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Abstract
It is well known that the classical Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, . . . ,

Fn,. . . can be used to define the Golden Mean φ as the limit limn→∞
Fn+1

Fn
.

This limit value is the (positive) solution of the quadratic equation x2 −
x − 1 = 0. To visualize the Fibonacci sequence one uses a nested set of
squares and derives a construction of “the” Golden Spiral, a bi-arc spiral
consisting of quarter circles. The mentioned procedures easily can be applied
to algebraic equations of higher order. To each such an equation it is possible
to find a Fibonacci type sequence such that one real solution (if existing)
becomes the limit of the quotient of consecutive elements of that sequence.
In case of an existing limit value one has therewith an additional way to find
solutions of algebraic equations, besides Newton’s method and the regula
falsi. Mathematics and Informatics courses for high schools mostly deal with
algebraic problems, therefore the presented method seems to be well-suited
to be introduced into such courses. The paper also reflects the problem of
mathematical visualisation. The existing visualisations of Fibonacci sequels
are rather standardised and the paper also tries to open up for other and
perhaps more adequate visualisations.
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1. Some facts about the Golden Mean

The “Golden Mean” (GM) or “Golden Section” and its properties are so well-known
that one hardly needs to recall some facts about it. This concept connects Math-
ematics, Geometry, Biology and, last but not least, Fine Art, see e.g. [3, 11, 12,
15]. While for Mathematics the GM means an interesting number φ = 1.618 . . . , it
means a special proportion for Geometry and Art, see Figure 1.

The segment M called the “maior” is the geometric mean of the two segments m,
the “minor” and the sum M +m and we receive φ as the ratio |M | : |m| of lengths
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Figure 1: “Golden” Proportions of three segmentsM ,m andM+m:
m :M =M : (M +m)

of these segments. The collinear points A,B,C in figure 1 define a the “Golden
Ratio” GR, which is the signed value −φ−1 = 1− φ = −0.618. . . and both values,
φ and −φ−1, are the two solutions of the quadratic equation

φ2 + φ− 1 = 0.

From the ‘ancient Greek point of view’ following the Pythagorean commensurability
test by dividing the unit segment 1 by |M | receiving |m| as the remainder and then
dividing |M | by |m|and so on one gets the GM-value as the result of the continuous
fraction

1

1+ 1
1+ 1

1+...

= 0.618 . . . ,

what shows that φ can be called the “most irrational number”.
Remark 1.1. By the way, if we add the ideal point U of the line AB of figure 1, the
four points A,B,C,U form a “Golden Cross Ratio”. In general four collinear points
define six cross ratio values

x,
1

x
, 1−x, 1

1−x, 1−
1

x
,

x

x−1 ,

but for harmonic point quadruplets there are only three different cross ratio values.
For “Golden Quadruplets” there are five, (if we take the absolute values), and these
two cases are the only real quadruplets of points with less than six cross ratio
values. So there is a projective geometric characterization of the Golden Cross
Ratio, too, see [18].

It is also well-known that the GM φ is the limit of the quotient of consecu-
tive Fibonacci numbers Fi, Fi+1, which are defined recursively by Fi+1=Fi+Fi−1.
Starting with 0,1 (or more common with 1,1) we get the well-known sequel of
Fibonacci numbers 0,1,1,2,3,5,8,13,21,... but independently of any two real start
values the limit of the quotient of consecutive numbers of the resulting sequence
always is

lim
i→∞

Fi+1

Fi
= φ.

Traditionally visualization of the Golden Mean happens by “Golden Rectangles”,
which have side ratio 1 : |M | (and |M | :1) and which om one hand are the limit
figures of consecutive Fibonacci squares and on the other have a square as the
gnomon figure, see Figure 2. Obviously, by using quarter-circles inscribed to the
gnomon squares one receives a discrete logarithmic spiral, which is the result of
applying a similarity group to one of the quarter-circles. From the CAGD point
of view this spiral is a GC1- circular bi-arc spiral.
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Figure 2: Consecutive Fibonacci squares and “Golden rectangles”
with quarter-circle spiral

Of course there are many other visualizations of spiral polygons and circular
bi-arc spirals possible which, with the same justification, can be called “Golden
Spirals”, too, see Figure 3.

