
Clustering to Maximize the Ratio of Split to Diameter

Jiabing Wang JBWANG@SCUT.EDU.CN
Jiaye Chen CHEN.JIAYE@MAIL.SCUT.EDU.CN
School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China

Abstract
Given a weighted and complete graph G = (V, E),
V denotes the set of n objects to be clustered, and
the weight d(u, v) associated with an edge (u, v)
∈ E denotes the dissimilarity between objects u
and v. The diameter of a cluster is the maximum
dissimilarity between pairs of objects in the
cluster, and the split of a cluster is the minimum
dissimilarity between objects within the cluster
and objects outside the cluster. In this paper, we
propose a new criterion for measuring the
goodness of clusters⎯the ratio of the minimum
split to the maximum diameter, and the objective
is to maximize the ratio. For k = 2, we present an
exact algorithm. For k ≥ 3, we prove that the
problem is NP-hard and present a factor of 2
approximation algorithm on the precondition that
the weights associated with E satisfy the triangle
inequality. The worst-case runtime of both
algorithms is O(n3). We compare the proposed
algorithms with the Normalized Cut by applying
them to image segmentation. The experimental
results on both natural and synthetic images
demonstrate the effectiveness of the proposed
algorithms.

1. Introduction

Clustering groups a set of objects in a way that minimizes
the intra-cluster dissimilarity and maximizes the inter-
cluster dissimilarity. An ideal cluster can be defined as a
set of objects that is compact and isolated [Jain, 2010]: if
a cluster is compact then the cluster satisfies the
homogeneity criterion of a cluster, and if a cluster is
isolated from other clusters, then the cluster satisfies the
separation criterion of a cluster. Many clustering
algorithms consider only separation or only homogeneity
criterion, e.g., the well-known single-linkage clustering
and complete-linkage clustering, the former maximizes
the minimum dissimilarity between different clusters, and

—————
Appearing in Proceedings of the 29th International Conference on
Machine Learning, Edinburgh, Scotland, UK, 2012. Copyright 2012 by
the author(s)/owner(s).

the later attempts to minimize the maximum dissimilarity
within the same cluster.

The diameter of a cluster is the maximum dissimilarity
between pairs of objects within the same cluster, and the
split of a cluster is the minimum dissimilarity between
objects within the cluster and objects outside the cluster.
Clearly, the diameter of a cluster is a natural indication of
homogeneity of the cluster and the split of a cluster is a
natural indication of separation between the cluster and
other clusters. Therefore, many clustering algorithms have
been proposed for minimizing the maximum diameter or
radii of clusters (minmax diameter problem), or
maximizing the minimum split of clusters (maxmin split
problem).

Gonzalez proved that the minmax diameter problem is
NP-hard and a simple 2-approximation algorithm was
proposed in [Gonzalez, 1985]. At the same time,
Gonzalez also showed that one cannot approximate the
optimal solution within an approximation ratio close to 2
in polynomial time unless P = NP. Feder and Greene
[Feder & Greene, 1988] also shows that it is NP-hard to
approximate the Euclidean minmax radius k-clustering
with an approximation ratio smaller than 1.822, or the
Euclidean minmax diameter k-clustering with an
approximation ratio smaller than 1.969, where k is the
number of clusters. At the same time, they also proposed
an O(nlogk) algorithm for minmax diameter or radius
problem, where n is the number of objects. Whereas the
minmax diameter problem is NP-hard for k ≥ 3, the
maxmin split problem can be solved using the single-
linkage clustering for any k [Delattre & Hansen, 1980].

Then, an ideal partition should have a smaller diameter
and a larger split. However, the two criteria are often
conflicting. The minmax diameter clustering often suffers
from the dissection effect [Cormack, 1971]. On the other
hand, the maxmin split clustering suffers from the chain
effect [Johnson, 1967]. Therefore, a combination of
homogeneity and separation conditions may conduce to
overcome the drawbacks resulted from a single condition.
A number of criteria have been proposed in order to
achieve the goal. However, considering the space limit, it
is impossible to give a detailed review about those works,
as well as include them in the references.

In this paper, we study the following optimization
problem: maximize the ratio of the minimum split to the

Clustering to Maximize the Ratio of Split to Diameter

maximum diameter. This combinatory clustering criterion
seems very natural and captures both the homogeneity
and the separation conditions which a better clustering
algorithm should be satisfied.

The rest of this paper is organized as follows. Section 2
introduces some concepts of graph theory relevant to this
work and the problem formulation. We prove that the
problem is NP-hard in Section 3. Section 4 presents an
exact algorithm for k = 2 and a 2-approximation algorithm
for k ≥ 3 along with the complexity analysis. Section 5
presents the experimental results. We conclude the paper
in Section 6.

