INVESTIGATING THE EFFECT OF GENETIC
ALGORITHMS ON FILTER OPTIMISATION
WITHIN FAST PACKET CLASSIFIERS.

1

Alastair Nottingham' and Barry Irwin?

Security and Networks Research Group
Department of Computer Science

Rhodes University, Grahamstown

lanottingham@gmail.com, %b.irwin@ru.ac.za

ABSTRACT

Packet demultiplexing and analysis is a core concern for network security,
and has hence inspired numerous optimisation attempts since their concep-
tion in early packet demultiplexing filters such as CSPF and BPF. These
optimisations have generally, but not exclusively, focused on improving the
speed of packet classification. Despite these improvements however, packet
filters require further optimisation in order to be effectively applied within
next generation networks. One identified optimisation is that of reducing
the average path length of the global filter by selecting an optimum filter
permutation. Since redundant code generation does not change the order
of computation, the initial filter order before filter optimisation affects the
average path length of the resultant control-flow graph, thus selection of an
optimum permutation of filters could provide significant performance im-
provements. Unfortunately, this problem is NP-Complete. In this paper, we
consider using Genetic Algorithms to ’breed’” an optimum filter permutation
prior to redundant code elimination. Specifically, we aim to evaluate the
effectiveness of such an optimisation in reducing filter control flow graphs.

KEY WORDS

Genetic Algorithms; Packet Classification; Permutation Optimisation

INVESTIGATING THE EFFECT OF GENETIC
ALGORITHMS ON FILTER OPTIMISATION
WITHIN FAST PACKET CLASSIFIERS.

1 INTRODUCTION

This paper details a preliminary investigation into the use of genetic algo-
rithms in improving the efficiency and performance of complex packet classi-
fication tasks. This paper serves to motivate the inclusion of such techniques
in the design of a GPGPU-based offline packet classifier, intended for fast
classification of network telescope data. We are thus less concerned about
filter update latency than we are about classification performance, as it is
assumed that filter sets will rarely change. Furthermore, we are tolerant of
the significant initialisation overhead required by genetic algorithm based
solutions, if this may significantly improve performance, for obvious reasons.

In this section, we provide a brief overview of packet filters, and the specific
optimisation which we intend to investigate.

1.1 A Note on Terminology

Packet filtering and classification may refer to a number of different, domain
specific operations perfromed on packet data in order to derive or retreive
useful information. These include, but are not limited to, IP routing, demul-
tiplexing, analysis and intrusion detection [14, 12, 4]. In this paper, packet
filtering and classification refer to the analysis of arbitrary packet header
information within an architecture compatable with application level packet
demultiplexing.

1.2 Brief History

The field of packet filtering and classification has a long history of research
and development, pioneered by the CMU/Stanford Packet Filter (CSPF), a
memory-stack-based packet filter [10], and later by BSD Packet Filter (BPF),
which provided the foundation for modern register-based filter machines |6,
4]. BPF implemented a RISC based pseudo-machine, in which filters were
created using a low level assembler language, and translated into a directed
acyclic control flow graph (CFG) for packet processing [10].

BPF was succeeded by several similar packet filters, engineered to improve
both classification efficiency and flexibility. This began with the Mach Packet
Filter (MPF), targeted at the Mach micro-kernel, which introduced packet
fragment handling and packet matching optimisations [16], and was followed
closely by the PathFinder packet classifier, which leveraged a declarative
packet-masking mechanism to match a packet against a line of cell patterns
within a directed acyclic graph structure [11].

The successes of both MPF and PathFinder paved the way for the Dynamic
Packet Filter (DPF), which leveraged dynamic code generation to exploit
run-time information at compile time, thus improving the efficiency of filter
operation [6, 4]. Dynamic code generation proved successful in reducing re-
dundancy, often significantly, and thus was incorporated into a subsequent
BPF descendant, BPF+, in the form of JIT compilation [4]. BPF+ also
introduced a significant number of concurrent and interdependent optimiza-
tions, including constant folding, predicate propagation and partial redun-
dancy elimination, in order to reduce the number of nodes in its filter tree
[4]. As a result, significant improvements to overall performance were noted.

