

HIGH DATA RATE 8-BIT CRYPTO PROCESSOR

Sheikh M Farhan, Habibullah Jamal, Mohsin Rahmatullah

University of Engineering and Technology,

Taxila, Pakistan

 smfarhan@carepvtltd.com, (+92-51-2874794), 19-Ataturk Avenue, G-5/1, Islamabad Pakistan

mohsin@carepvtltd.com, (+92-51-2874794), 19-Ataturk Avenue, G-5/1, Islamabad Pakistan

 drhjamal@uettaxila.edu.pk, (+92-596-9314224), UET Taxila, Pakistan

ABSTRACT

This paper describes a high data rate 8-bit Crypto Processor based on Advanced Encryption
Standard (Rijndael algorithm). Though the algorithm requires 32-bit wide data path but our novel
mix-column architecture makes the algorithm works in a true byte systolic fashion. Initial stages are
merged to remove dependency of completion of these stages on mix-column stage. It has resulted in
the optimization of data path utilization and bus width thus minimizing control logic, area and
power. Most of the commercially available AES crypto processors use different hardware modules
to handle Key Expansion and Data Encryption. The paper also presents a novel approach to handle
both the key expansion and data encryption phases by re-using the same hardware architecture. The
proposed design saves many hardware resources when mapped on FPGA and allows operation at
high clock frequencies and data rates.

KEY WORDS

Advanced Encryption Standard (AES), Security, Rijndael, Crypto Processor.

HIGH DATA RATE 8-BIT CRYPTO PROCESSOR

1 INTRODUCTION
The need for a new encryption standard became unquestionable after DES was shown to be
vulnerable to brute force attack. In 1997, The National Institute of Standards and Technology
(NIST) started an effort towards developing a new encryption standard, called the Advanced
Encryption Standard (AES). The development of the new standard was initiated in the form of a
contest. In November 2001, NIST accepted a new standard Rijndael [1,2] as Advanced Encryption
Standard. AES specifies a FIPS-approved cryptographic algorithm that is used to safely protect
electronic data such as secure wireless communications, protected network routers, electronic
financial transactions, secure video surveillance system and encrypted data storage.

Many applications, due to their complexity, are at times constrained by the area offered by the
FPGAs when mapped to these devices. Some applications do not require high data rate and their
speed can be compromised on area requirements. This paper presents such an architecture in which
AES algorithm, which is a 32-bit algorithm, is mapped on a byte-systolic 8-bit architecture thus
reducing area requirement but still offering moderately high data rates.

The paper is organized as follows: Section 2 describes the AES algorithm briefly. Section 3
presents the proposed Crypto Processor architecture. Results are given in Section 4. Finally,
concluding remarks are made in Section 5. Section 6 lists the references.

2 AES ALGORITHM
AES is an iterative symmetric block cipher and works on a fixed block size of 16 bytes (128 bits) as
explained in [1,2,5]. The standard has the provision to work with variable key sizes of 128, 192 and
256 bits. AES as well as most encryption algorithms is involutional. This means that almost the
same steps are performed to complete both encryption and decryption in reverse order.

Since AES is an iterative block cipher, the same operations are performed many times on a
fixed number of bytes. These operations can easily be broken down to the following four functions:

• Add Round Key (ARK)

• Byte Substitution (BS)

• Shift Rows (SR)

• Mix Columns (MC)

Figure 1 shows the basic AES algorithm flow.

ARK BS

MCSR

ARK BS SR ARK

Initial
 Transformation Main Loop Final Round

User Key Round Keys Round Keys

O/PI/ P

(round-1) times

Figure 1. AES Algorithm Flow

An iteration of the above steps is called a ‘round’. The number of rounds or iterations of the
algorithm depends on the key size. Table 1 shows the number of rounds required for different key
sizes

Table 1. Number of rounds for different key sizes

The algorithm handles 128-bit input block as a group of 16 bytes organized in a 4×4 matrix
called State matrix. The algorithm starts with an initial transformation, followed by a main loop
where rounds are executed. Each round of the main loop is composed of a sequence of four
transformations (ARK, BS, SR, MC) where as the initial transformation simply contains the ARK
transformation. For each round of main loop, a round key is used derived from the original key
through a process called Key Expansion. In the last round, three transformations BS, SR and ARK
are executed [1, 2].

