are initially given

unique names. The distinct mappings S which arise during the computation

also have unique names; for example, they may be encoded as integers

between 0 and (N+l)N . One can construct a unique name a.S by pairing

the names of a and S in any reasonable way. A critical property here

is that we can compute the name a.S which will be returned by the call

TASS(a,S) before we determine the attributes associated with that name,

and in particular before any recursive call is made. We will use a

global variable, CREATEDNODES, to keep track of the set of names CLS

corresponding to all the calls TASS(a,S) performed so far. Initially

CREATEDNODES is a set of one element, the name of the start node in the

output flowchart. (At the end of the.process, CREATEDNODES is the set of

nodes of the output flowchart.)

The recursive function TASS becomes:

TASS(a,S):

begin let a.S be the unique name canonically

associated with the pair (a,S) ;

if 0LS /CREATEDNODES

then include a.S in CREATEDNODES, and compute the attributes

(contents and successors) of a.S using the appropriate

rule among 3.2.1-3.2.5 (the successors are determined

by recursive calls of TASS)

else do nothing;

return a.S as the value of the function

end

12

Termination is now insured, since every edge of the input graph is

followed at most once for each of a finite number of mappings.

3-4 Correctness and Worst-case Analysis.

Proving (or even stating precisely) the correctness of the algorithm

falls outside the scope of this informal paper. The idea behind the proof

is Pairly simple, however:

(a) For loop-free flowcharts it is sufficient to prove (by considering

rules 3.2.0 - 3.2.5 individually) that the input and output flowcharts are

logically equivalent.

(b) For flowcharts with loops we consider the infinite tree schema

associated with the output schema (see Figure 4). Imitating part (a)

above, we show that the nonterminating algorithm defined by rules

32.0 - 202.5 constructs an infinite tree schema which is equi.valent to

the input flowchart. Then we show that the introduction of the global

variable CREATEDNODES described in Section 3.3 results in a schema

withloops, such that the associated infinite tree schema is precisely

the schema just shown to be equivalent to the input flowchart.

A rough analysis of the algorithm shows that, if n and e denok

- the number of nodes and edges of the input flowchart, n' and e' the

same quantities in the output flowchart, and N the number of variables:

a we have n' _< n(N+l)N and e' _< e(N+l)N ;

0 the number of calls of TASS during the execution of the algorithm

is exactly e1 ;

13

I

. ‘I .

) A
I

<

F
I ,

)B

T

. .

*

F
.

.
. ‘

. .

Figure 4. A schema with loops and the associated infinite tree schema.

0 if suitable representations are chosen for the set CHM,TEDNODES and

for the mappings, the total running time is O(e'(N+log et)) .

Thus the algorithm is ffefficient'f in terms of the size of its output.

However the size of the output can grow more than polynomially with the

size of the input.

4. An Improved Algorithm.

4.1 Back to the gcd Example.

The algorithm described in Section 3, when applied to CCDl, does not

produce GCD2, as might be expected, but GCD3 (Figure 5). One may wonder

why there are two occurrences of the test together with their

associated stop nodes; it seems that we could jump directly from the node

[Ito th e i n i t i a l t e s t c?> . The reason is that

the two tests in question are generated under different mappings: A B C(A B U)

for the first, (A B AA B ') for the second. The basic algorithm overlooks

the crucial fact that the variable C is "dead", that is, its value is

no longer needed, when we reach the test B = 0 . The mapping should have

been (A B C
ABw > in both cases.

There is another difference between GCD3 and CCD2: the former uses

w three variables and corresponds to a T-fold loop unrolling of GCDl

(fc . exercise 1.1.3 in [I?], first edition, p. 465), while the latter

uses only two variables and its loop covers two iterations of GCDl.

This difference will also be removed by the inclusion of dead variable

analysis.

15

T

F
V. I

C+AmodB 1

F

A + B mod C

I

\B+CmodA/

I

Figure 5. Flowchart GCD3.

16

4.2 The Improved Algorithm.

The reader is referred to'[6] for a general treatment of dead

variable analysis.

For our purposes it is sufficient to know that the "last uses" of

each variable can be identified in the program text. More precisely, we

assume that dead variable analysis has been performed prior to our algorithm

and that each node a in a flowchart schema now has an additional

attribute: last-used-at(a) , which is the set of variables (possibly

empty) which become dead at a . We need to be even more specific.

If CY is an assignment of the form x + f(x,y) , we consider the

following steps:

(1) f(X,Y) is evaluated: x and y 'are live.

(2) X is now dead, since it will receive a new definition before

it is used again (possibly y also dies here).

