

EMERGING FRAMEWORK FOR THE

EVALUATION OF OPEN SOURCE SECURITY

TOOLS

E. Biermann & JC Mentz

Tshwane University of Technology

biermanne@tut.ac.za
012 382 4743

F’SATIE, Private Bag X680, Pretoria, 0001,
mentzjc@tut.ac.za

012 382 4312
Department Enterprise Applications, Private Bag X680, Pretoria , 0001

ABSTRACT

The drive from the South African Government towards the adoption of open
source software across all platforms, incurred a number of research and
development questions. The open source domain provides especially
SMME’s with options to implement high quality software that are
financially viable. Although software costs is a major factor within
providing proper working environments, specific security issues pertaining
to open source needs to be addressed. With the opening of networks as well
as the availability of information, companies need not only implement
security policies, but also constantly upgrade implementations. The study of
open source security issues as well as the actual evaluation of tools therefore
becomes essential.

The purpose of this paper is to study the security issues within the open
source environment and looking specifically at the use of security software
originating from the open source domain. We provide details and results of
surveys conducted around the adoption of security tools within South

African companies. The study leads to us proposing a emerging framework
for the evaluation of open source security tools.

KEY WORDS

Open source software, security, framework, evaluation, tools.

EMERGING FRAMEWORK FOR THE

EVALUATION OF OPEN SOURCE SECURITY

TOOLS

1 INTRODUCTION
Interest in open source software (OSS) has grown significantly within South
Africa (SA) during the last couple of years. This intensification is partly due
to the drive from the SA government towards the adoption of OSS within
both the Government and the private sector (FOSS, 2006).

Hoepman & Jacobs (2007) defines OSS as “software for which the
corresponding source is available for inspection, use, modification and
redistribution by the user”. Dimaio (2007) states that the change to OSS is
beneficial in terms of cost implications; fast implementation time; tailored
applications as well as providing a shortcut to technological independence.
As with any new paradigm, disadvantages or challenges are also a reality.
Challenges or problems that are present within the open source domain
mainly evolve around security issues (Mookhey, 2004).

Industry and academia are divided into two main outlooks or groups
when it comes to the security of open source software. On the one side are
those stating that the openness of the code automatically decreases the
security of the application or tool. This group states that the openness of the
code leads to vulnerabilities being easier recognised and misused by
attackers (Williams & Danahy, 2006; Hoepman & Jacobs, 2007). Attackers
are also provided with a complete view of the product, including its
vulnerabilities (Ford, 2007). Research conducted by Fortify (Chess, Lee &
West, 2007) indicates that a poorly designed software built process may
allow for an attacker to insert malicious code within the developed product.
Any developer may contribute to OSS projects and no skills selection are
required which may lead to un-secure code (Lawton, 2002). As no
standardized quality control seems to be present within the development of
OSS, this may result in the code not developed with security issues in mind

(Hoepman & Jacobs, 2007), or malicious code can be inserted within the
developed product (Chess, Lee & West, 2007).

The second group beliefs that the publishing of the source code adds
to providing more secured programs or applications. Arguments published
include: the availability of source code means that there is complete
disclosure on how a specific software or feature or section is implemented
(Ford, 2007). Hoepman & Jacobs (2007) state the free distribution of source
code allows for the independent evaluation of that specific software by
external parties. Williams & Danahy (2006) point out that the first step in
assuring whether applications are secure is to study the source code. This
leads to the identification of security vulnerabilities, design flaws as well as
policy violations. Security flaws are rectified faster as the open source
development domain see the fixing of bugs as a major interest rather than
developing new features or a new version (Lawton, 2002). The likelihood of
patching bugs within the software increases within the OSS domain thus
making it easier to repair holes (Hoepman & Jacobs, 2007). In the case that
a vulnerability becomes known within the proprietary domain, the client is
dependent on the specific vendor to develop and publish suitable patches or
solutions. Within the open domain, this is however not the case (Ford,
2007). Finally Hoepman & Jacobs (2007) states that the distribution of the
source code forces programmers to produce quality code, especially since it
will be evaluated by a world-wide audience.