The next section briefly describes the four AES rounds transformations and cipher key
expansion for generating round keys.

2.1 Byte Substitution
In this transformation, each input byte of the state matrix is independently replaced by another

byte from a look-up table called Sbox. Sbox is a 256-entry table composed of two transformations:
First each input byte is replaced with its multiplicative inverse in GF(28) [4] with the element {00}
being mapped onto itself; followed by an affine transformation over GF(28) [3, 4].

2.2 Shift Rows

A cyclic shift operation is carried out where each row is rotated cyclically to the left using 0,
1, 2 and 3-byte offset for encryption.

2.3 Mix Columns

The Mix Columns transformation operates on the state column-by-column, treating each
column as a four-term polynomial. In this transformation each column of the state matrix is
multiplied by a constant fixed matrix where each member is represented in GF(28) as shown in
Figure 2 [5]. The members of this matrix are represented in 8-bit wide hex notation.

Key Size

(Bytes)

Block Size

(Bytes)

Rounds

16 16 10

24 16 12

32 16 14

Figure 2. Constant fixed matrix for state matrix multiplication

Two column vectors above represent the i-th column of state matrix and i-th column of
transformed mix column state matrix, for i = 0, 1, 2, 3, respectively.

2.4 Add Round Key

The Add Round Key transformation is self-inverting. It maps a 128-bit input state to a 128-bit
output state by XORing the input state with 128-bit round key derived from the cipher key.

2.5 Key Expansion

The cipher key is expanded to round keys using the pseudo code shown in Figure 3.
Parameter Nk is the number of 32 bit words comprising the cipher key. AES Algorithm supports
Nk=4,6 or 8. Nb is the number of columns (32-bit words) comprising the state. For this standard,
Nb = 4. Nr is the number of rounds, which is a function of Nk and Nb (which is fixed). For this
standard, Nr=10, 12 or 14. Function SubWord() applies the Sbox to a four byte input word [6].
Function RotWord() performs a cyclic permutation on the input word [d0, d1, d2, d3] resulting in
the output word [d1, d2, d3, d0]. The Round Constant Rcon[i], contains the values given by [xi-1,
{00}, {00}, {00}].

Figure 3. Pseudo code for the AES Algorithm Key Expansion

3 CRYPTO PROCESSOR ARCHITECTURE
The architecture proposed in this article implements AES algorithm for 128-bit cipher block and
256-bit cipher key (Nk=8). The architecture is novel in its design as it eliminates the Shift Rows
(SR) transformation from all round sequences. Another powerful feature of the proposed design,
that makes it different from other architectures is its ability to use the same encryption architecture
for key expansion thus completely eliminating the use of a separate hardware unit for key
expansion as found in currently available designs. Memories and data path are kept 8-bit wide to
keep the design simple and efficient. Figure 4 shows the design flow of the proposed architecture
without Shift Rows transformation.

ARK BS

MC

ARK BS ARK

Initial
 Transformation Main Loop Final Round

User Key Round Keys Round Keys

O/PI/ P

(round-1) times

Figure 4. Proposed Crypto Processor design flow

Our Crypto Processor architecture comprises of the following major units: Memory, FSM
Controller, Data-Path. The next section describes each hardware section in detail.

3.1 Crypto Processor - Memory Management
No external memory is required for the proposed design. It makes use of the dual port Block
SelectRAMTM (BRAM) available inside FPGAs that gives better access time and performance. For
input cipher data, one BRAM of 8x32 bits is required which is divided into two pages. The
incoming data bits are stored in the first 16-byte location of the memory. Once data is written into
the memory, Crypto Processor uses both pages of the data memory in a ping-pong fashion to
process the data iteratively.