Since the introduction of BPF+, there has been relatively little development
within the field of packet demultiplexing. The Extended Packet Filter (xPF)
incorporated simple extensions for statistics collection into the BPF model
[9], while the Fairly Fast Packet Filter (FFPF) used extensive buffering to
reduce memory overhead, among other optimisations [5]. Finally, the Swift
packet filter used CISC based pseudo-machine to minimise filter update la-
tency, further reducing instruction overhead and command interdependence
[15]. Despite this, a number of alternative methods for improving filter per-
formance still remain relatively unexplored. One such method is that of filter
permutation optimisation prior to control flow graph construction.

1.3 Problem Statement

The number of redundant operations that may be eliminated from a packet
classification control flow graph is often dependent on the permutation of
filters prior to optimisation. Thus, by finding an optimum permutation, a
minimum control flow graph may be created, improving the efficiency of the
filter program. As finding an optimum permutation of filters is analogous
to the traveling salesman problem, there exists no polynomial time solution.
In this paper we conduct a pilot study to assess the applicability and possi-
ble performance improvements that may result from implementing a genetic
algorithm to approximate an optimum filter permutation.

1.4 Optimising Filter Permutation

Packet classification techniques typically comprise comparing a subset of a
packets header information to a set of static values in order to identify a
packet as a particular type, thus determining its destination, as well as other
relevant information. When a packet filter contains more than one filter
program, comparison overlap in multiple filters is nearly unavoidable. For
instance, a significant proportion of protocols utilise IP within their net-
work layer to facilitate and maintain connections, and thus filters for these
protocols will all test for an IP header, introducing significant redundancy
[4]. 1 provides an illustration of a simplified filter program comprising three
separate filters, represented as a control flow graph.

I'tue bBdge

O Predicale Test
. Classificatian

- Ialse bdge

Figure 1: Filter Control Flow Graph

While the compiler optimisation techniques utilised in packet filters such as
DPF and BPF+ typically eliminate a significant proportion of these redun-
dancies, the effectiveness of optimisation is often dependent on the order in
which header values are tested, which corresponds to the order of filters prior
to optimisation [13]. Finding an optimum ordering of filters is thus equivalent
to finding an optimum directed acyclic control flow graph, which is in turn
comparable to binary decision tree [10]. As constructing an optimal binary
decision tree is NP-Complete [8], finding an optimum filter permutation is a
non-deterministic operation. As an example, 3 shows how the optimisation
results produced from two different permutations of the filters illustrated in
2.

While a set based heuristics solution which utilises an adaptive pattern
matching algorithm to find a near-optimal decision tree has been detailed

Filter 1:

Filter 2:

G e B

Filter 3:

(- ()

Figure 2: Filter Specification, adapted from [13].

in the literature [13], the effectiveness of the permutation optimisation is
limited when the number of filters grows large. In this regard, an attrac-
tive alternative is to breed a near-optimal filter permutation using a genetic
algorithm. As genetic algorithms have proven effective in NP-Complete prob-
lem spaces, including those analogous to the traveling salesman permutation
problem [2], we intend to assess their effectiveness in finding an optimum
filter permutation.

In this paper, we consider the feasibility of this approach by constructing
a prototype simulation system to measure the effectiveness of the genetic
algorithm optimisation in an abstract filter environment. As previously in-
dicated, we are primarily interested in calssification performance, as it is
assumed that filter permutations will remain relatively static, with billions
of packets being classified using the same control flow graph.

2 SIMULATION SYSTEM

This section discusses the simulation system, a rapidly developed prototype
used to guage the benefits and weaknesses of permutation optimisation using
genetic algorithms.

2.1 Motivation
The simulation system is intended to aid in evaluating the potential for opti-

misation by altering filter permutation. To this end, it is necessary to specify
a measure of performance that is not subject to run-time constraints, such

Filter Order:
(1) Class 1
(2) Class 2

Class 3 (3) Class 3

—
—
~—
B

(o). .
Filter Order:

(1) Class 2
(2) Class 3
(3) Class |

Class 1

Figure 3: Control Flow Graph Reductions Using Different Permutations,
adapteed from [13].

as CPU clock speed or memory latency. Noting that each tree will be gener-
ated from a permutation of filters, and that the optimisation techniques used
cannot create new nodes or connections, but simply remove redundant ones,
we can assume that the node count of each optimised filter tree provides a
satisfactory indication of the performance of that filter tree, as it indicates
the absolute difference in redundant nodes eliminated by optimisation.