Arguments from both these camps hold value, and our focus is not in
proving either. We rather set our focus on the utilisation and effectiveness of
security tools developed within the open source domain. Evaluation results
of open source security tools in terms of set standards and procedures seems
lacking from the open source environment. Security experts within
companies that need to implement security solutions have thus no means of
determining which security tools are currently utilised effectively by
companies. Also lacking is specific technical test results for open source
security tools.

In this paper we set to determine the use of open source security tools
within SA (specifically Gauteng) companies. This as well as an intensive
study into open source security tools lead us to proposing an evaluation
framework for open source security tools. This research is guided by the
following question: in the quest for providing secure systems and networks,

what OSS tools are available and how can they be evaluated for the quality
of protection they provide?

The paper is organised as follows: Section 2 describe current
evaluation methods utilised to evaluate the usefulness of open source
security tools; as well as a description of our evaluation process. Section 3
provides a categorization of security tools according to the results from the
industry surveys. Section 4 details the evaluation criteria and framework
while Section 5 portrays results from our partially implemented framework.
The paper concludes within Section 6.

2 SECURITY TOOLS EVALUATION
The evaluation of security tools in both the open source and proprietary
domains are done in a number of different ways. For example McGann &
Sicker (2005) mentions that such tools need to be evaluated in terms of
robustness, ease of use, documentation, usefulness and actual functionality.
Actual functionality refers to whether claims made by the developer/s are
valid. Wilander & Kamkar (2003) focuses on a specific category of tools
and evaluating the category by simulating a range of possible attacks.

In the evaluation of security tools it is vital to determine the specific
security category for which the tool is developed. In specifying this, the
classified category can then be described in terms of minimum security
features which the security tool need to satisfy. The evaluation of tools
within a specific category can then be achieved by determining which
security feature/s it adheres to. The institute for security and open
methodologies (ISECOM) has developed an Open-Source Security Testing
Methodology Manual (OSSTMM2 – see http://www.isecom.org/osstmm/)
that describes a methodology for conducting security testing for
organizations. The dimensions of the OSSTMM security testing process
include visibility, access, trust, authentication, non-repudiation,
confidentiality, privacy, authorisation, integrity, safety and alarm. In
addition to this base list the software should also be tested in terms of its
quality for example number of internal errors (Li et al., 2006).

In order to work towards determining whether open source software
with all its various security issues can be utilised effectively within the
security tools environment, we have to follow a detailed process (see Figure
1).

Figure 1: Evaluation Process

The process consists firstly of defining the different categories in

which open source software tools can be classified. This is achieved by
studying the outputs from industry surveys as well as a detailed literature
and technical study. After establishing the categories we set to list the
available tools within the different categories. In working towards setting an
evaluation framework the aspects necessary to evaluate the different tools
need to be defined. These aspects are used to firstly set the evaluation
framework and finally evaluate the tools.

3 CATEGORIES & LIST OF TOOLS
Two preliminary surveys were conducted within the Gauteng region
(SouthAfrica) during 2006 & 2007 targeting a total of 208 companies. The
focus of these surveys was to determine amongst others the adoption of OSS
security tools. A total of 192 companies responded and 47% of the 192
respondents indicate that they make use of open source security tools. 44%
of these utilize OSS firewalls, 26% utilize OSS network monitoring tools
and only 19% utilize OSS anti-malicious tools. A staggering 78% of the
respondents within the survey regarded the security of Linux as inherently

OSS Security
Tools

OSS
Security

Industry

Literature

Technical

Categories &

Literature

Technical

Evaluation

Industry

Literature

Technical

Evaluation

Evaluation

Industry

Results

adequate. Although this large percentage deems Linux as sufficient, 95%
stated that they experience security threats on a daily basis.

Results from the industry surveys as well as a detailed literature and
technical study were used to define the following categories of open source
security tools within the network domain:

3.1 Category A: Scanning & Monitoring Tools
The aim of a scanning tool is to search and detect systems that have not
been configured with security in mind or that have not implemented security
patches for specific software as vulnerabilities are exposed (Mookhey,
2004). Monitoring tools refers to software that are utilized to continuously
monitor networks in order to detect vulnerabilities in real-time. Tools within
this category are further refined to include port scanners, network
vulnerability scanners, web vulnerability scanners, password vulnerability
testers and network monitoring.