2. Preliminary and Problem Formulation

We recall several concepts of graph theory [West, 2001].
An undirected graph G = (V, E) consists of a set V of
vertices and a set E of pairs of vertices called edges. For a
graph G = (V, E), the complementary graph G− = (V, E−)
of G is a graph with the same set V of vertices as G and
with an edge (u, v) ∈ E− if and only if (u, v) ∉ E. A graph
G = (V, E) is complete if for each pair of vertices u and v
of V, (u, v) ∈ E. A set of vertices A ⊆ V is a clique if and
only if every two vertices of A are joined by an edge: ∀u,
v ∈ A, (u, v) ∈ E.

A coloring of a graph is a labeling of vertices where
adjacent vertices do not share a label. The labels are then
often called colors. The vertices of a graph are k-
colorable, or simply a graph is k-colorable, if the vertices
of a graph can be colored using (at most) k colors. The
smallest number k such that a graph G is k-colorable, is
called the chromatic number of G, denoted by γ(G).
Given a graph G, the problem of whether G is k-colorable
is NP-complete and the decision of γ(G) is NP-hard for k
≥ 3 [Garey & Johnson, 1979]. For k = 2, the problem is
solvable in polynomial time [Cormen et al, 2001; West,
2001]. Note that a tree is always 2-colorable and the
following is a bicoloring algorithm for it: select an
arbitrary vertex and color it black, and suppose S is the set
of vertices which have already been colored; for each
vertex in N(S) color it white or black such that the
adjacent vertices have distinct colors, where N(S) is the
set of vertices which are adjacent to at least one vertex in
S; repeat until |S| = |V|, where | | denotes the cardinality of
a set. In the end V = C1 ∪ C2 with C1, C2 the black and
white vertices, respectively.

Given n objects to be clustered, we use a weighted and
complete graph G = (V, E) to represent the problem at
hand, where V denotes the set of objects (|V| = n, and
hereinafter n is the number of vertices of the input graph),
and the weight d(u, v) associated with an edge (u, v) ∈ E
denotes the dissimilarity between objects u and v. Let ℘
denote the set of all partitions of n objects into k non-
empty and disjoint clusters {C1, C2, …, Ck}. For an object
p and a set S of objects, we use dMin(p, S) to denote the
minimum dissimilarity between p and objects in S,

),(min),(qpdSpdMin
Sq∈

= . (1)

Definition 2.1. For a partition P = {C1, C2,…, Ck} ∈ ℘,
the split s(Ci) of Ci is defined as (2), and the split s(P) of P
is the minimum s(Ci) among i = 1, 2, …, k.

),(min)(
},,,2,1{,,

qpdCs
ijkjCqCp

i
ji ≠∈∈∈

=
L

. (2)

Definition 2.2. For a cluster (or a set of objects) C, the
diameter d(C) of C is defined as (3), and for a partition P
= {C1, C2, …, Ck} ∈ ℘, the diameter d(P) of P is the
maximum diameter d(Ci) of Ci among i = 1, 2, …, k.

),(max)(
,

qpdCd
Cqp ∈

= . (3)

Definition 2.3. The problem of maximizing the ratio of
split to diameter, abbr. MRSD, is defined as (4),

)(
)(max

Pd
Ps

P ℘∈
. (4)

For any P ∈ ℘, the larger the ratio s(P) / d(P) is, the
more natural the partition will be. Specially, if s(P) / d(P)
≥ 1, the dissimilarity between a pair of objects in the same
cluster is always smaller than the dissimilarity between a
pair of objects in different clusters, “this is a strong
property and means an excellent partition has been found
when it holds.” [Delattre & Hansen, 1980].

3. The NP-hardness of MRSD

In this subsection, we assume that the weights associated
with the edges of the input graph G = (V, E) satisfy the
triangle inequality, i.e., ∀u, v, w ∈ V, d(u, v) ≤ d(u, w) +
d(v, w).

Lemma 3.1 [Delattre & Hansen, 1980]. Given a weighted
and connected graph G = (V, E) (complete or incomplete),
the number of distinct values of split among partitions P
∈ ℘ is at most |V| − 1. These values are equal to the
weights of the edges of any minimum spanning tree of G.

Definition 3.1. A weighted and complete graph G is
restricted if G has only one split value, i.e., the weights
associated with edges of any minimum spanning tree of G
are equal to each other.

Consider the following decision problem (abbr. the k-
restricted MRSD): given a restricted graph G = (V, E), a
positive integer k, and a positive value λ, does there exist
a partition P of V into k clusters such that s(P) / d(P) ≥ λ?
Clearly, the k-restricted MRSD ∈ NP.

For k = 3, we prove the NP-completeness of the 3-
restricted MRSD problem by reducing the 3-colorability
problem to it. Recall that the 3-colorability problem is:
given an unweighted graph G = (V, E), is G 3-colorable?
Given any 3-colorability instance G = (V, E), we construct
a 3-restricted MRSD instance as follows: Gc is a weighted
and complete graph with the same vertices as G, i.e., Gc =

Clustering to Maximize the Ratio of Split to Diameter

(V, E ∪ E−), where E− is the set of edges of the
complementary graph G− of G, and edges of E are
assigned a weight of 1 and those of E− are assigned a
weight of 0.5. Clearly, the weights associated with the
edges of Gc satisfy the triangle inequality and the
construction of Gc can be done in polynomial time.