Cipher and round keys are stored in an 8x240 bits memory. Once the cipher key is written
into the memory, Crypto Processor takes over the key memory for key expansion and stores the
generated round keys into the same key memory. Figure 5 shows the association between memory
blocks and Crypto Processor inside FPGA.

Key
Memory

Port A

Port B

Data
Memory

Port A

Port B

Crypto
Processor

Data In

Cipher Key
Data Out

Figure 5. Data flow between memories and Crypto Processor

Elimination of shift rows transformation is achieved through a simple technique of reading
the state from the block memory into the Crypto Processor in a manner such that the Crypto
Processor receives the input state in an already row shifted format. The same can be achieved when
the state is read from the memory in the following sequence of addresses.

j=11;
for(i=0; i<16; i=i+1)
{
 j=j+5;
 byte[j];
}

Where j is a four bit field which wraps around on overflow i.e. (1111)b + (0101)b = (0100)b. This
can be easily implemented in hardware by making a 4-bit counter and adding 5 on every clock
pulse. Figure 6 shows the state matrix s and s’ before and after shift rows transformation
respectively whereas Figure 7 shows achieving the same through reading the bytes with an address
offset of 5. The numbers in the state box in Figure 7 represent the addresses from which bytes are
read into the state matrix.

Figure 6. Cyclic Shift of last three rows in state matrix

0 4 8 12

1 5 9 13

 2 6 10 14

3 7 11 15

 0 4 8 12

 5 9 13 1

 10 14 2 6

 15 3 7 11

Figure 7. State matrix holding bytes at offset addresses

s s’

In the first 16 cycles of encryption, memory is read from page 0 of 8x32 bits wide data
memory into the Crypto processor and is written back at corresponding addresses of page 1 after
getting processed. In the next 16 cycles, the partially processed data is read into Crypto processor
from page 1 and written back to page 0 at the corresponding addresses after processing. This
process continues until all iterations are exhausted Keys are also read in the same manner from the
key memory, which are then used in the add round key transformation. The key memory is divided
into 15 pages, each page holding 16 bytes of round keys. For each iteration, a new page of round
keys is read from the memory. To carry out key expansion, the same data memory is used to store
round constants (Rcon) and key memory for storing cipher and round keys. Once the key expansion
is done, the data memory is available for storing cipher data.

3.2 Crypto Processor - Data Path

Figure 8 and 9 show the data-path section of the proposed Crypto Processor. The whole data path is
kept 8-bits wide thus making it cost effective and efficient resulting in a low power design. Figure 8
implements the ‘add round key’ and ‘byte substitution’ transformation whereas Figure 9
implements ‘mix columns’ transformation. ‘Add round key’ and ‘byte substitution’ transformations
are pretty straightforward in hardware as shown in Figure 8. The mix column data path implements
the matrix multiplication in a byte systolic manner. Mix Column stage is a linear transformation
based on multiplication in GF(28) with a modular polynomial x4+1. It is easy to be implemented
with XOR operations. As shown in Figure 9, four partial results are computed by multiplying the
resulting data after byte substitution with the first column of the matrix, refer to Figure 2. The
second, third and fourth column show that the same multiplier coefficients are used as in the first
column and can be re-used. This is achieved by circularly shifting the partial results by one in every
clock cycle after adding the new product into the corresponding partial sums as shown in Figure 9.
Multiplexers are inserted at different data feeding points. These multiplexers allow the same
hardware to be used for both key expansion and encryption. These multiplexers are controlled by a
state machine controller, which can be considered as the brain of the Crypto Processor. The next
sections describe how the same data-path is re-used for both key expansion and encryption.

data_inkey

to mix column

Mux1

Mux2

Mux3

SBox

data_out

Add Round Key

Byte
Substitution

XORing
with RCons

Figure 8. Add round key and byte substitution

000 0

Key /data_out

Mux8Mux9Mux10Mux11

Mux12

to mix column

0 000

Mux6 Mux5 Mux4Mux7
GF(28) Multiplication

Circular Shifting
to achieve

Matrix Multiplication

Key/data
Dispatcher unit

Figure 9. Mix Column

3.2.1 Data Path - Key Expansion
Refer to pseudo code in Figure 3. The initial 256-bits (32 bytes) cipher key is written into an 8-bits
wide key memory. A counter keeps a record of iterations, which is incremented by one every time
after writing four bytes of cipher key into the memory. The counter output will be 7 (starting from
0) after writing 32 bytes of cipher key into the key memory. Key expansion starts from the 8th

iteration onwards. Table 2 shows different steps performed to generate round keys at different
iterations.