(3) x gets a new definition, and is live again.

In such a case, we would include x in the set last used at(a) : the- -

new value of x might well be placed in a register different from the

register which held x when evaluating f(X,Y) l

Rule 3.2.1 is modified by replacing

’ S’ = hu.(if u = Xi then S(Xj) else S(u)) '

with

’ ts’ = Au.(if u = Xi then S(Xj) else if u~last-used-at(a)

then 03 else S(u)) L

Rule 3.2.4 is modified by replacing

t SW = hu.(if u = Xi then w else S(u)) 1

with

' S" = Au-(if u elast-used-at(a) then w else S(u)) t .

17

It can be shown easily that St(Xi) is u) , whether or not Xi belongs

to last-used-at(a) , so that St1 always has at least one free

register R , as before.

Rules 3.2.2 and 3.2.3 are modified by replacing the recursive calls

TASS(*,S) by TASS(*,Sft) , where St is again defined as

hu.jif uelast-used-at(a) then u) else S(u)) . Rule 3.2.5 is unchanged.

The resulting algorithm has a source of nondeterminism, due to the

arbitrary choice of a free register among the available registers, in the

case of a proper assignment. This nondeterminism can be removed by

ordering the set X of variables and choosing the free register of

lowest possible rank in that set. The ordering is such that the input

variables (those appearing in the arguments to INPUT in the start node)

precede other variables in the ordering of X . With these conventions,

the modified algorithm minimizes the number of variables used; that is,

if k is the largest number of variables simultaneously live at any

point in the input flowchart, then the output flowchart has at most k

variables. Other ways of taking advantage of the nondeterminism (for

example, to minimize the size of the output flowchart) will not be

considered here.

5- Discussion.

5.1 Interest of the Technique.

The removal of trivial assignments, as performed by the basic algorithm,

does not dramatically change the time complexity of a program. Instead,

the transformation usually reduces the constants involved in the analysis

of the program; in the case of the gcd algorithm, the work done by the

inner loop is reduced from one division, one test, and three assignments

18

L

to one division, one test, and one assignment. On the other hand, trivial

assignments are quite frequent in practical programs. In an empirical

study of a representative sample of FOKCRAN programs [l, p 1121, D. Knuth

reports that 35 percent of all assignments, or 23 percent of all statements

executed, have no arithmetic operation on the right-hand side. These

percentages represent dynamic counts as the programs were being executed,

not merely static counts on the program text. Unfortunately [l]

does not tell how many of these assignments are indeed trivial; no

distinction is made there between simple variables and array elements.

The examples given in Appendices A-E, particularly in Appendix C, should

help convey the potential of the technique.

On a register machine, additional savings may result from the

reduction in the number of variables used. Also, independently of the

removal of trivial assignments, the use of renamings and node copying

solves the problem of "optimizing register allocation around a loop" [7 J,

by unrolling loops as many times as necessary to achieve the optimization.

Surprisingly, this is done without any explicit consideration of the loops

in the input flowchart.

5.2 Practical Difficulties.

One major drawback of the technique is that the size of the output

flowchart can exceed any fixed polynomial in the size of the input.

A remarkable example of this behavior, due to R. S. Boyer [8 1, is

.
presented in Appendix E. There are also cases where only minor gains

in efficiency are obtained at the expense of major increases in program

size (see Appendix D). These difficulties can be remedied in several

ways, including (a) the use of effort bounds and cost functions to

19

decide whether the transformation should be applied or not; 04 workinlr,

from the inside out, that is, beginning with inner loops; and especially

(c) the combination of (a) and (b).

Another practical difficulty, which is familiar in object code

optimization, arises from the idiosyncrasies of the primitive machine

operations. For example, when the operation C + A mod B used by the

gcd algorithm is implemented using a single hardware division instruction,

one will not usually be free to choose the register C independently of A

and B . Tuning the method to a particular machine architecture is a

problem in itself.

5.3 Extensions.

The practical difficulties discussed in the previous paragraph point

to various improvements and extensions of the method. Some other

extensions under investigation are:

9 Including the actual register allocation within the technique; in

the virtual register allocation currently performed, there is no

limit on the number of registers.

0 Performing the transformation on an Algol-like text (source language)

rather than on flowchart schemas (intermediate language).

0 Defining a metaalgorithm which generalizes the technique described

in this paper.

0 Adding transformations to the class covered by the metaalgorithm,

such as boolean variable elimination and various optimizations

associated with loop unrolling.

20

Acknowledgments.