Now, we give the relations between the number of
components of G− (G− may be disconnected) and the
chromatic number γ(G) of G.

Lemma 3.2. Let N be the number of components of G−,
then:

(a). If N > 3, then γ(G) ≥ 4.

(b). If N = 3 and all components are cliques, γ(G) ≤ 3; If N
= 3 and at least one component is not a clique, γ(G) ≥ 4.

(c). If N = 2 and none of two components C1 and C2 is a
clique, γ(G) ≥ 4; If N = 2 and all components are cliques,
γ(G) = 2; If N = 2 and only one component, e.g., C1 is not
a clique, then G is 3-colorable if and only if C1 is 2-
colorable, therefore in this case, the 3-colorability
problem for G can be solved using the bicoloring
algorithm for C1.

Proof. (a). Arbitrarily select a vertex from each
component and we get N vertices. Since there does not
exist an edge between any pair of those N vertices in G−,
there must exist a clique with N vertices in G, and the
chromatic number of a clique with N vertices is N.

(b). The first part: if all components are cliques, we can
color the vertices of G in the following way: all vertices
of the ith component receive the color i for i = 1, 2, 3.
Since each component is a clique in G−, any pair of
vertices within the same component must not be adjacent
to each other in G, hence the above coloring is feasible.
The second part: since there is at least one component C
which is not a clique, there are at least two vertices u and
v ∈ C such that (u, v) ∉ E−. These two vertices form a
clique with four vertices in G together with two other
vertices arbitrarily selected from two other components
respectively. Again, the chromatic number of a clique
with four vertices is four.

(c). The first part: since none of components C1 and C2 is
a clique, there are at least two vertices u1 and u2 ∈ C1
such that (u1, u2) ∉ E−, and at least two vertices v1 and v2
∈ C2 such that (v1, v2) ∉ E−, these four vertices form a
clique in G, and thus γ(G) ≥ 4. The second part: if all
components are cliques, clearly G can be colored in two
colors according to the argument for the first part of (b),
and thus γ(G) = 2. The third part: if C1 is 2-colorable, we
can color all vertices of C2 using another color not used
by vertices of C1, so G is 3-colorable. If G is 3-colorable,
then C1 must be 2-colorable, otherwise γ(G) ≥ 4 since any
vertex u of C2 cannot be colored using the same color
used by any vertex v ∈ C1. �.

Therefore, if N ≥ 2, the problem of whether G is 3-
colorable can be solved according to the lemma 3.2. Now,
we consider the case N = 1, i.e., G− is connected.

Lemma 3.3. If G− is connected, Gc has only one split
value, i.e., 0.5.

Proof. Since G− is a connected graph associated with
weights of 0.5, G− must have a minimum spanning tree T
associated with weights of 0.5. Since G− is a subgraph
connected all vertices of Gc and any edge (u, v) of Gc such
that (u, v) ∉ E− has a weight of 1, T must also be a
minimum spanning tree of Gc, and hence Gc has only one
split value, i.e., 0.5, according to the lemma 3.1. �

Lemma 3.4. If G− is connected, then G is 3-colorable if
and only if there is a partition P of V into three clusters
such that s(P) / d(P) ≥ 1.

Proof. Since G− is connected, for any partition P of V, s(P)
= 0.5 by the lemma 3.3.

The if direction: since s(P) / d(P) ≥ 1, we have d(P) ≤ 0.5.
Assume P = {C1, C2, C3}, color all vertices of Ci the color
i for i = 1, 2, 3. Since d(Ci) ≤ 0.5 for i = 1, 2, 3, for any
pair u and v of vertices of Ci, (u, v) ∉ E, so the
colorability is feasible.

The only if direction: since G is 3-colorable, V can be
partitioned into three groups C1, C2, and C3, such that ∀u,
v ∈ Ci for i = 1, 2, 3, (u, v) ∉ E. Therefore, ∀u, v ∈ Ci for
i = 1, 2, 3, (u, v) ∈ E−, equivalently d(u, v) = 0.5, which
means that P = {C1, C2, C3} is a partition satisfying s(P) /
d(P) ≥ 1. �

Combining the lemma 3.2 with the lemma 3.4, we have
the following lemma:

Lemma 3.5. The 3-restricted MRSD problem is NP-
complete.

Theorem 3.1. For k ≥ 3, the decision problem of MRSD
is NP-complete.