Using the node count as our basis for comparison, we construct a simple,
abstract control flow graph generator which accepts an arbitrary permutation
of a filter set as input, converts the filter permutation to a control flow
graph, and reduces the resultant graph using predicate assertion propagation
and static predicate prediction [4]. By comparing the node count of two
trees generated from different permutations of the same filter set, where
one permutation is provided by a genetic algorithm, we can infer potential
performance gains without having to implement a run-time filtering process.

The following sections consider the filter specification language and optimi-
sation techniques used in generating the filter control flow graphs.

2.2 Filter Design

Prior to discussing the generation of filter sets in order to test optimisation,
it is first necessary to elaborate on the design of the filter language used.
Filters in the simulation system operate on packets containing a fixed length
character array, or string. The character array is populated with random
uppercase alphabetical characters, such that at any given index within the
character array, there exists a random character that can be tested for equiv-
alence against some constant character value. This forms the basis for the
filter abstraction used.

Filters in the simulation system are equivalent to a chain of predicates, where
each predicate compares a given packet index to a particular value, and
returns true or false. In the interest of simplicity, only two comparative tests
are available, namely equality and inequality. Should a predicate return true,
the next predicate in the chain is evaluated until all predicates in the chain
have returned true, at which time the packet is classified by the chain. If a
predicate should fail, then the packet is not a member of the classification
set, and is thus rejected by the filter, and processing begins on the next filter.
If no filters match the packet, then the packet is not classified as a member
of any set. See 1 for an illustration.

This filter design was adopted as it is both similar to typical packet filtering
[13], and easy to map into a control flow graph. Furthermore, as the packets
to be tested do not contain any inter-packet dependencies, in that every char-
acter in the packet is random, we are free to generate random filters without
concern for relational constraints. This greatly simplifies the implementation
of the simulation system, while providing for the trivial generation of random
filters.

2.3 Automatic Filter Generation

In order to test the effectiveness of permutation optimisation in reducing the
filter control flow graph, a set of filters is first required. In the interest of
both generality and efficiency, we have implemented a filter generator capable
of creating a filter set of arbitrary cardinality, composed of a bounded but
variable number of filter predicates. In the interest of optimisation, filters

may be generated such that the indices to be tested are sorted in ascending
order, improving the effectiveness of optimisation [6, 4].

In typical filtering scenarios, large volumes of packets may share common
tests [6, 4], such as for TCP or IP protocols, and thus a mechanism for
ensuring a specified proportion of packets contain a particular test is de-
sirable. The filter generator facilitates these requirements, allowing for an
arbitrary number of predicates to be specified and associated with an occur-
rence percentage value. We term these specified predicates. Once all specified
predicates have been processed, the remainder of the chain are populated by
randomly generated predicates.

The automatic filter generation component thus allows for an arbitrary set
of filters to be generated, with each filter containing a number of predicates
within a specified predicate-chain-length range, and a user specified degree
of overlap for specific predicates.

2.4 Filter Optimisation

The simulation system employs a subset of typical filter optimisations, fo-
cusing in particular on the reduction of nodes within the control flow graph
through a combination of predicate assertion propagation and static pred-
icate prediction. These optimisations require the calculation of the node
dominator relationship [1, 4] between nodes, in order to ensure accuracy. A
node n is said to dominate another node m if and only if for every path
to node m, node n is in that path. If node n dominates node m, then the
predicate in node n is known at node m regardless of the path taken. Note
that by this definition, a node implicitly dominates itself, and all nodes are
dominated by the root node of the control flow graph[1]. For our purposes,
a nodes dominator set may be found recursively, by finding the intersection
of the dominator sets of all parent nodes.

Predicate assertion propagation, in its most basic form, involves the use of
predecessor dominator node predicates to eliminate redundancy within in a
particular path. Specifically, if an edge from a node n points to a predicate
node m whose result may be determined from the dominator set of n, then
the node m may be bypassed by redirecting the edge from n to the appro-
priate child node of m [4]. The result of this process is the minimisation of
redundancy within a particular path.

Static predicate prediction, for the purposes of our system, is similar to pred-

icate assertion propagation, in that it uses the results of dominator nodes to
ascertain the result of a predicate computation without evaluating the pred-
icate. It differs in that, while predicate assertion propagation considers the
explicit computational results of a dominator predicate in optimising a path,
static predicate prediction infers an implicit computational result instead [4].
Specifically, if a predicate dominator node in a path returns false, the con-
verse of the predicate is assumed to be true, and used as an optimisation
parameter in the rest of the path. Together, predicate assertion propagation
and static predicate prediction provide for significant optimisation opportu-
nities.