Figure 3: “Golden circular bi-arc spirals derived from the regular
pentagon. Left: 72◦-circular arcs. Right: 108◦-circular arcs.

2. Solving algebraic equations via Fibonacci
sequences

2.1. Quadratic equations

In 1. we have noticed that x2−x−1=0, resp. x2+x−1=0 have φ resp. 1/φ as
positive solutions. Here belong the Fibonacci sequel and thus the limit of “Fibonacci
quotients” give the (positive) solution of these special quadratic equations. So one
might ask, given a general quadratic equation x2−ax−b=0, a, b ∈ mathbbR, find
a Fibonacci-type sequel such that the positive solution is the limit of the quotient
of adjacent elements of this sequel!

Let us start with a Fibonacci-type sequel defined by Fi+1=pFi+qFi−1, then it
follows that

limn→∞

(
1=p

Fi

Fi+1
+q

Fi−1
Fi+1

)
=

(
1=

p

x
+

q

px+q

)
=
(
1=

p

x
+
q

x2

)
.
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Now, by comparing coefficients we finally get p := a, q := b. Therewith we
can receive one solution of a quadratic equation with two non-trivial coefficients by
calculating the limit of “Fibonacci quotients”, i.e. the limit of the sequel of ratios
of two adjacent Fibonacci numbers. Note that the quotient sequence is convergent,
if and only if the quadratic equation has real solutions.

2.2. General cubic equations

Now we shall apply the method described in 2.1 to cubic equations: Given a general
cubic equation x3 + a x

2
+ bx + c = 0, a, b, c ∈ R\ {0} , find a Fibonacci-type

sequel such that a real solution is the limit of the quotient of adjacent elements of
this sequel! Again we start with a Fibonacci-type sequel now defined by Fi+1 =
pFi + qFi−1 + rFi−2. A short calculation shows that

limn→∞

(
1=p

Fi

Fi+1
+q

Fi−1
Fi+1

+r
Fi−2
Fi+1

)
= · · · =

(
1=

p

x
+
q

x2
+
r

x3

)
.

Comparing coefficients we receive p := −a, q := −b, r := −c. Note that the
generalized Fibonacci-quotient sequence is surely convergent, as long as at least
q 6= 0 ∧ r 6= 0. Cubic equations always possess at least one real solution.

Remark 2.1. For the special cubic equation x3+c=0 the sequel defined by

Fi+1=0 · Fi+0 · Fi−1−c · Fi−2

is not a proper Fibonacci-type sequel, but only a geometric sequel. One might
have the idea to apply the inverse of a Tschirnhaus-Bring-Ferrard-transformation
(TBF-trafo), see [21], to transform the special equation to a general one. The
well-known TBF-trafo “deletes” the two first coefficients of an algebraic equation.
It means that it is possible to transform a polynomial

xn+an−1x
n−1+an−2x

n−2+an−3x
n−3+ · · ·+a1x+a0=0, a0 ∈ R,

into one with an−1=an−2=0 . In our special case a re-transformation by e.g. x=y−1
or x= 1−z

z would work to receive a general cubic equation. This principle is also the
mathematical background for the origami operations to fold the “Delian Problem”
3
√
2 . From z3−2=0 one gets 3x3−3x2+3x−1=0 by the transformation z := 1−x

x .
If we use a square with unit side length, then the paper folding operations shown
in Figure 4 lead to the ratio 1: 3

√
2 as the ratio x : (1−x) on one of the square’s

sides, see e.g. [19].

Note that “doubling the cube” is equivalent to “halving a prism” into two prisms
similar to the given one, which is the 3D-analog to W. OSTWALD’s DIN-paper
format: a:b=1:

√
2. Such a prism would have the edge length ratios a:b:c= 3

√
4: 3
√
2:1.

This idea can easily be generalized to “n-dimensional Ostwald-prisms”, which then
would have edge length ratios 2(n−1)/n: 2(n−2)/n:. . . : 21/n:1, see [19].