Proof. Clearly, the decision problem of MRSD belongs to
NP. We prove this theorem by reducing the 3-restricted
MRSD to it. Given any 3-restricted MRSD instance G =
(V, E), let dmax be the maximum weight in E, then we
construct a MRSD instance as follows: G′ = (V′, E′),
where V′ = V ∪ A, and A = {v1, v2, …, vk−3} (vi is not used
in V, i = 1, 2, …, k−3); for edges (u, vi) and (vi, vj) (where
u ∈ V, i, j = 1, 2, …, k−3), d(u, vi) = d(vi, vj) = dmax + 1.
Clearly, the weights associated with the edges of G′
satisfy the triangle inequality and the construction of G′
can be done in polynomial time. We prove that there is a
partition P = {C1, C2, C3} of V into three clusters such that
s(P) / d(P) ≥ λ if and only if there is a partition P′ of V′
into k clusters such that s(P′) / d(P′) ≥ λ, and thus the
theorem holds by the lemma 3.5. Let s be the (unique)
split of G, P′ be any partition of V′ such that at least a pair
of vertices u ∈ V and v ∈ A are grouped into the same

Clustering to Maximize the Ratio of Split to Diameter

cluster, and P′′ be any partition of V′ such that each vertex
of A forms a singleton cluster. Then according to the
construction of G′, s(P′) = s(P′′) = s, and d(P′) = dmax + 1,
d(P′′) ≤ dmax, and hence s(P′) / d(P′) ≤ s(P′′) / d(P′′).
Therefore, if there is a partition P = {C1, C2, C3} of V into
three clusters such that s(P) / d(P) ≥ λ, then the partition
P′′ = {C1, C2, C3, {v1}, {v2}, …, {vk−3}} is a partition of V′
into k clusters such that s(P′′) / d(P′′) ≥ λ; if there is a
partition P′ = {C1, C2, …, Ck} of V′ into k clusters such
that s(P′) / d(P′) ≥ λ, then there is a partition P′′ = {C1′,
C2′, C3′, {v1}, {v2}, …, {vk−3}} such that the clusters C1′,
C2′ and C3′ consist of vertices of V and s(P′′) / d(P′′) ≥
s(P′) / d(P′) ≥ λ, and hence the partition P = {C1′, C2′, C3′}
is a partition of V into three clusters such that s(P) / d(P)
≥ λ. �

4. The Proposed Algorithms

We propose our algorithms based on the following
observation:

Theorem 4.1. Given the input graph G, for any v > 0, the
optimal MRSD solution P* of G can be obtained by taking
the larger of the maximum solution P of G with s(P) ≤ v
and the maximum solution P′ of G with s(P′) > v.

Proof. The optimal solution P* of G either separates the
two vertices of some edge e with d(e) ≤ v into different
clusters, and thus s(P*) ≤ v; or P* does not separate the
two vertices of any edge e of G with d(e) ≤ v into
different clusters, equivalently, the two vertices of e must
be within the same cluster of P*, and hence s(P*) > v, then
the maximum solution P′ of G with s(P′) > v must be the
optimal solution of G, and the theorem holds. �

Therefore, a recursion procedure on the split value can be
used to obtain the proposed algorithms. Before presenting
our algorithms, we first introduce the following concept.

Definition 4.1. Given a graph G = (V, E), two vertices u
and v adjacent to an edge (u, v) are merged, or simply an
edge (u, v) is merged, means that the two vertices are
replaced by a new vertex, the two edges from u and v to a
remaining vertex are replaced by an edge weighted by the
largest of the weights of the previous two edges and the
edge (u, v) is removed, and other edges together with their
weights remain unchanged. We also call the new vertex a
supervertex and u, v the merged vertices.

It is noted that for a graph G′ obtained by merging the two
vertices of some edge of another graph G, if the weights
associated with the edges of G satisfy the triangle
inequality, then the weights associated with the edges of
G′ also satisfy the triangle inequality. The proof is simple,
and here we omit it considering the space limitation.

Let G′ be a graph obtained by merging the vertices of
some edges of the input graph G, and P′ a partition of the
vertices of G′. P is the partition of vertices of G induced
by P′ means that P is obtained from P′ by substituting {u1,

u2,…, ur} for each supervertex u of P′ (assume that u is
the supervertex by merging the vertices u1, u2, …, ur of G,
and denoted as u = {u1, u2, …, ur}). It is easy to verify the
correctness of the following relation between d(P) and
d(P′): d(P) = max{d(P′), d(u)}, where d(u) is the
maximum diameter among all supervertices of P′.
According to the definition 4.1, if u is a supervertex of G′,
then for any other vertex p of G′, the information about
the minimum dissimilarity between p and u is lost in G′.
So, the split s(P′) of P′ is meaningless and not used in the
rest of the paper.

4.1 An Exact Algorithm for Bipartition

Since the algorithm uses the concept of maximum
spanning tree, we first review it. Just as its name implies,
a maximum spanning tree of a weighted graph G is a
spanning tree with the largest sum of weights associated
with its edges among all spanning trees of G. A maximum
spanning tree can be obtained using an algorithm similar
to any minimum spanning tree algorithm, e.g., Kruskal's
algorithm [Kruskal, 1956], and the only difference is that
edges are considered in descending order of weights while
in ascending order for seeking a minimum spanning tree.

The following lemma guarantees that a minimum
diameter partition can be obtained for k = 2.

Lemma 4.1. For a weighted and connected graph G, the
partition P obtained by applying the bicoloring algorithm
to a maximum spanning tree Tmax of G has the minimum
diameter.