For instance, if a dominator node n contains the predicate “56==J", then
predicate assertion propagation ensures that any redundant computation of
this explicit predicate is removed from the path from the true edge of n.
Similarly, static predicate prediction infers the implicit predicate “5!=J",
and attempts to remove redundant computation of this predicate in the path
from the false edge of the node.

3 GENETIC ALGORITHM STRATEGY

In this section, we discuss the particulars of the genetic algorithm employed
to test our hypothesis.

3.1 Introduction

Genetic algorithms are a form of adaptive algorithm modeled on natural evo-
lution. The concept of an evolutionary algorithm was first introduced over
fifty years ago as a mechanism for finding good solutions to problems within
vast search spaces [3]. One such early attempt was that of an automatic
programming algorithm, which attempted to evolve a binary encoded com-
puter program capable of performing simple computational tasks, such as
finding the sum of two bits [3]. Due to the lack of computational power at
the time, success was somewhat limited, but subsequent technological devel-
opments and various algorithmic improvements have only supplemented the
capabilities of genetic algorithms, increasing their applicability to a variety
of optimisation problems.

A genetic algorithm is essentially composed of a population of individual
chromosomes, where each chromosome represents, or encodes, a particular

solution to a problem. Each chromosome is assigned a fitness value, rep-
resenting the efficiency of its particular solution. The initial population is
typically generated randomly, and subsequent generations created by select-
ing two parent chromosomes from the population pool, and using them to
create two new child chromosomes, each containing parts of both parents.
These child chromosomes then enter the population pool, often replacing
chromosomes with the lowest fitness in the process. By repeating this pro-
cess for a number of generations, chromosomes with greater fitness values are
slowly evolved. At some point, the process is stopped, and the best perform-
ing chromosome is selected as the solution [3]. While genetic algorithms do
not guarantee an optimum solution, they are considered effective at finding
near optimum solutions in relatively short time periods, making them attrac-
tive alternatives for NP-Complete problems, such as the traveling salesman
problem [3].

As finding an optimum filter permutation is similar in both complexity and
structure to the traveling salesman problem, we have applied a genetic al-
gorithm to attempt to improve filter permutations such that the resultant
control flow graph is minimised. In the following subsections, we discuss the
specifics of the algorithm used.

3.2 Chromosome Representation

Before detailing the specifics of the employed genetic algorithm, it is first
necessary to briefly describe our permutation representation. Chromosomes
are represented as integer arrays, with a length equivalent to the total num-
ber of filters within the filter set. We then assign a unique numeric value to
each filter, where each value corresponds to the filters position in the original
filter set. The goal of our genetic algorithm is to permute these values into
an optimum order, such that when the filters within the filter set are placed
in the order of their identifiers within the chromosome, a near-minimal con-
trol flow graph is generated. Thus, the fitness of a chromosome is equal to
the number of nodes eliminated from the resultant control flow graph after
optimisation of the chromosomes filter permutation.

3.3 Selection

Chromosome selection is the process of selecting suitable parents from the
current chromosome generation, in order to breed a new generation. The pri-
mary goal of the selection process is two-fold, namely improving upon current

solutions, and exploring yet undiscovered solutions to a particular optimi-
sation problem [3]. Numerous selection methods exist, from simple elitist
methods which select the best performers from the chromosome population,
to more sophisticated techniques such as adaptive selection and tournament
selection [3]. For the purposes of our prototype, a proportional mechanism
known as Roulette Wheel selection is used.

Roulette wheel selection is one of the most common selection mechanisms
used today, and is considered as one of the simplest to meet the requirements
of both improvement and exploration of the solution space. Simply put,
roulette wheel selection is analogous to a roulette wheel, where the chance of
selecting a chromosome as a parent is directly proportional to its fitness. To
achieve this, the total fitness of the chromosome population is calculated by
finding the sum of the fitness of each individual. We then designate a slice
of this total to each chromosome, such that each slice is equivalent in size to
the fitness of that chromosome. Finally, we randomly select a value between
zero and the total fitness value, and determine the chromosome associated
with the slice that value falls into.

