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Abstract—Statistics  show  that  although  malware  detection 
techniques are  detecting and preventing malware,  they  do not 
guarantee  a  100%  detection  and  /  or  prevention  of  malware. 
This  is  especially  the  case  when  it  comes  to  rootkits  that  can 
manipulate the operating system such that it can distribute other 
malware,  hide  existing  malware,  steal  information,  hide  itself, 
disable anti-malware software etc all  without the knowledge of 
the user.  This paper will demonstrate the steps required in order 
to  create  two  rootkits.   We  will  demonstrate  that  by 
implementing rootkits or any other type of malware a researcher 
will  be  able  to  better  understand  the  techniques  and 
vulnerabilities used by an attacker.  Such information could then 
be useful when implementing anti-malware techniques.  
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I. INTRODUCTION

Anyone  who  uses  a  computer  for  work  or  recreational 
purposes has come across one or all of the following problems 
directly  or  indirectly  (knowingly  or  not):  viruses,  worms, 
trojans, rootkits and botnets. This is especially the case if the 
computer is connected to the Internet.  The current commercial 
products used by home users to detect and prevent malware are 
either signature based or heuristic based [1][2][3].

The statistics in [4] show that although malware detection 
techniques are detecting and preventing malware, they do not 
guarantee a 100% detection and / or prevention of malware. 
The reason for not being able to achieve a 100% detection and / 
or prevention of malware is because malware authors make use 
of sophisticated hiding techniques in order to prevent malware 
from being detected by means of signature based techniques. 
Such techniques are either entirely or partially based on code 
obfuscation [5][2][6].   This has resulted in the emergence of 
malware  known as  polymorphic  and  metamorphic  malware. 
Metamorphic malware makes use of code obfuscation in order 
to change its code structure in such a way that very little bytes 
remain that can be used as a signature [7][8].   Polymorphic 
malware encrypts its payload using different keys each time to 
make it undetectable.  The polymorphic malware then makes 
use of a decryptor to decrypt its malicious payload in order to 
execute it. Polymorphic malware however can be identified by 
the signature of its decryptor [7][8] which is why it makes use 
of  metamorphic  decryptors  to  avoid  being  detected. 
Metamorphic  and  polymorphic  malware  poses  serious 
challenges  for  anti-malware  software  specifically  signature 
based techniques, however rootkits are a more serious malware 
threat.  

A rootkit is a malicious program or set of programs that 
tries to hide its existence on an infected computer by attacking 
the Operating System (OS) by using one or a combination of 
the following: modifying program binaries, hooking call tables 
such as the System Service Descriptor Table (SSDT) and the 
Interrupt Descriptor Table (IDT) to hijack the kernel's control 
flow, modifying legitimate code to force a call to rootkit code 
or by using DKOM (Direct  Kernel  Object Manipulation)  [9]
[10][11][12][13].   Rootkits  are  designed  to  fundamentally 
subvert  the  OS  kernel  and  are  capable  of  obtaining  and 
maintaining  unrestricted  control  and  access  within  the 
compromised  system  without  even  being  detected  by  anti-
malware software [14].  Rootkits can also hide other malicious 
software  or  activities  such  as  open  network  connections, 
running processes  and files  on disk  [10][11][12].   Long life 
time rootkits are most likely to attempt to hide [11].  

This paper will demonstrate the steps required in order to 
implement  two  rootkits.   The  first  rootkit  can  sabotage  a 
Windows OS by causing it to blue screen or to generate an 
error after each reboot.  The second rootkit can disable anti-
malware programs and log the keys pressed by the user.  The 
target OS environment is Windows XP Professional 32 bit and 
Windows 7 Professional 32-bit, we will use OS to refer to these 
two environments.  The home user is the target of our rootkits. 
The rationale for this paper is that in order to prevent attacks 
from rootkits a researcher must first understand how rootkits 
work and what vulnerabilities they expose.  Once this is done 
counter measures can be identified for the vulnerabilities.  To 
our knowledge no other papers exist that cover how rootkits are 
implemented.   We hope this  paper  will  assist  other  security 
researchers  in  understanding  how  rootkits  work  and  what 
vulnerabilities they exploit.  Such information could then be 
useful when implementing anti-rootkit techniques.  

