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Abstract  
Given a weighted and complete graph G = (V, E), 
V denotes the set of n objects to be clustered, and 
the weight d(u, v) associated with an edge (u, v) 
∈ E denotes the dissimilarity between objects u 
and v. The diameter of a cluster is the maximum 
dissimilarity between pairs of objects in the 
cluster, and the split of a cluster is the minimum 
dissimilarity between objects within the cluster 
and objects outside the cluster. In this paper, we 
propose a new criterion for measuring the 
goodness of clusters⎯the ratio of the minimum 
split to the maximum diameter, and the objective 
is to maximize the ratio. For k = 2, we present an 
exact algorithm. For k ≥ 3, we prove that the 
problem is NP-hard and present a factor of 2 
approximation algorithm on the precondition that 
the weights associated with E satisfy the triangle 
inequality. The worst-case runtime of both 
algorithms is O(n3). We compare the proposed 
algorithms with the Normalized Cut by applying 
them to image segmentation. The experimental 
results on both natural and synthetic images 
demonstrate the effectiveness of the proposed 
algorithms. 

1.  Introduction 

Clustering groups a set of objects in a way that minimizes 
the intra-cluster dissimilarity and maximizes the inter-
cluster dissimilarity. An ideal cluster can be defined as a 
set of objects that is compact and isolated [Jain, 2010]: if 
a cluster is compact then the cluster satisfies the 
homogeneity criterion of a cluster, and if a cluster is 
isolated from other clusters, then the cluster satisfies the 
separation criterion of a cluster. Many clustering 
algorithms consider only separation or only homogeneity 
criterion, e.g., the well-known single-linkage clustering 
and complete-linkage clustering, the former maximizes 
the minimum dissimilarity between different clusters, and 
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the later attempts to minimize the maximum dissimilarity 
within the same cluster. 

The diameter of a cluster is the maximum dissimilarity 
between pairs of objects within the same cluster, and the 
split of a cluster is the minimum dissimilarity between 
objects within the cluster and objects outside the cluster. 
Clearly, the diameter of a cluster is a natural indication of 
homogeneity of the cluster and the split of a cluster is a 
natural indication of separation between the cluster and 
other clusters. Therefore, many clustering algorithms have 
been proposed for minimizing the maximum diameter or 
radii of clusters (minmax diameter problem), or 
maximizing the minimum split of clusters (maxmin split 
problem). 

Gonzalez proved that the minmax diameter problem is 
NP-hard and a simple 2-approximation algorithm was 
proposed in [Gonzalez, 1985]. At the same time, 
Gonzalez also showed that one cannot approximate the 
optimal solution within an approximation ratio close to 2 
in polynomial time unless P = NP. Feder and Greene 
[Feder & Greene, 1988] also shows that it is NP-hard to 
approximate the Euclidean minmax radius k-clustering 
with an approximation ratio smaller than 1.822, or the 
Euclidean minmax diameter k-clustering with an 
approximation ratio smaller than 1.969, where k is the 
number of clusters. At the same time, they also proposed 
an O(nlogk) algorithm for minmax diameter or radius 
problem, where n is the number of objects. Whereas the 
minmax diameter problem is NP-hard for k ≥ 3, the 
maxmin split problem can be solved using the single-
linkage clustering for any k [Delattre & Hansen, 1980]. 

Then, an ideal partition should have a smaller diameter 
and a larger split. However, the two criteria are often 
conflicting. The minmax diameter clustering often suffers 
from the dissection effect [Cormack, 1971]. On the other 
hand, the maxmin split clustering suffers from the chain 
effect [Johnson, 1967]. Therefore, a combination of 
homogeneity and separation conditions may conduce to 
overcome the drawbacks resulted from a single condition. 
A number of criteria have been proposed in order to 
achieve the goal. However, considering the space limit, it 
is impossible to give a detailed review about those works, 
as well as include them in the references. 

In this paper, we study the following optimization 
problem: maximize the ratio of the minimum split to the 



Clustering to Maximize the Ratio of Split to Diameter 
 

 

maximum diameter. This combinatory clustering criterion 
seems very natural and captures both the homogeneity 
and the separation conditions which a better clustering 
algorithm should be satisfied. 

The rest of this paper is organized as follows. Section 2 
introduces some concepts of graph theory relevant to this 
work and the problem formulation. We prove that the 
problem is NP-hard in Section 3. Section 4 presents an 
exact algorithm for k = 2 and a 2-approximation algorithm 
for k ≥ 3 along with the complexity analysis. Section 5 
presents the experimental results. We conclude the paper 
in Section 6. 