Proof. According to the bicoloring algorithm, any pair of
vertices u and v adjacent to an edge (u, v) of Tmax must be
in different clusters. So, for any edge e = (u, v) of G, if the
addition of it to Tmax will close an even cycle together
with the unique path joining u and v in Tmax, u and v must
be in different clusters. Hence, the diameter of P must be
the largest edge (p, q) ∉ Tmax such that it closes an odd
cycle C together with the unique path joining p and q in
Tmax, i.e., s(P) = d(p, q). Let P* = {C1, C2} be the
bipartition with the minimum diameter. We show that
d(P*) ≥ d(p, q) and hence P is also a partition with the
minimum diameter. By construction of Tmax, d(u, v) ≥ d(p,
q) for all edges (u, v) of C different from (p, q), and hence,
if d(P*) < d(p, q), any two vertices adjacent to an edge of
C should not belong to the same cluster. So, vertices in C
should alternatively belong to C1 and C2. But it is
impossible since C is odd.�

Now, we present an exact algorithm for k = 2 as shown in
Fig. 1. Given the input graph G, the algorithm first
constructs a minimum spanning tree Tmin of G, let L be the
list of edges of Tmin in ascending order of weights, and
then repeats the following procedure until L becomes
empty: construct a maximum spanning tree Tmax of G;
obtain the bipartition P of vertices of G by applying the
bicoloring algorithm in Section 2 to Tmax; if the cost of the
current bipartition is larger than the previous cost, then

Clustering to Maximize the Ratio of Split to Diameter

Figure 1. An exact algorithm for k = 2.

update the solution; merge the two vertices of edges (p, q)
of L such that d(p, q) ≤ s(P).

Lemma 4.2. Let Pi be the partition of vertices of the input
graph G found by MRSD_Bipartition (or
MRSD_Multipartition in the next subsection), i = 1, 2, …,
r, then s(Pi) is strictly monotone increasing, i.e., s(P1) <
s(P2) < s(P3) < … < s(Pr).

Proof. First, we show that if the edges eT of the minimum
spanning tree Tmin of G with d(eT) ≤ s(Pi), i = 1, 2, …, r,
have been merged, then the two vertices of any edge eG of
G with d(eG) ≤ s(Pi) must be within the same supervertex:
if eG ∈ Tmin, it is evident; if eG = (u, v) ∉ Tmin, then d(u, v)
≥ d(e) for all edges e in the path X from u to v in Tmin
since if d(u, v) < d(e) for some edge e, then we can get a
lighter spanning tree T′ of G than Tmin by adding the edge
(u, v) into Tmin and deleting the edge e; so, if d(u, v) ≤
s(Pi), we have d(e) ≤ d(u, v) ≤ s(Pi) for any e ∈ X, and
hence all vertices in X, of course including u and v, must
be within the same supervertex. Therefore, s(Pi) < s(Pi+1)
for i = 1, 2, …, r – 1 since the edges e in G with d(e) ≤
s(Pi) have been merged before the partition Pi+1 is found.
�

Lemma 4.3. Let G be the input graph and P the current
partition of vertices of G found by MRSD_Bipartition.
Then after the solution is updated if necessary, the
relation Cost(solution) ≥ Cost(Q) holds for all partitions Q
of vertices of G with split value s(Q) ≤ s(P).

Proof. We use the mathematical induction on the index i
of partitions Pi of vertices of G for i = 1, 2, …, r.

The basic step i = 1. Then G′ = G and solution = P1. For
any partition Q of vertices of G with split s(Q) ≤ s(P1), we
have d(Q) ≥ d(P1) by the lemma 4.1, and thus Cost(Q) =
s(Q) / d(Q) ≤ s(P1) / d(P1) = Cost(solution) holds.

The induction hypothesis. Assume that the lemma holds
for i = 1, 2, …, l (l < r).

Now, we demonstrate that the lemma also holds for i = l +
1. According to the induction hypothesis, we have
Cost(solution) ≥ Cost(Q) for all partitions Q of vertices of
G with s(Q) ≤ s(Pl). By the lemma 4.2, we have s(Pl) <
s(Pl+1), so we only need to show that Cost(solution) ≥
Cost(Q) for all partitions Q with s(Pl) < s(Q) ≤ s(Pl+1).
Note that d(Pl+1) = max{d(P′l+1), d(u)} and d(Q) =
max{d(Q′), d(u)}, where P′l+1 is the partition of vertices
of G′ by which the partition Pl+1 is induced, d(u) is the
maximum diameter among all supervertices of G′, and Q′
is any partition of vertices of G′ by which the partition Q
is induced. Since d(P′l+1) ≤ d(Q′) by the lemma 4.1, we
have d(Pl+1) ≤ d(Q), and hence Cost(Q) = s(Q) / d(Q) ≤
s(Pl+1) / d(Pl+1) = Cost(Pl+1). If Cost(Pl+1) > Cost(solution),
then solution is replaced by Pl+1 according to the
algorithm, and the lemma holds; if Cost(Pl+1) ≤
Cost(solution), the lemma trivially holds. �

Lemma 4.4. Let s* be the largest split value of the input
graph G, and P the last partition of vertices of G found by
the algorithm MRSD_Bipartition (or
MRSD_Multipartition in the next subsection), then s(P) =
s*.