The remainder of this paper will be structured as follows: in 
section  2  we  will  briefly  discuss  the  tools  required  to 
implement rootkits, sections 3, 4 and 5 will look at how to get 
into the kernel, install the rootkits and manipulate the kernel. 
Sections 6 and 7 will discuss our Sabotager and Evader rootkits 
and their functions after which in section 8 we will discuss the 
vulnerabilities of the OS that our rootkits exploit.  Sections 9 
and 10 will discuss how the vulnerabilities can be addressed.

II. TOOLS

A list of the tools used to develop the rootkits discussed in 
this paper can be found in the table 1.  It should be noted that 
all tools are freely available from Microsoft.  The rootkits we 



TABLE I. DEVELOPMENT TOOLS

Name Description

Windows 
Driver Kit

Tools  and  documentation  necessary  to  develop  kernel 
mode drivers.

Windows 
SDK

Tools and documentation necessary to develop user mode 
applications.

Sysinternals 
Suite

Contains useful tools such as Debug view that allows one 
to view output from the kernel and other useful tools [16].

Windows 
Debugging 
Tools

Contains  a  set  of  tools  you  can  use  to  debug  drivers, 
applications and services.

implemented are both hybrid rootkits because they consist 
of user mode and kernel mode components.  This allows us to 
have access to all of the kernel's data structures and procedures 
while still having access to the user mode Windows API.  We 
also make use of a user mode component to communicate with 
the kernel mode component.  The rootkits are implemented as 
kernel-mode  drivers.   A  kernel-mode  driver  is  a  loadable 
kernel-mode  module  that  is  intended  to  act  as  middleware 
between  the  hardware  and  the  OS's  I/O  manager  [15].   It 
communicates  with the  I/O  Manager  by making  use  of  I/O 
request  packets  (IRPs).   The  IRPs  are  created  by  the  I/O 
Manager on behalf  of a user-mode application that  wants to 
communicate  with  the  kernel-mode driver.   There  are  three 
ways to get the rootkits into the kernel [15], we will discuss 
each in the next section.

III. GETTING INTO THE KERNEL

The first possible way of getting into the kernel is to use the 
Service Control Manager (SCM).

A. Using The SCM

This is the easiest and most supported way to load a rootkit. 
The  rootkit  is  registered  in  the  SCM database  and  as  such 
allows you to use the SCM to manage your rootkit by allowing 
you to start,  stop, restart,  load,  unload or delete the rootkit. 
You can also specify when you want your rootkit to be loaded 
i.e. on demand, auto (load when computer restarts), boot (load 
by  system  boot  loader),  system  (load  during  kernel 
initialization) or  disabled [17].   Using the SCM to load the 
rootkit is also the most easily detectable by an administrator as 
it leaves a lot of evidence in the registry as well as showing the 
rootkit as a running service on the system.  A rootkit can take 
measures to obfuscate this information during runtime however 
an  offline analysis  by an administrator  will  pick it  up [15]. 
However an average home user will in most cases not be aware 
of such evidence being left behind.  In our implementation we 
do not remove any evidence because we require that certain 
information  remains  in  the  registry  in  order  for  one  of  our 
rootkits  to  meet  its  objective,  we  will  discuss  this  later. 
Another possible way to load a rootkit into the kernel  is to use 
an undocumented function.

B. Using the System Call ZwSetSystemInformation

The ZwSetSystemInformation is an undocumented function 
exported by ntdll.dll.  It is possible to import this function and 
use it to load your rootkit.  The advantage is that you can load 
the rootkit without any traces being visible in the registry.  One 
disadvantage is that the rootkit will  be loaded into pageable 

memory which means the memory manager may write your 
code onto disk.   This  will  cause  a bug check  if  the rootkit 
requires   the  code  that  has  been  paged  to  disk  to  handle 
interrupts,  acquire  spin  locks,  or  hook  system  calls  [15]. 
Another disadvantage of using this approach is that you are not 
able to easily manage your rootkit as in the case of using SCM. 
Lastly this approach does not work in Windows Vista and later 
[15].  Another possible way to load a rootkit into the kernel  is 
to inject code into the kernel.