While roulette wheel selection is sufficient for our purposes, more sophisti-
cated methods may improve convergence to an optimum permutation, and
the quality of the final result.

3.4 Crossover

The crossover operation is responsible for the re-composition of two parent
chromosomes into their constituent child chromosomes. Much like selection,
a myriad of crossover algorithms exist, each boasting particular strengths
and weaknesses [3]. At its most simplistic, crossover involves splitting the
parent chromosomes in a designated way, and then using the resultant pieces
to create two child chromosomes, where each child contains pieces of both
parents. For binary encoded problems, it is often sufficient to simply split
each parent at a random point, creating two pieces, and then using these
pieces to create the child chromosomes such that each child contains the first
piece of one parent, and the second piece of the other parent. As this partic-
ular method is not well suited to permutation problems, we have opted for a
more sophisticated crossover method, tailored for permutation optimisation.
We detail this method below.

Recall that our chromosome representation is a simple array of unique nu-
meric identifiers. Our first step is to compare both parent chromosomes, and

locate all those identifiers which are in the same index position within the
identifier array, and copy these values to the same position within both child
chromosomes. This allows for the conservation of the most beneficial permu-
tations. This leaves a set of n identifiers, where n is less than or equal to the
number of filters in the filter set. We then take the first § remaining identi-
fiers from the first parent, and place them in order into the first & available
indices of the first child, and fill the remaining indices with unused identifiers
in the order they appear in the second parent. This process is repeated for
the second child, with the order of parents reversed.

_
_

ﬁ.
=
o
2

Figure 4: Crossover Operation

While crossover is of vital importance to the success of a genetic algorithm,
it is often beneficial to allow a few parent chromosomes to survive intact into
the next generation. To facilitate this, we use a crossover rate percentage
of 70%, where the remaining 30% of crossovers result in child chromosomes
identical to their respective parents.

3.5 Mutation

Mutation is responsible for small changes in children that are not inherited
from their parents, and operates on individual components of a chromosome.
Due to the purely random nature of mutation, the chance that a particular
index of a chromosome is mutated, termed the mutation rate, is typically
very small, to ensure that information inherited from parents is not regularly
and excessively contaminated.

As mutation occurs at the component level within a chromosome, we itera-
tively cycle through the indices of the chromosome, allowing a 0.3% chance of

mutation at each index position. This involves selecting another chromosome
index at random, and swapping the filter identifiers contained within them.
This ensures that no identifier occurs more than once within a chromosome,
preventing corruption.

4 PRELIMINARY RESULTS

In this section, we discuss the preliminary findings regarding the use of a
genetic algorithm to improve filter efficiency.

4.1 Filter Improvement

Of primary interest, with respect to this pilot study, is the potential for
increased filter efficiency through permutation optimisation alone. In this
regard, preliminary findings are optimistic, with notable improvements mea-
sured in a number of test cases. To investigate the hypothesis that permuta-
tion impacts significantly on filter permutation, we generate a random filter
set of a specified size and composition, and compare the node count of the re-
sultant control flow graphs constructed using both the original and optimised
filter permutation configurations. To this end, we have created three distinct
test sets, each containing several results. These are enumerated below.

The first test set is conducted on ten filters, with each filter containing five
to ten predicates. There is an 80% chance that a filter contains the predicate
“2==K". Five tests were run with the predicates in index order, with the
other five in random order. Results are shown in figure 5. In almost all test
cases, the genetic algorithm reduced the standard reduction node count by
over 20%. Note that in the second trial, the genetic algorithm was unable to
find a better permutation solution than that of the standard permutation,
making it the best known solution.

The second test set is intended to illustrate performance over a large number
of longer filters. Results, provided in figure 6, show considerable improvement
in several trials, at the expense of increased computation time.

Finally, we consider a complex filter environment, lacking any explicit re-
dundancy. Furthermore, both population size and generation count are in-
creased, to obtain high quality solutions. While the processing cost was
significant, resulting from the need to construct 125 000 relative complex

20 Filters; length: 5-10, population size: 100, 200 generations, "2==k"in 80%
200 T T T T T T T T T

I e duced
180 - [standard [
. G

-

s -
4k 4
Fals I 4
0 1 7 g 9

2 3 4 a 10

MNode Count
e
T

=23 I

—
@
o

Figure 5: Test Set 1: 20 filters; length: 5-10; population size: 100; 200
generations; “2==K" in 80%

trees, as opposed to the 20 000 trees required by the algorithm in the second
test set, considerable improvement is noted in several trial cases,as illus-
trated in figure 7. This implies that the algorithm performs well in complex
environments, given sufficient computational resources.