2.  Preliminary and Problem Formulation 

We recall several concepts of graph theory [West, 2001]. 
An undirected graph G = (V, E) consists of a set V of 
vertices and a set E of pairs of vertices called edges. For a 
graph G = (V, E), the complementary graph G− = (V, E−) 
of G is a graph with the same set V of vertices as G and 
with an edge (u, v) ∈ E− if and only if (u, v) ∉ E. A graph 
G = (V, E) is complete if for each pair of vertices u and v 
of V, (u, v) ∈ E. A set of vertices A ⊆ V is a clique if and 
only if every two vertices of A are joined by an edge: ∀u, 
v ∈ A, (u, v) ∈ E. 

A coloring of a graph is a labeling of vertices where 
adjacent vertices do not share a label. The labels are then 
often called colors. The vertices of a graph are k-
colorable, or simply a graph is k-colorable, if the vertices 
of a graph can be colored using (at most) k colors. The 
smallest number k such that a graph G is k-colorable, is 
called the chromatic number of G, denoted by γ(G). 
Given a graph G, the problem of whether G is k-colorable 
is NP-complete and the decision of γ(G) is NP-hard for k 
≥ 3 [Garey & Johnson, 1979]. For k = 2, the problem is 
solvable in polynomial time [Cormen et al, 2001; West, 
2001]. Note that a tree is always 2-colorable and the 
following is a bicoloring algorithm for it: select an 
arbitrary vertex and color it black, and suppose S is the set 
of vertices which have already been colored; for each 
vertex in N(S) color it white or black such that the 
adjacent vertices have distinct colors, where N(S) is the 
set of vertices which are adjacent to at least one vertex in 
S; repeat until |S| = |V|, where | | denotes the cardinality of 
a set. In the end V = C1 ∪ C2 with C1, C2 the black and 
white vertices, respectively. 

Given n objects to be clustered, we use a weighted and 
complete graph G = (V, E) to represent the problem at 
hand, where V denotes the set of objects (|V| = n, and 
hereinafter n is the number of vertices of the input graph), 
and the weight d(u, v) associated with an edge (u, v) ∈ E 
denotes the dissimilarity between objects u and v. Let ℘ 
denote the set of all partitions of n objects into k non-
empty and disjoint clusters {C1, C2, …, Ck}. For an object 
p and a set S of objects, we use dMin(p, S) to denote the 
minimum dissimilarity between p and objects in S, 
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Definition 2.1. For a partition P = {C1, C2,…, Ck} ∈ ℘, 
the split s(Ci) of Ci is defined as (2), and the split s(P) of P 
is the minimum s(Ci) among i = 1, 2, …, k. 
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Definition 2.2. For a cluster (or a set of objects) C, the 
diameter d(C) of C is defined as (3), and for a partition P 
= {C1, C2, …, Ck} ∈ ℘, the diameter d(P) of P is the 
maximum diameter d(Ci) of Ci among i = 1, 2, …, k. 
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Definition 2.3. The problem of maximizing the ratio of 
split to diameter, abbr. MRSD, is defined as (4), 
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For any P ∈ ℘, the larger the ratio s(P) / d(P) is, the 
more natural the partition will be. Specially, if s(P) / d(P) 
≥ 1, the dissimilarity between a pair of objects in the same 
cluster is always smaller than the dissimilarity between a 
pair of objects in different clusters, “this is a strong 
property and means an excellent partition has been found 
when it holds.” [Delattre & Hansen, 1980]. 

3.  The NP-hardness of MRSD 

In this subsection, we assume that the weights associated 
with the edges of the input graph G = (V, E) satisfy the 
triangle inequality, i.e., ∀u, v, w ∈ V, d(u, v) ≤ d(u, w) + 
d(v, w). 

Lemma 3.1 [Delattre & Hansen, 1980]. Given a weighted 
and connected graph G = (V, E) (complete or incomplete), 
the number of distinct values of split among partitions P 
∈ ℘ is at most |V| − 1. These values are equal to the 
weights of the edges of any minimum spanning tree of G. 

Definition 3.1. A weighted and complete graph G is 
restricted if G has only one split value, i.e., the weights 
associated with edges of any minimum spanning tree of G 
are equal to each other. 

Consider the following decision problem (abbr. the k-
restricted MRSD): given a restricted graph G = (V, E), a 
positive integer k, and a positive value λ, does there exist 
a partition P of V into k clusters such that s(P) / d(P) ≥ λ? 
Clearly, the k-restricted MRSD ∈ NP. 

For k = 3, we prove the NP-completeness of the 3-
restricted MRSD problem by reducing the 3-colorability 
problem to it. Recall that the 3-colorability problem is: 
given an unweighted graph G = (V, E), is G 3-colorable? 
Given any 3-colorability instance G = (V, E), we construct 
a 3-restricted MRSD instance as follows: Gc is a weighted 
and complete graph with the same vertices as G, i.e., Gc = 
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(V, E ∪ E−), where E− is the set of edges of the 
complementary graph G− of G, and edges of E are 
assigned a weight of 1 and those of E− are assigned a 
weight of 0.5. Clearly, the weights associated with the 
edges of Gc satisfy the triangle inequality and the 
construction of Gc can be done in polynomial time. 