Port scanners remotely scan a target host and determine open ports.
These types of applications are normally lightweight and are a valuable tool
in determining unattended server applications (Poole, 2003). Network
vulnerability scanners are used to determine incorrect network
configurations (Mookhey, 2004), while web vulnerability scanners
automatically scan and evaluate web servers and web applications for
possible vulnerabilities. Password crackers or password vulnerability testers
are programs focused around guessing passwords and comparing them to an
illegally obtained password file off-line (Poole, 2003). Network monitoring
tools are software tools that are used to scan or track inside the boundaries
of a network (Tomsho, Tittel & Johnson, 2003).

3.2 Category B: Analysis Tools
A network analyzer is a tool that enables a person to listen to network traffic
that originated from or is destined to the local network. These types of
programs are able to intercept and decode all traffic routed along a network
as well as display the actual content. The content displayed is for example
the IP addresses (source and destination); protocol type and the contents of
each of the seven protocol layers (Poole, 2003). The main type of analysis
tools is packet sniffers, which collects copies of network packets and
analyzes them to provide information that can be used to diagnose and
resolve networking issues (Whitman & Mattord, 2004).

3.3 Category C: Intrusion Detection & Prevention Tools
An intrusion detection system operates on the notion of a burglar alarm,
activated upon detecting changes or violations within the network
configuration. Different types of intrusion detection systems exist, namely
network based that are used to protect network information assets as well as
host-based to protect server or host information assets. Intrusion detection
systems operate on either a signature-based or anomaly-based detection
methods. Signature based systems establishes signatures of different attacks
and threats; all network traffic is then compared against these signatures for
possible attacks. Anomaly-based systems collect data from normal traffic
and establish a base-line against which network traffic are compared
(Whitman & Mattord, 2004).

3.4 Category D: Firewalls
A firewall is a device (hardware or software) that prevents specific type of
information from moving between the un-trusted network (outside the
organization) and the trusted network (inside the organization).The
advancements in firewall technology has led to defining three different type
of firewalls, referred to as generations (Whitman & Mattord, 2004). They
are first generation (packet filtering firewalls); second generation
(application level firewalls) and third generation (stateful inspection
firewalls).

3.5 Category E: Anti-Malicious Tools
Malicious software increased tremendously with the introduction and
opening of networks. Security specialists have to guard constantly against
malicious code such as viruses, worms and Trojans. Anti-malicious software
is the most utilized OSS security software and various tools exist.

3.6 Category F: Cryptography Tools
Cryptography tools refer to specific encryption and decryption tools used to
protect data. Tools that can provide cryptographic functions range from
example protecting specific communication sessions; encryption of files;
encryption of hard disks as well as wireless sessions. It is therefore not
feasible within this study to provide a list of specific tools per category of
protection due to the vast array of cryptographic possibilities. We rather
focused on providing three tools that are used mostly in providing general
cryptographic functions.

The surveys as well as the literature and technical study led to an
extensive list of OSS tools currently available and used. Due to size
restrictions within this paper it is not possible to provide the list (the
complete list is available from the authors).

4 EVALUATION FRAMEWORK
This section describes a two level framework to guide the selection of a
short list of security tools for further research and evaluation. The first level
of the framework deals with aspects related to the accessibility of tools and
the second, more detailed level addresses the effectiveness of the tools. Each
level consists of a set of criteria that address its intent. The framework is
structured in this way to reflect a requirement of widespread use. Before any
tool is eligible to be tested for its efficiency at protecting a system it would
be necessary to be widely used first. The profile of the average user of open
source software for the purpose of this research is therefore not limited to
people with technically advanced computer skills. As such the general user
is regarded as able to find, download, install and configure on the level of
capability similar to general computer literacy.

4.1 Level 1
To fulfil the requirement that a security tool must be widely used, a number
of aspects are identified. These include availability, version, platform,
interface, download size, available documentation and support.