12 G. Weiss



Figure 4: Origami solution of the Delian Problem of doubling the
cube

2.3. The cubic equations of van der LAAN and
ROSENBUSCH

There are and were many attempts to generalize the Golden Mean:
V. SPINADEL e.g. generalizes the defining “Golden” quadratic equation(s)x2−

x−1 = 0 resp. x2+x−1=0 to x2+px−1=0 and x2+px−q=0, p, q ∈ Z, which have
the so-called (generalized) “Metallic Means” MM as positive solutions, see [10, 11].
Even it does not really make sense they were thought to be connected to two
dimensional visualizations, thus stimulating the question for analogues of the GM
and the MMs in three dimensions and connect such mean values with a cubic
equations.

It was first Hans van der Laan, a Dutch monk and architect, who proposed to
use the equation

x3−x−1=0

and its real solution ψ = 1, 324717968 · · · ≈ 4
3 , which he called the “Plastic Num-

ber” for such a “natural 3D-generalization” of the GM. He used the Plastic Number
and its powers as ratios to design proportions of houses, rooms and furniture, c.f.
[1, 2, 5, 7, 13].

The German Architect Lambert Rosenbusch independently used the equation

x3+x−1=0

and called its real solution % = 0, 6823278040 · · · ≈ 2
3 the “Cubi Ratio”, c.f. [9,

19]. He also gave a simple planar construction of the Cubi Ratio based on the
intersection of a circle and a parabola. He even used the emerging figure as his
logo, see Figure 5.

We might ask now for a Fibonacci-type sequel to those special numbers ψ, %:
From the defining equations and according to 2.2 we get p := 0, q := 1, r := 1 for
the sequel defining van der Laan’s “Plastic Number” ψ as ratio limit of adjacent
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Figure 5: Logo of the architect Lambert Rosenbusch and construc-
tion of the Cubi Ratio

numbers of the sequel. Using 1,1,1 as the first three start numbers we receive
the so-called “Padovan sequel” 1,1,1,2,2,3,4,5,7,9,12,. . . , see [7]. Similarly, with
p := 0, q := −1, r := 1 we get Rosenberg’s “Cubi Ratio” % as ratio limit of adjacent
numbers of the emerging oscillating sequel −1, 1, 1,−2, 0, 3,−2,−3, 5, 1,−8, 4, 9, . . .

2.4. General algebraic equations

To find a (real) solution of an algebraic equation

xn + a1x
n−1 + a2x

n−2 + · · ·++an−1x+ an = 0, ai ∈ R,

we look for the corresponding Fibonacci-type sequel putting

Fi+1 := p1Fi + p2Fi−1 + · · ·+ pnFi−n+1.

Then

limi→∞

(
1=p

Fi

Fi+1
+p2

Fi−1
Fi+1

+ · · ·+pn
Fi−n
Fi+1

)
= · · · =

(
1=

p1
x
+
p2
x2

+ · · ·+ pn
xn

)

and by comparing coefficients follows pj = −aj , j = 1, . . . , n.

Remark 2.2. Note that we only can calculate a real solution of the given algebraic
equation as limit of “generalized Fibonacci number quotients”, if the sequence of
these quotients is convergent. Here one had to apply standard convergence criteria
at first. One can freely choose the start values for the generalized Fibonacci number
sequence, because the limit of the sequel of quotients does not depend on the
start values. Should the given equation only have one nontrivial coefficient, one
again will have to apply the invers of a TBF-transformation to get a more general
equation. Furthermore, there are no criteria for irreducibility of the given equation
and, finally, it is not possible to get (pairs of) complex solutions. But Regula
Falsi and Newton’s method have the same disadvantages. Their advantage is
their applicability to any (smooth differentiable) function. Even so the proposed
third method might be of interest for (high) school mathematics resp. informatics
courses. It involves applications of material one has to teach anyway.
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3. Remarks concerning visualization of Fibonacci
numbers

Generalized Fibonacci numbers and solutions of equations are just numbers and
thus dimensionless. Usual visualization happens in the plane of naďve perception
understood as Euclidean plane. As Geometry has proportions instead of 0 and
1 one has to endow the plane with an arbitrarily posed Cartesian frame and an
arbitrarily chosen unit.

Standard visualization uses squares and a C1-biarc spline of quarter circles, see
Figure 6.