4.2 Genetic Algorithm Performance Considerations

The genetic algorithm has shown promise in filter optimisation. However,
the computation time necessary is roughly proportional to both the com-
plexity of the filter environment, and number of independent chromosomes
in the genetic algorithm, as these correspond to the time necessary to reduce
a single tree, and the number of such trees that need to be constructed re-
spectively. If the chromosome population size is m and the algorithm runs
for n generations, then a total of nm trees need to be reduced in order to
calculate node count. Thus, we may reduce the computational time neces-
sary to complete permutation optimisation in two distinct areas, namely the
time spent optimizing an individual graph and counting its nodes, and the
number of chromosome evaluations performed before a suitable solution is
presumed to be found. We consider these briefly.

By improving the efficiency of the tree reduction and counting mechanisms of
the control flow graph, we may reduce the number of calculations by roughly
kmn, where k represents the average reduction in graph optimisation and
node counting cost.

50 Filters; length: 10-20, population size: 100, 200 generations, "2==K" in 80%
S00 T T T T T

I neduced
A0 _standard
=]

700

B00

500

MNode Count

400

300

200

100

Test

Figure 6: Test Set 2: 50 filters; length: 10-20; population size: 100; 200
generations; “2==K” in 80%

In order to reduce the number chromosome evaluations performed, we need
to improve upon the values n and m. Firstly, the use of chromosome oper-
ators better suited to the task at hand is warranted. By utilising operators
tailored to this problem, the rate of convergence to an optimum solution
may be increased, reducing the requirements placed on both population size
and generation count [3]. Specifically, Fuzzy Adaptive Genetic Algorithms
(FAGAS) have shown significant potential in similar problem spaces, as they
adapt breeding parameters dynamically in order to improve results [7]. This
is, however, beyond the scope of this paper. Secondly, as genetic algorithms
are parallel in nature [3], an implementation targeted at a parallel architec-
ture such as multicore GPUs may reduce breeding time by a factor of m, as
the entire population may be computed concurrently, spread over the number
of cores available. An added benefit of this is that the population size may
be increased to the number of cores available, without incurring significant
delay.

While minimising filter generation time is important to some degree, rapid
generation is not imperative, given its intended purpose as an offline packet
classifier. Thus, we consider a generation time of several hours to be unde-
sireable, but acceptable.

4.3 Limitations of Findings

As this paper represents a pilot study into the applicability of genetic al-
gorithms to filter permutation optimisation, several limitations are evident.

50 Filters; length: 10-15, population size: 250, 500 generations, pure random
800 T T T T T

I nreduced
B00 - [standard
[[

700+ E

600 —

500 - —

MNode Count

400 - —

300+~ —

200 - —

100+~ —

Test

Figure 7: Test Set 3: 50 filters; length: 10-15; population size: 250; 500
generations; pure random

Firstly, we have considered the final node count within a control flow graph as
the only measure of chromosome fitness. While a reduced final node count is
an acceptable indicator of improvement, such improvement is not guaranteed.
Numerous factors affect control flow graph efficiency, including the average
path length, and the composition of incoming packets. While we have not
used these measures to guage fitness within our pilot genetic algorithm, such
metrics may be incorporated into a more sophisticated implementation.

Secondly, due to the simplicity of the implemented filter system, results only
indicate an approximate potential for improvement. Given that an actual
packet filtering system relies upon numerous and diverse predicate and com-
putational operators which may ultimately influence the level of success at-
tainable by optimising filter permutation, our results do not guarantee simi-
lar performance in an actual filtering system, but simply indicate that such
performance improvements are conceivably possible.

Finally, we note the limitations of the simple filtering system implemented.
As the generation of filters is performed at random, the possibility of generat-
ing overlapping definitions, or unreachable classifications, is not only possible,
but highly probable in large filter sets, given the limitations on indices, com-
parison operators, and character values. This further implies that a change
in permutation may ultimately change the classification of a packet, if two
similar filters have their order reversed. While such instances are of concern,
in an actual filtering system they may be mitigated through the use of both
detection functions, and the ability to enforced ordering of filters.