Now, we give the relations between the number of 
components of G− (G− may be disconnected) and the 
chromatic number γ(G) of G. 

Lemma 3.2. Let N be the number of components of G−, 
then: 

(a). If N > 3, then γ(G) ≥ 4. 

(b). If N = 3 and all components are cliques, γ(G) ≤ 3; If N 
= 3 and at least one component is not a clique, γ(G) ≥ 4. 

(c). If N = 2 and none of two components C1 and C2 is a 
clique, γ(G) ≥ 4; If N = 2 and all components are cliques, 
γ(G) = 2; If N = 2 and only one component, e.g., C1 is not 
a clique, then G is 3-colorable if and only if C1 is 2-
colorable, therefore in this case, the 3-colorability 
problem for G can be solved using the bicoloring 
algorithm for C1. 

Proof. (a). Arbitrarily select a vertex from each 
component and we get N vertices. Since there does not 
exist an edge between any pair of those N vertices in G−, 
there must exist a clique with N vertices in G, and the 
chromatic number of a clique with N vertices is N. 

(b). The first part: if all components are cliques, we can 
color the vertices of G in the following way: all vertices 
of the ith component receive the color i for i = 1, 2, 3. 
Since each component is a clique in G−, any pair of 
vertices within the same component must not be adjacent 
to each other in G, hence the above coloring is feasible. 
The second part: since there is at least one component C 
which is not a clique, there are at least two vertices u and 
v ∈ C such that (u, v) ∉ E−. These two vertices form a 
clique with four vertices in G together with two other 
vertices arbitrarily selected from two other components 
respectively. Again, the chromatic number of a clique 
with four vertices is four. 

(c). The first part: since none of components C1 and C2 is 
a clique, there are at least two vertices u1 and u2 ∈ C1 
such that (u1, u2) ∉ E−, and at least two vertices v1 and v2 
∈ C2 such that (v1, v2) ∉ E−, these four vertices form a 
clique in G, and thus γ(G) ≥ 4. The second part: if all 
components are cliques, clearly G can be colored in two 
colors according to the argument for the first part of (b), 
and thus γ(G) = 2. The third part: if C1 is 2-colorable, we 
can color all vertices of C2 using another color not used 
by vertices of C1, so G is 3-colorable. If G is 3-colorable, 
then C1 must be 2-colorable, otherwise γ(G) ≥ 4 since any 
vertex u of C2 cannot be colored using the same color 
used by any vertex v ∈ C1. �. 

Therefore, if N ≥ 2, the problem of whether G is 3-
colorable can be solved according to the lemma 3.2. Now, 
we consider the case N = 1, i.e., G− is connected. 

Lemma 3.3. If G− is connected, Gc has only one split 
value, i.e., 0.5. 

Proof. Since G− is a connected graph associated with 
weights of 0.5, G− must have a minimum spanning tree T 
associated with weights of 0.5. Since G− is a subgraph 
connected all vertices of Gc and any edge (u, v) of Gc such 
that (u, v) ∉ E− has a weight of 1, T must also be a 
minimum spanning tree of Gc, and hence Gc has only one 
split value, i.e., 0.5, according to the lemma 3.1. � 

Lemma 3.4. If G− is connected, then G is 3-colorable if 
and only if there is a partition P of V into three clusters 
such that s(P) / d(P) ≥ 1. 

Proof. Since G− is connected, for any partition P of V, s(P) 
= 0.5 by the lemma 3.3. 

The if direction: since s(P) / d(P) ≥ 1, we have d(P) ≤ 0.5. 
Assume P = {C1, C2, C3}, color all vertices of Ci the color 
i for i = 1, 2, 3. Since d(Ci) ≤ 0.5 for i = 1, 2, 3, for any 
pair u and v of vertices of Ci, (u, v) ∉ E, so the 
colorability is feasible. 

The only if direction: since G is 3-colorable, V can be 
partitioned into three groups C1, C2, and C3, such that ∀u, 
v ∈ Ci for i = 1, 2, 3, (u, v) ∉ E. Therefore, ∀u, v ∈ Ci for 
i = 1, 2, 3, (u, v) ∈ E−, equivalently d(u, v) = 0.5, which 
means that P = {C1, C2, C3} is a partition satisfying s(P) / 
d(P) ≥ 1. � 

Combining the lemma 3.2 with the lemma 3.4, we have 
the following lemma: 

Lemma 3.5. The 3-restricted MRSD problem is NP-
complete. 

Theorem 3.1. For k ≥ 3, the decision problem of MRSD 
is NP-complete. 