Proof. Note that G′ has m vertices if and only if (m – 1)
edges remain in L (1 ≤ m ≤ n). According to the definition
of split, the vertices of G can be grouped into k disjoint
and nonempty subsets C1, C2, …, Ck such that for any pair
of vertices u ∈ Ci and v ∈ Cj (i, j = 1, 2, …, k, and i ≠ j),
we have d(u, v) ≥ s* and there exists at least one edge (u, v)
such that d(u, v) = s*.

Therefore if s(P) < s*, then after merging edges e of Tmin
with d(e) ≤ s(P) < s*, there are at least k vertices in the
current G′ (or equivalently (k – 1) edges remain in L)
since any pair of vertices u ∈ Ci and v ∈ Cj (i, j = 1, 2, …,
k, and i ≠ j) have not been merged, and hence P can not be
the last partition of vertices of G found by the algorithm
MRSD_Bipartition (or MRSD_Multipartition). �

Combining the lemma 4.3 with the lemma 4.4, we have
the following theorem:

Theorem 4.2. The algorithm MRSD_Bipartition finds the
optimal solution of MRSD for k = 2.

Theorem 4.3. The worst-case runtime of
MRSD_Bipartition is O(n3).

Proof. Let V′ be the set of vertices of G′. In each iteration,
it needs time O(|V′ |2) to find a maximum spanning tree
Tmax of G′ [Cormen et al, 2001], O(|V′ |) to bicolor the
vertices of Tmax, and O(|V′ |2) to compute the diameter and

Clustering to Maximize the Ratio of Split to Diameter

Figure 2. An approximation algorithm for k ≥ 3.

split of a partition. Since |L| = n – 1, the loop body
executes at most n – 1 times, therefore the overall steps
for the above three procedures are O(n3). As to the
merging operations, we can use the disjoint-set forest data
structure with union by rank and path compression
[Cormen et al, 2001]: initially, use n MAKE-SET
operations to construct n trees and each tree consist of one
vertex of the input graph; use FIND-SET operation to find
in which tree the merged vertex is, and use UNION
operation to merge two trees. Note that a sequence of m
MAKE-SET, UNION, and FIND-SET operations can be
performed on a disjoint-set forest in time O(m) in all
practical situations. Since |L| = n – 1, the number of all
merging operations is O(n), and a merging operation takes
time O(|V′| to compute the maximum dissimilarities
between other vertices and the two merged vertices, so all
merging operations take time O(n2). The overall time of
MRSD_Bipartition is O(n3) + O(n2) = O(n3). �

It is noted that we do not use the triangle inequality to
prove the correctness of the algorithm in this subsection
and the lemma 4.1, so the algorithm MRSD_Bipartition

can be applied to the input graph even if the weights do
not satisfy the triangle inequality.

4.2 An Approximation Algorithm for Multipartition

We present an approximation algorithm for k ≥ 3 as
shown in Fig. 2 on the precondition that the weights
associated with edges of the input graph satisfy the
triangle inequality.

Given the input graph G and the number k of clusters, the
algorithm first constructs a minimum spanning tree Tmin of
G, let L be the list of edges of Tmin in ascending order of
weights, and then repeats the following procedure until |L|
< k – 1: use the farthest-point clustering [Gonzalez, 1985]
to select k representatives from vertices of G′, and obtain
a partition P′ of vertices of G′ by assigning each vertex to
its nearest representative; if the cost of the current
partition P induced by P′ is larger than the previous cost,
then update the solution; merge the two vertices of edges
(p, q) of L such that d(p, q) ≤ s(P). The k representatives
are selected as follows: first, randomly select a vertex as
the first representative and add it into the set S of
representatives, then select the vertex p into S such that
dMin(p, S) is maximum among all unselected vertices,
and repeat until |S| = k.

Lemma 4.5. Let G be the input graph and P the partition
of vertices of G induced by the partition of vertices of the
current G′ found by MRSD_Multipartition. If the split
value s(P*) of the optimal solution P* satisfies s(P*) ≤ s(P),
then after the solution is updated if necessary,
Cost(solution) ≥ Cost(P*) / 2.

Proof. We use the mathematical induction on the index i
of partitions Pi of vertices of G for i = 1, 2, …, r.

The basic step i = 1. Then G′ = G and solution = P1. Let S
be the set of selected k representatives in the current
iteration. Consider the vertex p which maximizes the
minimum dissimilarity between it and S, in other words,
the object that would be chosen if we picked one more
representative. Assume that dMin(p, S) = δ, then all
pairwise dissimilarities among S ∪ {p} are at least δ. In
any partition of vertices of G′ into k clusters, at least two
of these vertices must be within the same cluster, so d(P*)
≥ δ. Since d(P1) is at most 2δ by the triangle inequality, so
if s(P*) ≤ s(P1), we have Cost(solution) = s(P1) / d(P1) ≥
s(P*) / (2δ) ≥ s(P*) / (2d(P*)) = Cost(P*) / 2.