5 CONCLUSION AND FUTURE WORK

The simulation system discussed in this paper, while limited in many re-
spects, demonstrates the possibility for significant filter efficiency improve-
ment through the application of a well tailored evolutionary permutation
optimisation approach. The simple genetic algorithm employed to test this
hypothesis produced numerous control flow graphs containing less nodes than
their unoptimised counterparts, illustrating the potential of such an approach
in a real packet classification system. Given the breeding overhead required
by genetic algorithms, such techniques may not be beneficial in dynamic fil-
ter environments, but is well suited to those in static environments. We thus
intend to apply this knowledge to the development of a packet filter archi-
tecture which efficiently leverages genetic algorithms in unison with GPU
processing, with the express goal of improving offline packet classification
performance in complex filter environments.

References

[1] Ano, A. V., Lam, M. S.,; SETHI, R., AND ULLMAN, J. D. Compil-
ers: Principles, Techniques, and Tools (2nd Edition). Addison Wesley,
August 2006.

2] Back, T., AND HOFFMEISTER, F. Adaptive search by evolutionary
algorithms, 1992.

3] Bek, T. Evolutionary algorithms in theory and practice, Feburary
1994.

[4] BEGEL, A., MCCANNE, S., AND GRAHAM, S. L. Bpf+: exploiting
global data-flow optimization in a generalized packet filter architecture.
SIGCOMM Comput. Commun. Rev. 29, 4 (1999), 123-134.

[5] Bos, H., BRunN, W. D., CrRISTEA, M., NGUYEN, T., AND POR-
TOKALIDIS, G. Fipf: Fairly fast packet filters. In In Proceedings of
OSDI04 (2004), pp. 347-363.

6] ENGLER, D. R., AND KaAASHOEK, M. F. Dpf: fast, flexible mes-
sage demultiplexing using dynamic code generation. In SIGCOMM ’96:
Conference proceedings on Applications, technologies, architectures, and
protocols for computer communications (New York, NY, USA, 1996),
ACM, pp. 53-59.

[7]

[15]

[16]

HERRERA, F., AND L0zANO, M. Fuzzy adaptive genetic algorithms:
design, taxonomy, and future directions. Soft Computing - A Fusion of
Foundations, Methodologies and Applications 7, 8 (August 2003), 545—
562.

HvariL, L., AND R1vEsT, R. Constructing optimal binary decision
trees is np-complete. Information Processing Letters 5 (1976), 15-17.

ToANNIDIS, S., AND ANAGNOSTAKIS, K. G. xpf: packet filtering for
low-cost network monitoring. In In Proceedings of the IEEE Workshop
on High-Performance Switching and Routing (HPSR (2002), pp. 121—
126.

MCCANNE, S., AND JACOBSON, V. The bsd packet filter: A new
architecture for user-level packet capture. pp. 259-269.

McMURCHIE, L., AND EBELING, C. Pathfinder: A negotiation-based
performance-driven router for FPGAs. In FPGA (1995), pp. 111-117.

TAYLOR, D. E. Survey and taxonomy of packet classification tech-
niques. ACM Comput. Surv. 87, 3 (2005), 238-275.

TONGAONKAR, A. S. Fast pattern-matching techniques for packet fil-
tering. Tech. rep., 2004.

VASILIADIS, G., ANTONATOS, S., POLYCHRONAKIS, M., MARKATOS,
E. P., AND IOANNIDIS, S. Gnort: High performance network intrusion
detection using graphics processors. In RAID ’08: Proceedings of the
11th international symposium on Recent Advances in Intrusion Detec-
tion (Berlin, Heidelberg, 2008), Springer-Verlag, pp. 116-134.

Wu, Z., Xig, M., aAND WaANG, H. Swift: a fast dynamic packet
filter. In NSDI’08: Proceedings of the 5th USENIX Symposium on Net-
worked Systems Design and Implementation (Berkeley, CA, USA, 2008),
USENIX Association, pp. 279-292.

YUHARA, M., BERSHAD, B. N., MAEDA, C., ELiOT, J., AND MOSS,
B. Efficient packet demultiplexing for multiple endpoints and large mes-
sages. In In Proceedings of the 1994 Winter USENIX Conference (1994),
pp. 153-165.