Proof. Clearly, the decision problem of MRSD belongs to 
NP. We prove this theorem by reducing the 3-restricted 
MRSD to it. Given any 3-restricted MRSD instance G = 
(V, E), let dmax be the maximum weight in E, then we 
construct a MRSD instance as follows: G′ = (V′, E′ ), 
where V′ = V ∪ A, and A = {v1, v2, …, vk−3} (vi is not used 
in V, i = 1, 2, …, k−3); for edges (u, vi) and (vi, vj) (where 
u ∈ V, i, j = 1, 2, …, k−3), d(u, vi) = d(vi, vj) = dmax + 1. 
Clearly, the weights associated with the edges of G′ 
satisfy the triangle inequality and the construction of G′ 
can be done in polynomial time. We prove that there is a 
partition P = {C1, C2, C3} of V into three clusters such that 
s(P) / d(P) ≥ λ if and only if there is a partition P′ of V′ 
into k clusters such that s(P′) / d(P′) ≥ λ, and thus the 
theorem holds by the lemma 3.5. Let s be the (unique) 
split of G, P′ be any partition of V′ such that at least a pair 
of vertices u ∈ V and v ∈ A are grouped into the same 
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cluster, and P′′ be any partition of V′ such that each vertex 
of A forms a singleton cluster. Then according to the 
construction of G′, s(P′) = s(P′′) = s, and d(P′) = dmax + 1, 
d(P′′) ≤ dmax, and hence s(P′) / d(P′) ≤ s(P′′) / d(P′′). 
Therefore, if there is a partition P = {C1, C2, C3} of V into 
three clusters such that s(P) / d(P) ≥ λ, then the partition 
P′′ = {C1, C2, C3, {v1}, {v2}, …, {vk−3}} is a partition of V′ 
into k clusters such that s(P′′) / d(P′′) ≥ λ; if there is a 
partition P′ = {C1, C2, …, Ck} of V′ into k clusters such 
that s(P′) / d(P′) ≥ λ, then there is a partition P′′ = {C1′, 
C2′, C3′, {v1}, {v2}, …, {vk−3}} such that the clusters C1′, 
C2′ and C3′ consist of vertices of V and s(P′′) / d(P′′) ≥ 
s(P′) / d(P′) ≥ λ, and hence the partition P = {C1′, C2′, C3′} 
is a partition of V into three clusters such that s(P) / d(P) 
≥ λ. � 

4.  The Proposed Algorithms 

We propose our algorithms based on the following 
observation: 

Theorem 4.1. Given the input graph G, for any v > 0, the 
optimal MRSD solution P* of G can be obtained by taking 
the larger of the maximum solution P of G with s(P) ≤ v 
and the maximum solution P′ of G with s(P′) > v. 

Proof. The optimal solution P* of G either separates the 
two vertices of some edge e with d(e) ≤ v into different 
clusters, and thus s(P*) ≤ v; or P* does not separate the 
two vertices of any edge e of G with d(e) ≤ v into 
different clusters, equivalently, the two vertices of e must 
be within the same cluster of P*, and hence s(P*) > v, then 
the maximum solution P′ of G with s(P′) > v must be the 
optimal solution of G, and the theorem holds. � 

Therefore, a recursion procedure on the split value can be 
used to obtain the proposed algorithms. Before presenting 
our algorithms, we first introduce the following concept. 

Definition 4.1. Given a graph G = (V, E), two vertices u 
and v adjacent to an edge (u, v) are merged, or simply an 
edge (u, v) is merged, means that the two vertices are 
replaced by a new vertex, the two edges from u and v to a 
remaining vertex are replaced by an edge weighted by the 
largest of the weights of the previous two edges and the 
edge (u, v) is removed, and other edges together with their 
weights remain unchanged. We also call the new vertex a 
supervertex and u, v the merged vertices. 

It is noted that for a graph G′ obtained by merging the two 
vertices of some edge of another graph G, if the weights 
associated with the edges of G satisfy the triangle 
inequality, then the weights associated with the edges of 
G′ also satisfy the triangle inequality. The proof is simple, 
and here we omit it considering the space limitation. 

Let G′ be a graph obtained by merging the vertices of 
some edges of the input graph G, and P′ a partition of the 
vertices of G′. P is the partition of vertices of G induced 
by P′ means that P is obtained from P′ by substituting {u1, 

u2,…, ur} for each supervertex u of P′ (assume that u is 
the supervertex by merging the vertices u1, u2, …, ur of G, 
and denoted as u = {u1, u2, …, ur}). It is easy to verify the 
correctness of the following relation between d(P) and 
d(P′): d(P) = max{d(P′), d(u)}, where d(u) is the 
maximum diameter among all supervertices of P′. 
According to the definition 4.1, if u is a supervertex of G′, 
then for any other vertex p of G′, the information about 
the minimum dissimilarity between p and u is lost in G′. 
So, the split s(P′) of P′ is meaningless and not used in the 
rest of the paper. 