Table 2. Steps performed at different iterations

At the start of the 8th iteration, the last four bytes of cipher key are read into the Crypto
Processor while bypassing the ‘add round key’ and ‘byte substitution’ module. These last four bytes
are directly fed into the mix column module, which rotates these bytes giving them a left circular
shift of one byte thus implementing the RotWord() transformation. This rotated word is the output
from the mix column stage, which is fed back into Mux1 for byte wise substitution thus
implementing the ByteSub() function. In the same cycle when the byte substitution takes place,

Iterations (i)
8, 16, 24, 32, 40,
48, 56

12, 20, 28,
36, 44, 52

Remaining

 Rotate word.
 Byte Subs.
XOR with Rcon.

Byte Subs

XOR (key[i], key[i-8])

key[i- Nk] is also fetched and the two words are XORed together byte wise in each cycle. The
resulting word is then XORed with Rcon[i], which is made available from data memory. This will
result in four bytes of generated round keys, which are written back into the key memory. The same
process continues for other iterations with some steps skipped as shown in Table 2. The 60th
iteration will give 240 bytes of round keys written into the key memory. At the end of key
expansion, the Crypto Processor is ready for encryption.

3.2.2 Data Path - Encryption
On receiving the encryption request, the cipher data and round keys are fetched from the memory
byte by byte at every cycle in a manner mentioned in section 3.1. The two data bytes are XORed
with each other for add round key transformation. Mux1 directs this data to the Sbox ROM. This
data becomes the address of the Sbox ROM and gets substituted with the corresponding data bytes
residing at those addresses. After Byte substitution, the date is directed to mix column stage for
matrix multiplication as described in section 3.2. This completes one round and the output of the
mix column is written back into the data memory. At the end of 15 rounds, the fully encrypted data
is available in the data memory.

3.3 Crypto Processor - FSM Controller
The FSM controller is responsible for driving the Crypto Processor either for key expansion or for
data encryption. The controller is also responsible for generating status/control signals for data
transportation, key expansion, encryption and addresses for BRAMs for reading and writing the
data from/into the memory. The controller directs the data through appropriate channels inside the
engine to perform key expansion and data encryption. The controller has the intelligence to skip or
perform transformations at different iterations through different multiplexers embedded in the
design. For example in key expansion, in all those iterations not divisible by integer 8, all the
transformations are bypassed using mux3. It is the controller that generates that address sequence
for data and key memory to eliminate shift rows transformation. Initial transformation, main loop
rounds and final round are also sequenced through the same controller.

4 RESULTS
The synthesizable AES Crypto Processor core was described in Verilog HDL using ModelSim 5.7G
simulator and synthesized using Xilinx ISE6.1i. The target device selected was Xilinx XC2V1000
[12]. The synthesis results show that the synthesized device uses only 336 slices. This is far lesser
than those devices that are designed for 32-bit wide data path. The device uses only two BRAMS
each 8-bit wide and can be operated at a clock frequency of 110 MHz. The data rate achieved for
this byte systolic architecture is in the range of 53 Mbits/s. However, the same design if mapped to
an ASIC is guaranteed to give even better data rates for the 8-bit Crypto Processor. The FPGA
device utilization for the Crypto Processor is shown in Table 3 whereas a comparison of number of
slices between different 32 bit AES architectures and our 8-bit Crypto Processor is shown in Table
4. Figure 10 shows a snapshot of the Crypto Processor testing and verification phase in a simulation
environment.