C. Injecting Code into the Kernel

Injecting code into the kernel  can be done by modifying 
driver code paged to disk or by leveraging an exploit in the 
kernel [15].  Leveraging an exploit in the kernel can either be 
done by finding a vulnerability  in  the  kernel  itself  or  other 
kernel mode drivers.  Both techniques have the advantage that 
the rootkit can be loaded without any traces being visible in the 
registry.   The disadvantages are that you will not be able to 
easily manage the rootkit and the vulnerability you relying on 
could be patched.  The next section will discuss what method 
we chose to install our rootkits.

D. Chosen Method

Our implementation which is targeted at the average home 
user  our  rootkits  make  programmatic  use  of  the  Service 
Control  Manager.   We also gave  the service the misleading 
description of "SDDL subsystem for Windows USB Resource 
– Microsoft(C)" this coupled with our driver name msusb.sys 
would be in our opinion enough to mislead an average home 
user should they (although very unlikely) discover our rootkit. 
It  is  also important  to  decide  where  you  going to  store  the 
actual rootkit file.  Although the file can be stored anywhere it 
should be stored in %windir%\system32\Drivers  directory in 
order reduce possible suspicion as this is the directory where 
the majority of driver files are stored. 

Once you have decided on what method you will use to get 
your rootkit into the kernel the next step is to decide how your 
rootkit will be installed and executed.

IV. INSTALLING THE ROOTKIT

We packaged our rootkits as an installer for a popular first 
person shooter game.  The installation displays a fake installer 
window which remains  open while the installation is taking 
place.  The installation consists of using the SCM to load the 
rootkit, start it and set it up to be loaded by the system boot 
loader.  It also performs other activities which we will discuss 
later.   Once  completed  we display a message  informing the 
user that the installation failed due to missing files as well as 
displaying a URL to any site of our choosing.  

It should be noted that our chosen method of installation is 
the easiest as it does not need any specific exploit in order to be 
installed and relies solely on social engineering.  It also relies 
on the fact that since the target is an average home user he/she 
will in most cases not be able notice any of the evidence left 
behind by our installation.  This means that the user has to rely 
solely  on  the  security  software  he/she  is  running  on  their 
system.  This is the first problem to which we will  refer to later 
on  in  this  paper.   The  next  section  will  describe  how  we 
manipulate the kernel to perform what we need.



V. MANIPULATING THE KERNEL

Once  in  the  kernel  the  rootkit  can  do  any  one  of  the 
following: hook call tables such as the SSDT and the IDT to 
hijack the kernel's control flow, modify legitimate code to force 
a call to rootkit code or use DKOM.  The rootkits we will be 
discussing perform system call hooking and some DKOM.  In 
our  implementation  we  hook  the  ZwSetValueKey  and 
ZwQuerySystemInformation system routines.  We will start by 
looking at what is  needed before we can perform the actual 
hooking.

A. Laying the Foundation for Hooking

Hooking is performed by firstly importing the routines you 
want to hook from existing system modules.   The import  is 
done during compile time by specifying an exact prototype of 
the  routine  you  want  to  import  and  using  the  keyword 
NTSYSAPI to tell the compiler that it should not compile your 
routine definition but should instead import the routine from an 
existing system module.  We also create routines with different 
names but with the same routine signatures as the routines we 
are hooking.  We then provide the implementation for the new 
routines.  Now that  we  are  able  to  get  the  addresses  of  the 
routines we want to hook and the ones we want to replace them 
with the next step is to perform the actual hooking.

B. Hooking the SSDT

The first step to hooking the SSDT is to disable the write 
protection enforced on the SSDT.  This can be done easily by 
clearing the 17th bit (WP) of the processor's  CR0 register  in 
order to allow the CPU and hence the kernel  mode code to 
write to read only memory.  In order to perform the hooking 
we need the address of the SSDT, this address is exported by 
ntoskrnl.exe  as  the  symbol  KeDescriptorTable.   The 
KeDescriptorTable consists of four entries of which one is the 
address of the SSDT.  We then locate the index in the SSDT 
that contains the address of the routine that we want to hook 
and swap the new routine address into the SSDT at that index. 
The  swap  is  performed  by  making  use  of  the  routine 
InterlockedExchange  which  performs  an  atomic  transaction. 
An atomic transaction is necessary because the SSDT is shared 
across several processors and hence we need exclusive access 
to it.  Once we swap the entries we re-enable write protection.  