4.1  An Exact Algorithm for Bipartition 

Since the algorithm uses the concept of maximum 
spanning tree, we first review it. Just as its name implies, 
a maximum spanning tree of a weighted graph G is a 
spanning tree with the largest sum of weights associated 
with its edges among all spanning trees of G. A maximum 
spanning tree can be obtained using an algorithm similar 
to any minimum spanning tree algorithm, e.g., Kruskal's 
algorithm [Kruskal, 1956], and the only difference is that 
edges are considered in descending order of weights while 
in ascending order for seeking a minimum spanning tree. 

The following lemma guarantees that a minimum 
diameter partition can be obtained for k = 2. 

Lemma 4.1. For a weighted and connected graph G, the 
partition P obtained by applying the bicoloring algorithm 
to a maximum spanning tree Tmax of G has the minimum 
diameter. 

Proof. According to the bicoloring algorithm, any pair of 
vertices u and v adjacent to an edge (u, v) of Tmax must be 
in different clusters. So, for any edge e = (u, v) of G, if the 
addition of it to Tmax will close an even cycle together 
with the unique path joining u and v in Tmax, u and v must 
be in different clusters. Hence, the diameter of P must be 
the largest edge (p, q) ∉ Tmax such that it closes an odd 
cycle C together with the unique path joining p and q in 
Tmax, i.e., s(P) = d(p, q). Let P* = {C1, C2} be the 
bipartition with the minimum diameter. We show that 
d(P*) ≥ d(p, q) and hence P is also a partition with the 
minimum diameter. By construction of Tmax, d(u, v) ≥ d(p, 
q) for all edges (u, v) of C different from (p, q), and hence, 
if d(P*) < d(p, q), any two vertices adjacent to an edge of 
C should not belong to the same cluster. So, vertices in C 
should alternatively belong to C1 and C2. But it is 
impossible since C is odd.� 

Now, we present an exact algorithm for k = 2 as shown in 
Fig. 1. Given the input graph G, the algorithm first 
constructs a minimum spanning tree Tmin of G, let L be the 
list of edges of Tmin in ascending order of weights, and 
then repeats the following procedure until L becomes 
empty: construct a maximum spanning tree Tmax of G; 
obtain the bipartition P of vertices of G by applying the 
bicoloring algorithm in Section 2 to Tmax; if the cost of the 
current bipartition is larger than the previous cost, then  
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Figure 1. An exact algorithm for k = 2. 

update the solution; merge the two vertices of edges (p, q) 
of L such that d(p, q) ≤ s(P). 

Lemma 4.2. Let Pi be the partition of vertices of the input 
graph G found by MRSD_Bipartition (or 
MRSD_Multipartition in the next subsection), i = 1, 2, …, 
r, then s(Pi) is strictly monotone increasing, i.e., s(P1) < 
s(P2) < s(P3) < … < s(Pr). 

Proof. First, we show that if the edges eT of the minimum 
spanning tree Tmin of G with d(eT) ≤ s(Pi), i = 1, 2, …, r, 
have been merged, then the two vertices of any edge eG of 
G with d(eG) ≤ s(Pi) must be within the same supervertex: 
if eG ∈ Tmin, it is evident; if eG = (u, v) ∉ Tmin, then d(u, v) 
≥ d(e) for all edges e in the path X from u to v in Tmin 
since if d(u, v) < d(e) for some edge e, then we can get a 
lighter spanning tree T′ of G than Tmin by adding the edge 
(u, v) into Tmin and deleting the edge e; so, if d(u, v) ≤ 
s(Pi), we have d(e) ≤ d(u, v) ≤ s(Pi) for any e ∈ X, and 
hence all vertices in X, of course including u and v, must 
be within the same supervertex. Therefore, s(Pi) < s(Pi+1) 
for i = 1, 2, …, r – 1 since the edges e in G with d(e) ≤ 
s(Pi) have been merged before the partition Pi+1 is found. 
� 

Lemma 4.3. Let G be the input graph and P the current 
partition of vertices of G found by MRSD_Bipartition. 
Then after the solution is updated if necessary, the 
relation Cost(solution) ≥ Cost(Q) holds for all partitions Q 
of vertices of G with split value s(Q) ≤ s(P). 

Proof. We use the mathematical induction on the index i 
of partitions Pi of vertices of G for i = 1, 2, …, r. 

The basic step i = 1. Then G′ = G and solution = P1. For 
any partition Q of vertices of G with split s(Q) ≤ s(P1), we 
have d(Q) ≥ d(P1) by the lemma 4.1, and thus Cost(Q) = 
s(Q) / d(Q) ≤ s(P1) / d(P1) = Cost(solution) holds.  

The induction hypothesis. Assume that the lemma holds 
for i = 1, 2, …, l (l < r).  