The induction hypothesis. Assume that the lemma holds
for i = 1, 2, …, l (l < r).

We demonstrate that the lemma also holds for i = l + 1.
We have Cost(solution) ≥ Cost(P*) / 2 if s(P*) ≤ s(Pl) by
the induction hypothesis. By the lemma 4.2, we have s(Pl)
< s(Pl+1), so we only need to show that Cost(solution) ≥
Cost(P*) / 2 if s(Pl) < s(P*) ≤ s(Pl+1). Note that d(Pl+1) =
max{d(P′l+1), d(u)} and d(P*) = max{d(P*′), d(u)}, where
P′l+1 is the partition of vertices of G′ by which the

Clustering to Maximize the Ratio of Split to Diameter

partition Pl+1 is induced, d(u) is the maximum diameter
among all supervertices of G′, and P*′ is the partition of
vertices of G′ by which P* is induced. Let S be the set of
selected k representatives from vertices of G′ and p the
vertex which maximizes the minimum dissimilarity
between it and S. Assume that dMin(p, S) = δ, then as the
same arguments in the basic step, we have d(P′l+1) ≤ 2δ
and d(P*′) ≥ δ, and hence no matter what relations are
between d(P′l+1) and d(u) and between d(P*′) and d(u),
the relation d(Pl+1) ≤ 2d(P*) always holds. Therefore, if
s(Pl) < s(P*) ≤ s(Pl+1), then Cost(Pl+1) = s(Pl+1) / d(Pl+1) ≥
s(P*) / 2d(P*) = Cost(P*) / 2. If Cost(Pl+1) > Cost(solution),
then solution is replaced by Pl+1 according to the
algorithm, and the lemma holds; if Cost(Pl+1) ≤
Cost(solution), then the lemma trivially holds.�

Combining the lemma 4.5 with the lemma 4.4, we have
the following theorem:

Theorem 4.4. The algorithm MRSD_Multipartition is a
factor of 2 approximation algorithm of MRSD for k ≥ 3.

As the same arguments for Theorem 4.3, we have the
following theorem:

Theorem 4.5. The worst-case runtime of
MRSD_Multipartition is O(n3).

5. The Experimental Results

We evaluate the proposed algorithms by applying them to
image segmentation and compare the proposed algorithms
with the popular Normalized Cut (abbr. NCut) [Shi &
Malik, 2000] in the computer vision field. At the same
time, we also give the results of the complete-linkage
algorithm (abbr. CLA) and the single-linkage algorithm
(abbr. SLA) to verify whether the proposed criterion can
overcome the dissection and chain effects which may be
resulted in by CLA and SLA respectively. For image
segmentation, the problem of how to define features by
incorporating a variety of cues is a nontrivial one. In our
experiments, we simply use the color features (the RGB
model) and spatial proximity of pixels to compute the
dissimilarity between a pair of pixels, since the focus of
this paper is on developing a general clustering algorithm,
given a dissimilarity measure.

We use Manhattan distance d(i, j) = d1(i, j) + d2(i, j) to
compute the dissimilarity between a pair of pixels i and j,
where Ic(i) is the red, green, or blue color component for
pixel i, row(i) is the row number of pixel i and col(i) is the
column number of pixel i

⎪⎩

⎪
⎨
⎧

−+−=

∑ −=
∈

|)()(||)()(|),(

|)()(|),(

2

},,{
1

jcolicoljrowirowjid

jIiIjid
BGRc

cc
, (5)

Since NCut uses a similarity matrix as the input, we use
(6) suggested in [Shi & Malik, 2000] to compute the
similarity w(i, j) between a pair of pixels i and j,

⎪⎩

⎪
⎨
⎧

×=
<−−

else
eejiw

rjidifjidjid X
I

0
),(

),()/),(()/),((2
2

22
1

σσ , (6)

where σI and σX are two parameters and are typically set
to 10 to 20 percent of the ranges of the color feature
dissimilarity d1 and the spatial proximity dissimilarity d2
respectively suggested in [Shi & Malik, 2000], and r is a
parameter for constructing a locally connected (or sparse)
graph to accelerate the computing of eigenvalues involved
in NCut. Note that if d2(i, j) ≥ r for any pair of pixels i and
j, then the similarity w(i, j) = 0.

We conduct the experiments on two groups of images:
seven natural images and two synthetic images, which are
used to test whether the proposed algorithms and NCut
can find the desired clusters. The size of all images are
60×60 pixels. All algorithms are implemented in
MATLAB R2009b, and experiments are carried out on a
2.6 GHz Pentium Dual-Core with 2G bytes of RAM. For
NCut, there are two experiment setups named NCut_C
and NCut_S respectively. NCut_C: σI and σX are set to
0.15; r = +∞, i.e., the input similarity graph is complete;
and the function used to solve the eigenvalues is the
MATLAB function eig, which computes all eigenvalues
of a dense matrix. NCut_S: σI and σX are set to 0.15; r = 5,
i.e., the input similarity graph is locally connected and
thus sparse; and the function used to solve the eigenvalues
is the MATLAB function eigs, which computes at most
six largest or smallest magnitude eigenvalues of a sparse
matrix. Here, we compute the two smallest eigenvalues
since NCut uses the eigenvector corresponding to the
second smallest eigenvlaue to segment an image.