Availability: this aspect indicates the ease of acquiring the software.
This does not only relate to well known web sites but also to the same piece
of software being available on multiple download locations. High
availability shows that the software is easy to get hold of and by implication
an indicator of a large user base.

Version: software change over time and as the developer participation
of a particular tools might be large the versions of the program can become
confusing. This is seen especially in descriptions such as pre-release and
release versions. In addition to this multiple versions with minor variations
may exist. The importance of this indicator is that the user will be able to
identify which versions are available and to make a choice between a stable
or a developing version.

Platform: many different operating systems are available to computer
users. A user interested in a tool must be able to identify the platform for

which it is designed. The wide spread use of a tool is also influenced by the
same tool available for different platforms.

Interface: with the introduction of Windows 95 the computer user
changed to a GUI user. Although a graphical user interface is the standard
for program usage there is still the capability to use it from a command line
which is predominately text based.

Download size: the size of the program will affect the choice made by
the user. A very large file will take longer to download and cost more. At
the same time a program that needs to be distributed by any other means
than download (for example mailing a digital media such as a compact
disk), might make the user think twice before choosing to use it.

Available documentation: this aspect is critical if the user is unfamiliar
with the installation and configuration of the software. The more complete
and easily available the documentation the wider it will be used.

Support: in conjunction with the documentation, support for a
particular product is useful in the event that problems are experienced or
additional information are required.

The application of the level 1 criteria resulted in a shortlist of tools that
represent those most used for security purposes. The tools on this list has
not been evaluated for the quality of security protection that it provides and
for that purpose a second level of evaluation are required.

4.2 Level 2
The tool as an application forms an integral part of security and the
methodology is instructive towards the compilation of a set of aspects for
level 2 testing. The ability of the specific security tool to assist in the
creation of a secure network forms the basis of level 2 testing. In specific
the following aspects are included:

Functionality: this refers to the actual functionality of the tool in
relation to claims made by the developer/s. The documentation from level 1
is analysed and it is determined whether the tool actually include the stated
functionalities.

Protection: the protection ability is evaluated according to the
category in which the tool is classified. Each category is defined by a set of
minimum protection abilities and the security tool is tested according to
these defined abilities.

Interoperability: security tools are generally created to only provide
protection according to a set category. A requirement for such tools is its

ability to operate successfully with security tools from the same as well as
other categories.

Usability: the ease of use as well as the usefulness of the tool. The
level of difficulty to install, configure and maintain the tool is evaluated.
Also included is to determine the existing need for such a specific tool.

Simulation: a simulated test bed or test environment is required in
which current threats and attacks can be simulated. The security tool is then
evaluated within this simulated environment for real-time attacks and
vulnerabilities.

5 RESULTS
The results from the questionnaires showed a wide variety of tools in use.
This is consistent with the milieu of the open source domain but makes the
analysis and subsequent answer of the research question challenging. The
evaluation of the extensive list of tools according to the first level of the
framework was completed utilising a system of weights. For example a
weight of 1 was assigned for each platform on which the tool can be
implemented and 1 weight was assigned if telephonic support was available.
This approach was followed to ensure that the tool that is most widely used
in terms of level 1 criteria would make it to the short list of security tools
that will be tested in the second level of the framework. Evaluating the
extensive list of OSS security tools against the first level of our emerging
framework led to the results displayed in Table 1.

Table 1: First level Evaluation Results
Category Security Tool

Nmap -Network Mapper (http://insecure.org/nmap/): Rapidly scan small and large
networks. A number of tools also make use of the functionality provided by Nmap, for
example XNmap and Nessus

Angry IP Scanner (http://www.angryziber.com/: A very fast scanner that scans IP
addresses in any range as well as their ports.

A: Port Scanners

Unicornscan (http://www.unicornscan.org): This tool provides an interface for introducing
small stimuli and measuring the response from TCP/IP enabled devices or networks.

X-Scan (http://www.xfocus.org): A general network vulnerabilities scanner that can be
utilized to scan for network vulnerabilities by using a multi-threading method.