Figure 6: Fibonacci squares and quarter circle Fibonacci-spiral

But the naďve place of action also could be considered to be e.g. a hyperbolic
world, where we do not have squares. But circles exist as well in the Euclidean
plane as in the hyperbolic plane and one could replace the squares by touching
circles of radii ri+1=ri+ri−1 according to the Fibonacci numbers, see Figure 7.

Figure 7: Chain of touching “Fibonacci circles”

Here we consider only the Euclidean situation. While the convex hull of the
squares always is a rectangle, the side ratio of which tends to that of a “Golden
Rectangle” in the limit, the convex hull of the centers Oi of the Fibonacci circles
is a triangle with a side ratio

(ri−1 + ri) : (ri−1 + ri+1) : (ri−1 + ri+1)
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with the ratio φ2 : φ3 :
(
1 + φ2

)
in the liomit. A triangle with such a side ratio

can be called a “Golden triangle” (in spite of that this concept is already used for
an isosceles triangle with side ratio 1 : φ : φ).
Remark 3.1. “Visualization” means “mapping” (of mathematical facts) plus “in-
terpretation” (by a viewer, another person). As visualization criteria one finds:
Simplicity, unique interpretation, aesthetics. Hidden assumptions are the cultural
and educational background of the viewer (and of the mapping person). Obvi-
ously this educational background is the reason for preferring Euclidean geometry
as standard place of action. But sometimes Euclidean Geometry is not the most
clever place of action for visualizing a special mathematical fact. E.g. hyperbolic
geometry, space-time geometry, the geometry of (general) metric spaces, Möbius
Geometry and so on are sometimes logically better suited to visualize a special
mathematical idea. Euclidean visualizations often “hide”, where a mathematical
fact really belongs. As an example we present George Odom’s discovery of the
Golden Mean occurring in a figure consisting of an equilateral triangle and its
circumcircle, see [4], [20] and Figure 8 (left). Historically the Golden Mean is a
ratio of segments and “ratio” is an affine geometric concept. Therefore any affine
transform of Odom’s figure will show the Golden Mean, too, see Figure 8 (right).

Figure 8: G. Odom’s construction of the Golden Mean (left) and
affine transform (right)

The spiral arrangement of Golden Rectangles with squares as gnomons depends
only on two orthogonal directions in the Euclidean plane. An affine transformation
of this arrangement allows to state that, with respect to a suitable affine coordinate
frame, any parallelogram can be called “Golden Parallelogram”, c.f. [6].

For the definition of a GC1-bi-arc spiral consisting of quarter circles we only
need a general metric space, i.e. a Minkowski plane. In such a plane translations
and centric similarities (dilatations) exist, but there are in general no rotations
possible. Also in such a general Minkowski plane it is possible to construct ana-
logues of Fibonacci quarter circle spirals and logarithmic biarc spirals using centric
similarities and translations alone, see e.g. Figure 9.

We end this chapter with generalizing the classical Golden Rectangle and the
golden quarter circle spiral to Golden Prisms and spirals in higher dimensional
Euclidean spaces, still having in mind that φ is a dimensionless number and the
classical visualization happens by a ratio of three collinear points defining segments,
which are one-dimensional objects. Figure 2 (right) shows the two-dimensional
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Figure 9: Minkowski plane with a centric symmetric polygon as
unit circle and construction of a “spiral” with Minkowski-circular

arcs

visualization by a nersted set of Golden Rectangles with squares as gnomons. A
three-dimensional generalization could take e.g. prisms with side ratio 1:φ:φ2, from
which one can cuts off “gnomon prisms” with side ratio 1:1:φ . But one could also
start with cubes with sides 1, a, a2, a3, a4, . . . in a spiral arrangement. If a fulfills
the condition a=φ−1 we get a nested set of “Golden Prisms” with side length ratio
1:1:φ and can replace the spiral polygon formed by the cubes’ diagonals by helical
arcs or by Bézier splines, see [17] and Figure 10.

Figure 10: Nested set of “Golden Prisms” with Golden Helical spiral

It is obvious, how to proceed in higher dimensions. Also for other “closure
conditions” which generalize the “golden condition” φ2−φ=1 to those of Metallic
Means or the Plastic Number and the Cubi Ratio one can find similar visualizations
based on “Metallic Prisms”, “Laan Prisms” and “Rosenbusch Prisms”, see [17].
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