Now, we demonstrate that the lemma also holds for i = l + 
1. According to the induction hypothesis, we have 
Cost(solution) ≥ Cost(Q) for all partitions Q of vertices of 
G with s(Q) ≤ s(Pl). By the lemma 4.2, we have s(Pl) < 
s(Pl+1), so we only need to show that Cost(solution) ≥ 
Cost(Q) for all partitions Q with s(Pl) < s(Q) ≤ s(Pl+1). 
Note that d(Pl+1) = max{d(P′l+1), d(u)} and d(Q) = 
max{d(Q′), d(u)}, where P′l+1 is the partition of vertices 
of G′ by which the partition Pl+1 is induced, d(u) is the 
maximum diameter among all supervertices of G′, and Q′ 
is any partition of vertices of G′ by which the partition Q 
is induced. Since d(P′l+1) ≤ d(Q′) by the lemma 4.1, we 
have d(Pl+1) ≤ d(Q), and hence Cost(Q) = s(Q) / d(Q) ≤ 
s(Pl+1) / d(Pl+1) = Cost(Pl+1). If Cost(Pl+1) > Cost(solution), 
then solution is replaced by Pl+1 according to the 
algorithm, and the lemma holds; if Cost(Pl+1) ≤ 
Cost(solution), the lemma trivially holds. � 

Lemma 4.4. Let s* be the largest split value of the input 
graph G, and P the last partition of vertices of G found by 
the algorithm MRSD_Bipartition (or 
MRSD_Multipartition in the next subsection), then s(P) = 
s*. 

Proof. Note that G′ has m vertices if and only if (m – 1) 
edges remain in L (1 ≤ m ≤ n). According to the definition 
of split, the vertices of G can be grouped into k disjoint 
and nonempty subsets C1, C2, …, Ck such that for any pair 
of vertices u ∈ Ci and v ∈ Cj (i, j = 1, 2, …, k, and i ≠ j), 
we have d(u, v) ≥ s* and there exists at least one edge (u, v) 
such that d(u, v) = s*.  

Therefore if s(P) < s*, then after merging edges e of Tmin 
with d(e) ≤ s(P) < s*, there are at least k vertices in the 
current G′ (or equivalently (k – 1) edges remain in L) 
since any pair of vertices u ∈ Ci and v ∈ Cj (i, j = 1, 2, …, 
k, and i ≠ j) have not been merged, and hence P can not be 
the last partition of vertices of G found by the algorithm 
MRSD_Bipartition (or MRSD_Multipartition). � 

Combining the lemma 4.3 with the lemma 4.4, we have 
the following theorem: 

Theorem 4.2. The algorithm MRSD_Bipartition finds the 
optimal solution of MRSD for k = 2. 

Theorem 4.3. The worst-case runtime of 
MRSD_Bipartition is O(n3). 

Proof. Let V′ be the set of vertices of G′. In each iteration, 
it needs time O(|V′ |2) to find a maximum spanning tree 
Tmax of G′ [Cormen et al, 2001], O(|V′ |) to bicolor the 
vertices of Tmax, and O(|V′ |2) to compute the diameter and 
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Figure 2. An approximation algorithm for k ≥ 3. 

split of a partition. Since |L| = n – 1, the loop body 
executes at most n – 1 times, therefore the overall steps 
for the above three procedures are O(n3). As to the 
merging operations, we can use the disjoint-set forest data 
structure with union by rank and path compression 
[Cormen et al, 2001]: initially, use n MAKE-SET 
operations to construct n trees and each tree consist of one 
vertex of the input graph; use FIND-SET operation to find 
in which tree the merged vertex is, and use UNION 
operation to merge two trees. Note that a sequence of m 
MAKE-SET, UNION, and FIND-SET operations can be 
performed on a disjoint-set forest in time O(m) in all 
practical situations. Since |L| = n – 1, the number of all 
merging operations is O(n), and a merging operation takes 
time O(|V′| to compute the maximum dissimilarities 
between other vertices and the two merged vertices, so all 
merging operations take time O(n2). The overall time of 
MRSD_Bipartition is O(n3) + O(n2) = O(n3). � 

It is noted that we do not use the triangle inequality to 
prove the correctness of the algorithm in this subsection 
and the lemma 4.1, so the algorithm MRSD_Bipartition 

can be applied to the input graph even if the weights do 
not satisfy the triangle inequality. 

4.2  An Approximation Algorithm for Multipartition 

We present an approximation algorithm for k ≥ 3 as 
shown in Fig. 2 on the precondition that the weights 
associated with edges of the input graph satisfy the 
triangle inequality. 