A: Network
Vulnerability
Scanners SARA (http://www.www-arc.com/sara/): The Security Auditor's Research Assistant

(SARA) is A third generation Unix-based security analysis tool. This scanner is derived
from the famous SATAN (Security Administrators Tool for Analyzing Networks) and
features extensive usability and auditing capabilities.

A: Web
Vulnerability

Nikto (http://www.cirt.net): Performs comprehensive tests against web servers for multiple
items, including over 3300 potentially dangerous files/CGIs.

Webscarab(http://www.owasp.org/index.php/OWASP_WebScarab_Project): This tool
analyses applications that are communicating via the HTTP and HTTPS protocols.

Scanners

Wikto (http://www.sensepost.com/research/wikto/): Built for the .NET 2 framework and
contains a built-in web spider for directory discovery purposes.
John the Ripper (http://www.openwall.com/john/): A fast password cracker that is
available for different UNIX distributions, Windows, DOS, BeOS and OpenVMS.
Cain & Abel(http://www.oxid.it): A password recovery tool for MS Windows. It allows
easy recovery of various types of passwords by sniffing the network.

A: Password
Vulnerability
Testers

Ophcrack (http://sourceforge.net/projects/ophcrack/): A Windows password cracker based
on a time-memory trade-off using rainbow tables.
Nagios (http://www.nagios.org): A powerful network monitoring tool that are used for
detecting specific network problems. Included in distributions such as Debian, Fedora and
Suse.
EtherApe(http://sourceforge.net/project/showfiles.php?group_id=2712): A graphical
network monitoring tool, featuring Ethernet, IP, TCP, FDDI and Token Ring modes.

A: Network
Monitoring Tools

WireShark(http://www.wireshark.org):Network protocol analyzer for UNIX, OS X and
Windows. It allows for the examination of data from a live network or from a captured file
on disk. WireShark was known as Ethereal up to 2006.

Snort (http://www.snort.org): Performs real-time traffic analysis and packet logging on IP
networks.
Kismet (http://www.kismetwireless.net/): Wireless network detector and sniffer for 802.11
layer 2 wireless networks.

B: Packet Sniffers

TCPDump (http://tcpdump.org): An IP sniffer that requires few system resources. It is a
specialized sniffer used for detecting network problems.
Snare -System Intrusion Analysis and Reporting Environment
(http://www.intersectalliance.com): This is a series of log collection agents that facilitate
centralized analysis of audit log data.
OSSEC (http://www.ossec.net): This tool performs functions such as log analysis; integrity
checking; time-based alerting as well as active responses.

C: Intrusion
Detection &
Prevention

Tripwire (http://sourceforge.net/projects/tripwire/): A tool used by security administrators
to determine the integrity of files as well as possible modifications or tampering of specific
files is the file integrity scanner (Poole, 2003).
Smoothwall Express (www.smoothwall.org): Smoothwall includes traffic shaping, VPN
capability as well as proxy and DHCP server capabilities.
IPCop (www.IPCop.org): IPCop includes a whole range of services including traffic
shaping on outgoing connections and a built-in DHCP and proxy server.

D: Firewalls

Netdefender (http://www.codeplex.com/netdefender/): A specialized open source firewall.
It operates by blocking all communication on specified ports after the rules have been
setup.

Clam AV (www.clamav.org): : This application is specifically designed for scanning e-
mail gateways for malicious code. Virus scans take place from the command line in a
terminal window.
ClamWin (www.clamwin.com): Windows version of the ClamAV engine. It seperates the
processes of scanning for viruses on harddisk and scanning for viruses in program
memory.

E: Anti-Malicious
Tools

Winpooch (http://sourceforge.net/projects/winpooch/): Windows watchdog that detects and
monitors changes in the system and effectively blocks spyware.

F: Cryptography
Tools

GnuPG(http://www.gnupg.org): Gnu Privacy Guard features a complete implementation
of the OpenPGP standard and allows for the encryption and the digital signing of data and
communication.

OpenSSL (http://www.openssl.org): This tool implements the Secure Sockets Layer (SSL
v2/v3) and Transport Layer Security (TLS v1) protocols.