While teaching a data structure course at Stanford University in 1973,

Edward McCreight showed how a certain machine-language program for

destructive list reversal could be improved by a rather tricky use of

loop unrolling (see Appendix A). The puzzlement created by this

isolated example motivated an investigation which eventually led to the

ideas expressed in this paper.

These results would never have been obtained, however, without the

illuminating comments and continued encouragement provided by the author's

thesis advisor, Donald E. Knuth. Thanks are also due to Bob Boyer,

Rob Shostak and Jay Spitzen of Stanford Research Institute for enjoyable

discussions and helpful suggestions.

21

References

[l] De E. Knuth, "An empirical study of FORTRAN programs," Software -

Practice and Experience 2 (1971), 105-133.

(123 De C. Luckham, D. M. R. Park and M. S. Paterson, "On formalized

computer programs," Journal of Computer and System Sciences k (1970),

WJ(I -a+rj .

[5 1 %. Mtmm, Mathematical 'I'heory of Computation, (McGraw-Itill, I-','('I),

448 p.

[4] L. Logrippo, "On some equivalence-preserving transformations in

program schemas," Proving and Improving Programs, I.R.I.A.

Symposium held at Arc et Senans, France, July 1975.

[5] D. E. Knuth, Fundamental Algorithms, The Art of Computer Programming 1N
(Reading, Mass.: Addison-Wesley, 1968, 2nd edition 1973), 634 pp.

[61 J. Cocke and J. T. Schwartz, "Programming languages and their

compilers," Courant Institute of Mathematical Science, New York

University, 1970.

f7] K. Kennedy, "Index register allocation in straight line code and

Gimple loops," in Design and Optimization of Compilers (R. Rustin, cd.)

Prentice-Hall, Englewood Cliffs, N. J., 1972, 51-64.

[81 R. S. Boyer, personal communication, December 1975.

22

-Appendix A. Destructive list reversal.

The example in Figure A-l is due to Edward McCreight of Xerox Palo

Alto Research Center. The program takes as input a pointer to a linked

list, and returns a pointer to the reversed list, obtained by destructive

updating of the original list. The meaning of resetlink(P,&) is

LINK(P) + Q . The first form is used to make it clear that the correspcnding

node is an effect node, not an assignment node. The constant null is

written null() , i.e., as a function without arguments, to distinguish

it from a variable. The test is null(P) checks whether P = null .-

23

in-m-t flowchart output flowchart

I Q -nu=() 1

F
\/

R + LINK(P)

w
resetlink(P,Q)

QQ+-P

e V
Q + null0

I

I F
d/ I

R +- LINK(P)

mresetlink(P,Q)
F

vv
Q c- LINK(R)

I/
9

resetlink(R,P)

I

P t LINK(Q)

I

Figure A-l. Destructive list reversal.

24

l-i cu

1

1 1
‘l-2 *l-l

l-l+‘r;,
il-

1

‘r-3

1

25

Appendix C. Recurrence relations.

The example in Figure C-l is typical of all recurrence relations of

the form an = f(an-l,an,2,...Ja
n-k) . The program computes an , given

the value of n . The transformation results in k-fold loop unrolling

The figure illustrates the case
k=3.

I v
treat cases n = 1, 2, 3

and initialize X1 Y x2 Y x-4 3

and saves k assignments per iteration.

I

x4 + f(X3>X2>X~)
I

xl + x2

V

x2 cx3 .

V T
X
3 +X4

II

Figure C-l. Recurrence an =

26

ti
n +n-1

I
t
x3 * fop, 3, x3)

1

f (�n-1� an,2y an-3) l

Appendix D- A costly optimization.

input output

x 'Y I

very
large

program
P

.

P P'

L c.

Figure D-l. A costly optimization.

Figure D-l illustrates the need fdr evaluating the gain in execution

time versus the gain in program size (and/or for focusing on inner loops).

27

Appendix E. A pathological case.

The program shown in Figure E-l takes n inputs Xl,X2,...,Xn and

returns them in ascending order of the values. The auxiliary variable X'

helps perform exchanges.

J

X’ -x1

xl 4-- x2

x2 +--xt

I

1X’ *x2

+ x-X 2 3 l

⌧ - +X�3

. .

...
“1_-n-1 5 ‘n T

X’ +xn 1
- I

Xn-l
t-X

n

xn +-X'

Figure E-l. Sorting n variables.

This flowchart has n+l variables and &n-2 nodes. The transformed

flowchart has n-n!+1 nodes: the stop node, and each of the (n-l) test

nodes are copied exactly once for every permutation of the variables

⌧1,---y& l

28