Given the input graph G and the number k of clusters, the 
algorithm first constructs a minimum spanning tree Tmin of 
G, let L be the list of edges of Tmin in ascending order of 
weights, and then repeats the following procedure until |L| 
< k – 1: use the farthest-point clustering [Gonzalez, 1985] 
to select k representatives from vertices of G′, and obtain 
a partition P′ of vertices of G′ by assigning each vertex to 
its nearest representative; if the cost of the current 
partition P induced by P′ is larger than the previous cost, 
then update the solution; merge the two vertices of edges 
(p, q) of L such that d(p, q) ≤ s(P). The k representatives 
are selected as follows: first, randomly select a vertex as 
the first representative and add it into the set S of 
representatives, then select the vertex p into S such that 
dMin(p, S) is maximum among all unselected vertices, 
and repeat until |S| = k. 

Lemma 4.5. Let G be the input graph and P the partition 
of vertices of G induced by the partition of vertices of the 
current G′ found by MRSD_Multipartition. If the split 
value s(P*) of the optimal solution P* satisfies s(P*) ≤ s(P), 
then after the solution is updated if necessary, 
Cost(solution) ≥ Cost(P*) / 2. 

Proof. We use the mathematical induction on the index i 
of partitions Pi of vertices of G for i = 1, 2, …, r. 

The basic step i = 1. Then G′ = G and solution = P1. Let S 
be the set of selected k representatives in the current 
iteration. Consider the vertex p which maximizes the 
minimum dissimilarity between it and S, in other words, 
the object that would be chosen if we picked one more 
representative. Assume that dMin(p, S) = δ, then all 
pairwise dissimilarities among S ∪ {p} are at least δ. In 
any partition of vertices of G′ into k clusters, at least two 
of these vertices must be within the same cluster, so d(P*) 
≥ δ. Since d(P1) is at most 2δ by the triangle inequality, so 
if s(P*) ≤ s(P1), we have Cost(solution) = s(P1) / d(P1) ≥ 
s(P*) / (2δ) ≥ s(P*) / (2d(P*)) = Cost(P*) / 2. 

The induction hypothesis. Assume that the lemma holds 
for i = 1, 2, …, l (l < r).  

We demonstrate that the lemma also holds for i = l + 1. 
We have Cost(solution) ≥ Cost(P*) / 2 if s(P*) ≤ s(Pl) by 
the induction hypothesis. By the lemma 4.2, we have s(Pl) 
< s(Pl+1), so we only need to show that Cost(solution) ≥ 
Cost(P*) / 2 if s(Pl) < s(P*) ≤ s(Pl+1). Note that d(Pl+1) = 
max{d(P′l+1), d(u)} and d(P*) = max{d(P*′ ), d(u)}, where 
P′l+1 is the partition of vertices of G′ by which the 
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partition Pl+1 is induced, d(u) is the maximum diameter 
among all supervertices of G′, and P*′ is the partition of 
vertices of G′ by which P* is induced. Let S be the set of 
selected k representatives from vertices of G′ and p the 
vertex which maximizes the minimum dissimilarity 
between it and S. Assume that dMin(p, S) = δ, then as the 
same arguments in the basic step, we have d(P′l+1) ≤ 2δ 
and d(P*′) ≥ δ, and hence no matter what relations are 
between d(P′l+1) and d(u) and between d(P*′ ) and d(u), 
the relation d(Pl+1) ≤ 2d(P*) always holds. Therefore, if 
s(Pl) < s(P*) ≤ s(Pl+1), then Cost(Pl+1) = s(Pl+1) / d(Pl+1) ≥ 
s(P*) / 2d(P*) = Cost(P*) / 2. If Cost(Pl+1) > Cost(solution), 
then solution is replaced by Pl+1 according to the 
algorithm, and the lemma holds; if Cost(Pl+1) ≤ 
Cost(solution), then the lemma trivially holds.� 

Combining the lemma 4.5 with the lemma 4.4, we have 
the following theorem: 

Theorem 4.4. The algorithm MRSD_Multipartition is a 
factor of 2 approximation algorithm of MRSD for k ≥ 3. 

As the same arguments for Theorem 4.3, we have the 
following theorem: 

Theorem 4.5. The worst-case runtime of 
MRSD_Multipartition is O(n3). 

5.  The Experimental Results 

We evaluate the proposed algorithms by applying them to 
image segmentation and compare the proposed algorithms 
with the popular Normalized Cut (abbr. NCut) [Shi & 
Malik, 2000] in the computer vision field. At the same 
time, we also give the results of the complete-linkage 
algorithm (abbr. CLA) and the single-linkage algorithm 
(abbr. SLA) to verify whether the proposed criterion can 
overcome the dissection and chain effects which may be 
resulted in by CLA and SLA respectively. For image 
segmentation, the problem of how to define features by 
incorporating a variety of cues is a nontrivial one. In our 
experiments, we simply use the color features (the RGB 
model) and spatial proximity of pixels to compute the 
dissimilarity between a pair of pixels, since the focus of 
this paper is on developing a general clustering algorithm, 
given a dissimilarity measure. 