TrueCrypt (http://www.truecrypt.org): Disk encryption software that creates a virtual
encrypted disk within a file and mounts it as a real disk. It is able to encrypt entire hard
disk partitions or storage devices such as USB flash drives.

It has to be noted that an alarming number of open source tools

become proprietary after a few versions of being publicly available (see for
example Nessus at www.nessus.org). This means that once a company is
utilising a specialised tool in providing a secure working environment, the
possibility that newer versions will become available at an additional price
is increasing.

Results displayed only reflects implementation of Level 1 of our
proposed framework. Level 2 aspects is not finalised and the
implementation is set to be completed in July 2008.

6 CONCLUSION
This paper addresses the research question by clearly identifying that a
number of open source security tools are being used to protect systems. The
application of the 1st level of the testing framework resulted in a shortlist of
tools that can be identified as the most widely used security tools. This
result is significant in that it shows the security awareness of open source
developers and it suggests that open source operating systems might not be
inherently as secure as is claimed. In addition the results indicate user
security awareness.

Further research is in progress as to the evaluation of the quality of the
protection that the shortlist of security tools provides to software systems.
To that effect this paper highlighted the possible aspects for a second level
of security tool testing. Finally the completed security evaluation framework
will play a significant role in the protection of systems using open source
tools by promoting a high quality of development as well as the
development of a standard for the evaluation of such tools.

7 ACKNOWLEDGEMENTS

This research was fully funded by Eskom, Research & Innovation
Department. They also fund the research and implementation of Level 2 of
the framework.

8 REFERENCES
CHESS, B., LEE, FD. & WEST, J. 2007. Attacking the Build through
Cross-Build Injection. [Online] Fortify Software. Available at:
http://www.fortifysoftware.com

DIMAIO, A. 2007. Open Source Software in Government: How much open
and how much source? Gartner Symposium ItxPO 2007.

FORD, R. 2007. Open vs. Closed: Which is more secure? ACM Queue
Magazine February.

FOSS. 2006. Policy of Free and Open Source Software use for South
African Government. [Online]. Available from:
http://www.doc.gov.za/index.php?option=com_docman&task=doc_view&g
id=49

HOEPMAN, J. & JACOBS, B. 2007. Increased Security Through Open
Source. Communications of the ACM, January, Vol. 50, No.1.

LAWTON, G. 2002. Open Source Security: Opportunity or Oxymoron?
IEEE Xplore, Volume 35, Issue 3, March 2002, Pg 18-21.

LI, Z., TAN, L., WANG, X., LU, S., ZHOU, Y., and ZHAI, C. 2006. Have
things changed now?: an empirical study of bug characteristics in modern
open source software. In Proceedings of the 1st Workshop on Architectural
and System Support For Improving Software Dependability.

McGANN, S. & SICKER, D. 2005. An analysis of security threats and tools
in SIP-based VoIP systems. Presented at the 2nd Annual Workshop VoIP
Security., Washington, DC, June.

MOOKHEY, K.K. 2004. Open Source Tools for Security and Control
Assessment. Information Systems Control Journal , Volume 1.

POOLE, O. 2003. Network Security: A practical guide. Butterworth-
Heinemann, Oxford. ISBN 0-7506-50338.

TOMSHO, G., TITTEL, E. & JOHNSON, D. 2003. Guide to Networking
Essentials. Third Edition. Thomson Course Technology. ISBN 0-619-
13087-3.

VIEGA, J. 2004. Open Source Security: Still a Myth. O’Reilly [Online].
Available from: http://www.oreilly.com

WHITMAN, M.E. & MATTORD, H.J. 2004. Management of Information
Security. Thomson Course Technology. ISBN 0-619-21515-1.

WILANDER, J. & KAMKAR, M. 2003. A comparison of publicly available
tools for dynamic buffer overflow prevention. In Proceedings of the 10th
Annual Network and Distributed Systems Security Symposium.

WILLIAMS, J. & DANAHY, J. 2006. “Opening the black box” A Source
Code Security Analysis Case Study. Aspect Security Inc. & Ounce Labs
Inc.