Fig. 3 depicts the clustering results of seven natural
images and Fig. 4 depicts the clustering results of two
synthetic images. For two synthetic images, the pixels
with white color are to be clustered. Table 1 summarizes
the runtime of the proposed algorithms and NCut on
seven natural images.

For natural images, we observe that the clustering results
obtained by MRSD_Bipartition and NCut_C are almost
the same except the second image, on which the result of
MRSD_Bipartition is a little better. However, the runtime
of NCut_C is almost ten times of that of
MRSD_Bipartition, although the worst-case time
complexity of both algorithms is O(n3). The reason may
be that NCut_C needs to solve the eigenvalues of a dense
l×l matrix, where l is the number of pixels (here l = 3600),
and thus the upper bound of time complexity of NCut_C
is much tighter than that of MRSD_Bipartition. For sparse
graphs, although the runtime of NCut_S decreases about
20 percent than that of NCut_C, the results are poor.

For synthetic images, we observe that only the proposed
algorithms obtain the desired results on two images:
NCut_C does not get the desired results on any image,
and NCut_S gets the desired result just on one image.

Clustering to Maximize the Ratio of Split to Diameter

Figure 3. k = 2. a: the images to be clustered. b and c: the results
of MRSD_Bipartition. d and e: the results of NCut_C. f and g:
the results of NCut_S. h and i: the results of CLA. j and k: the
results of SLA.

Figure 4. The left part: k = 4. The right part: k = 2. The images
in the first column of two parts are to be clustered. The first row:
the results of MRSD_Multipartition (left) or MRSD_Bipartition
(right). The second row: the results of NCut_C. The third row:
the results of NCut_S. The fourth row: the results of CLA. The
fifth row: the results of SLA. Since NCut is a bipartition
algorithm, the results for k = 4 are obtained by recursive call it.

Table 1. The runtime on seven natural images (seconds).

The results of CLA on the first, the second, and the sixth
natural images are worse than that of the proposed
algorithm, and CLA does not get the desired result on any
synthetic image; the results of SLA on all natural images
except the third and the fifth are worse than that of the
proposed algorithm (note that some results just contain
outliers), but SLA also gets the desired results on two
synthetic images. The results demonstrate that the
proposed criterion can partly overcome the dissection and
chain effects resulted in by CLA and SLA respectively.

6. Conclusion

In this paper, we have proposed a new clustering criterion:
maximization the ratio of the minimum split to the
maximum diameter. This clustering criterion seems very
natural and captures both the homogeneity and the
separation conditions. For k = 2, an exact algorithm is
presented, and for k ≥ 3, the problem is proven to be NP-
hard and a factor of 2 approximation algorithm is
presented if the weights associated with the input graph
satisfy the triangle inequality. The experimental results on
natural and synthetic images demonstrate the
effectiveness of the proposed algorithms.

Acknowledgments

This work was supported by China Natural Science
Foundation under Grant No 60973083, Natural Science
Foundation of Guangdong Province under Grant No
06300170, and the Fundamental Research Fund for the
Central Universities, SCUT, under Grant No
2009ZM0175.

References

Cormack, R., M. A review of classification. Journal of the
Royal Statistical Society, Series A, 134: 321–367, 1971.

Cormen, T., H., Leiserson, C., E., Rivest, R., L., and Stein,
C. Introduction to Algorithms. MA: MIT Press,
Cambridge, 2nd Edition, 2001.

Delattre, M., and Hansen, P. Bicriterion cluster analysis.
IEEE Trans on Pattern Analysis and Machine
Intelligence, 2(4): 277–291, 1980.

Feder, T., and Greene, D., H. Optimal algorithms for
approximate clustering. In Proceedings of the Twentieth
Annual ACM Symposium on the Theory of Computing,
New York: ACM Press, pp. 434–444, 1988.

Garey, M., R., and Johnson, D., S. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. Freeman, San Francisco, 1979.

Gonzalez, T., F. Clustering to minimize the maximum
intercluster dissimilarity. Theoretical Computer Science,
38: 293–306, 1985.

Jain, A., K. Data clustering: 50 years beyond K-means.
Pattern Recognition Letters, 31: 651–666, 2010.

Johnson, S., C. Hierarchical clustering schemes.
Psychometrika, 32: 241–254, 1967.

Kruskal, J., B. On the shortest spanning subtree of a graph
and the traveling salesman problem. Proceedings of the
American Mathematical Society, 7(1): 48–50, 1956.

Shi, J., and Malik, J. Normalized cuts and image
segmentation. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 22(8): 888–905, 2000.

West, D., B. Introduction to Graph Theory. Prentice-Hall,
Second Edition, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