Table 3. FPGA Device Utilization for Crypto Processor

XC2V1000 Device Utilization
Resources Used Available %

Number of Slices 336 5120 6
Number of Slice Flip Flops 287 10240 2
Number of 4 input LUTs 615 10240 6
Number of bonded IOBs 98 172 56

Table 4. Performance analysis measurements
Architecture Process FPGA Device CLB Slices Frequency

(MHz)
1 Encr XCV1000

BG560
5302/10992 14.1/31.8

2 Encr XILINX
(Not Specified)

5673 ---

3 Decr Altera EPF10K
250AG

2885 41.5

4 Encr/Decr Altera
APEX1K4001

845LE --

5 Encr/Decr Xilinx Virtex 2902 25.9
8-bit Crypto

Processor
KeyExp

/Encr
Xilinx

XC2V1000
336 110

Figure 10. Crypto Processor simulation during key expansion

5 CONCLUSION
The paper presented a novel and unique design for an 8-bit Crypto Processor. The 32-bit AES
algorithm is modified for 8-bit systolic implementation for low power and area efficient design. The
proposed architecture is capable of reusing the same architecture for key expansion thus eliminating
the use of a separate hardware module to generate round keys. A high level of resource sharing is
done between key expansion and encryption. The technique used in the mix column transformation
reduced dependency of completion of initial stages on the multiplication operations in mix column.
The proposed design optimizes hardware reuse and makes the architecture to run in a true systolic
fashion. The Crypto Processor is best suited for applications with moderate high data rates in the
range of 30 ~70 Mbits/s.

Future work includes the realization of full encryptor/decryptor core mapped for an 8-bit
architecture as well as possible design improvements.

6 REFERENCES
[1] J. Daemen, V.Rijmen “The Rijndael Block Cipher” AES proposal, First Candidate conference
(AESI), August 20-22, 1998.
[2] Joan Daemen, Vincent Rijmen “ The Design of Rijndael, AES-The Advanced Encryption
Standard” Springer-Verlag Berling Heidelberg New York 2002.

[3] Wade Trappe, Lawrence C. Washington “Introduction to Cryptography with Coding Theory”,
Prentice Hall, Upper Saddle River, NJ 07458.

[4] “Announcing the Advanced Encryption Standard (AES)”, Federal Information Processing
Standards Publication 197 November 26, 2001

[5] Nazar A. Saqib, Fransciso Rodrigues-Henriquez, Arturo Diaz-Perez. “AES Algorithm
Implementation- An efficient approach for Sequential and Pipeline Architectures”, Fourth Mexican
International Conference on Computer Science (ENC’03)

[6] Anderson Cattelan Zigiotto, Roberto d’Amore, “A Low-cost FPGA Implementation of the
Advanced Encryption Standard Algortihm”, 15th symposium on Integrated Circuits and Systems
Design (SBCC1’02)

[7] A.J. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An FPGA Based Performance Evaluation of
the AES Block Cipher Candidate Algorithm Finalists”, Proc. Third Advanced Encryption Standard
(AES) Candidate Conf., Apr. 2000.

[8] A. Dandalis, V.K. Prasanna, and J.D.P. Rolim, “A Comparative Study of Performance of AES
Final Candidates Using FPGAs”, Proc. Third Advanced Encryption Standard (AES) Candidate
Conf., Apr. 2000. (This work has also been published in the Proc. CHES 2000, Aug. 2000).

[9] P. Mroczkowski, “Implementation of the Block Cipher Rijndael Using Altera FPGA”,
http://csrc.nist.gov/encryption/aes/round2/ pubcmnts.htm, 2001.

[10] V. Fischer and M. Drutarovsky, “Two Methods of Rijndael Implementation in Reconfigurable
Hardware”, Proc. CHES 2001, May 2001.

[11] K. Gaj and P. Chodowiec, “Comparison of the Hardware Performance of the AES Candidates
Using Reconfigurable Hardware”, Proc. Third Advanced Encryption Standard (AES) Candidate
Conf., Apr. 2000.

[12] Xilinx VirtexTM II Platform FPGAs. URL: www.xilinx.com, October 14, 2003