We use Manhattan distance d(i, j) = d1(i, j) + d2(i, j) to 
compute the dissimilarity between a pair of pixels i and j, 
where Ic(i) is the red, green, or blue color component for 
pixel i, row(i) is the row number of pixel i and col(i) is the 
column number of pixel i 
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Since NCut uses a similarity matrix as the input, we use 
(6) suggested in [Shi & Malik, 2000] to compute the 
similarity w(i, j) between a pair of pixels i and j, 
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where σI and σX are two parameters and are typically set 
to 10 to 20 percent of the ranges of the color feature 
dissimilarity d1 and the spatial proximity dissimilarity d2 
respectively suggested in [Shi & Malik, 2000], and r is a 
parameter for constructing a locally connected (or sparse) 
graph to accelerate the computing of eigenvalues involved 
in NCut. Note that if d2(i, j) ≥ r for any pair of pixels i and 
j, then the similarity w(i, j) = 0. 

We conduct the experiments on two groups of images: 
seven natural images and two synthetic images, which are 
used to test whether the proposed algorithms and NCut 
can find the desired clusters. The size of all images are 
60×60 pixels. All algorithms are implemented in 
MATLAB R2009b, and experiments are carried out on a 
2.6 GHz Pentium Dual-Core with 2G bytes of RAM. For 
NCut, there are two experiment setups named NCut_C 
and NCut_S respectively. NCut_C: σI and σX are set to 
0.15; r = +∞, i.e., the input similarity graph is complete; 
and the function used to solve the eigenvalues is the 
MATLAB function eig, which computes all eigenvalues 
of a dense matrix. NCut_S: σI and σX are set to 0.15; r = 5, 
i.e., the input similarity graph is locally connected and 
thus sparse; and the function used to solve the eigenvalues 
is the MATLAB function eigs, which computes at most 
six largest or smallest magnitude eigenvalues of a sparse 
matrix. Here, we compute the two smallest eigenvalues 
since NCut uses the eigenvector corresponding to the 
second smallest eigenvlaue to segment an image. 

Fig. 3 depicts the clustering results of seven natural 
images and Fig. 4 depicts the clustering results of two 
synthetic images. For two synthetic images, the pixels 
with white color are to be clustered. Table 1 summarizes 
the runtime of the proposed algorithms and NCut on 
seven natural images. 

For natural images, we observe that the clustering results 
obtained by MRSD_Bipartition and NCut_C are almost 
the same except the second image, on which the result of 
MRSD_Bipartition is a little better. However, the runtime 
of NCut_C is almost ten times of that of 
MRSD_Bipartition, although the worst-case time 
complexity of both algorithms is O(n3). The reason may 
be that NCut_C needs to solve the eigenvalues of a dense 
l×l matrix, where l is the number of pixels (here l = 3600), 
and thus the upper bound of time complexity of NCut_C 
is much tighter than that of MRSD_Bipartition. For sparse 
graphs, although the runtime of NCut_S decreases about 
20 percent than that of NCut_C, the results are poor. 

For synthetic images, we observe that only the proposed 
algorithms obtain the desired results on two images: 
NCut_C does not get the desired results on any image, 
and NCut_S gets the desired result just on one image.    
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Figure 3. k = 2. a: the images to be clustered. b and c: the results 
of MRSD_Bipartition. d and e: the results of NCut_C. f and g: 
the results of NCut_S. h and i: the results of CLA. j and k: the 
results of SLA. 

Figure 4. The left part: k = 4. The right part: k = 2. The images 
in the first column of two parts are to be clustered. The first row: 
the results of MRSD_Multipartition (left) or MRSD_Bipartition 
(right). The second row: the results of NCut_C. The third row: 
the results of NCut_S. The fourth row: the results of CLA. The 
fifth row: the results of SLA. Since NCut is a bipartition 
algorithm, the results for k = 4 are obtained by recursive call it. 

Table 1. The runtime on seven natural images (seconds). 

The results of CLA on the first, the second, and the sixth 
natural images are worse than that of the proposed 
algorithm, and CLA does not get the desired result on any 
synthetic image; the results of SLA on all natural images 
except the third and the fifth are worse than that of the 
proposed algorithm (note that some results just contain 
outliers), but SLA also gets the desired results on two 
synthetic images. The results demonstrate that the 
proposed criterion can partly overcome the dissection and 
chain effects resulted in by CLA and SLA respectively. 

6.  Conclusion 

In this paper, we have proposed a new clustering criterion: 
maximization the ratio of the minimum split to the 
maximum diameter. This clustering criterion seems very 
natural and captures both the homogeneity and the 
separation conditions. For k = 2, an exact algorithm is 
presented, and for k ≥ 3, the problem is proven to be NP-
hard and a factor of 2 approximation algorithm is 
presented if the weights associated with the input graph 
satisfy the triangle inequality. The experimental results on 
natural and synthetic images demonstrate the 
effectiveness of the proposed algorithms. 
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