We have now demonstrated how easy it is to hook a routine 
in  the  SSDT,  the  next  section  will  describe  how  we  use 
hooking in one of our rootkits to cause the OS to generate an 
error or a bug check at every boot.

VI. SABOTAGE

As mentioned our rootkits are setup to be loaded by the 
system boot loader, this ensures that every time the computer 
reboots our rootkit will be loaded by the system boot loader. 
Our Sabotager rootkit, as we have named it, causes the OS to 
generate  an error  or  a  bug check  which is  more commonly 
known  as  a  blue  screen  of  death  every  time  the  computer 
reboots.  This is accomplished by hooking the ZwSetValueKey 
routine which is used to  replace or create a value entry for a 
key in the registry[18][15].  Once the routine is hooked we do 
nothing and we do not call the original ZwSetValueKey and as 
such the OS cannot set any value in the registry, this causes the 
OS to generate an error or a bug check during startup.  The OS 

however  does  have  measures  in  place  to  deal  with  newly 
installed drivers that could be causing problems during boot up. 
We will not be discussing measures such as re-installing the 
OS or backing up the OS from a stored image as this is usually 
a last resort that a user would take to restoring their system 
because by doing so they would in most cases loose all their 
current personal data and / or programs.

A. Disabling Boot from Last Known Configuration

The one measure the OS has is that it allows you to boot 
into the last known configuration by pressing F8 during boot 
up.  The last known configuration boot option makes use of the 
last control set that was used to successfully boot the OS.  A 
control set contains system configuration information such as 
device  drivers  and  services  that  were  used  to  boot  the  OS. 
Control  sets  are  stored  under  the  SYSTEM  key  in  the 
HKEY_LOCAL_MACHINE  subtree  [19].   There  could  be 
several control sets in the registry depending on how often the 
user makes changes to the services and / or device drivers on 
their computer.  

The OS stores the number of the control set that was last 
used to successfully boot the OS, this value is stored in the 
registry  value  called  LastKnownGood  in  subkey  SELECT 
under  the SYSTEM key in the HKEY_LOCAL_MACHINE 
subtree in the registry.  Therefore if there is a problem during 
boot  up  and  the  user  chooses  to  use  the  last  known 
configuration then the OS will use the number of the control 
set stored in LastKnownGood to boot up the system.

In order to counter this our rootkit simply overwrites the 
value  stored  in  LastKnownGood  with an arbitrary value  for 
which no control set exists.  Writing to the registry is achieved 
by  making  use  of  ZwOpenKey  and ZwSetValueKey.   This 
causes the last known configuration boot option to fail.

B. Disabling Safe Mode

The OS also allows the user  to  boot  into safe  mode by 
pressing F8 during boot up.  Safe mode allows a user to trouble 
shoot  problems  that  he/she  may  be  having.   Safe  mode 
according  to  [20]  only  starts  the  basic  files  and  drivers 
necessary to run Windows.  However our rootkit still loaded 
because we set it up to be loaded by the Windows boot loader. 
The  Windows  boot  loader  loads  all  the  drivers  that  are 
classified as belonging to the boot class category in the registry 
[15].  This is the reason why we left evidence of our rootkit 
installation in the registry i.e. in order for the boot loader to 
load our rootkit.  The important thing to take note of is that our 
rootkit is loaded before the Session Manager.    The Session 
Manager is responsible for starting all the processes necessary 
for creating a login session for the user [15].  As such we can 
conclude that the login session cannot be created because we 
are blocking it from setting any values in the registry, which is 
something that it requires in order to create the login session. 
The other load options namely demand, auto and system do not 
work in terms of meeting our needs. 

It  should be noted that by disabling the use of safe mode 
and booting from last known configuration we have prevented 
Windows  XP  32  bit  from  being  able  to  recover  from  our 
Sabotager rootkit.   However  Windows 7 Professional  32 bit 
can still  make use of the Startup Repair feature and System 



Restore.   We  will  discuss  the  Windows  7  Startup  Repair 
feature next.

C. Windows 7 Startup Repair

The startup repair feature was first introduced in Windows 
Vista.   This  feature  attempts  to  automatically  diagnose  and 
repair problems that prevent Windows from booting [21].  It 
also provides access to other features such as System Restore, 
System Image Recovery, Windows Memory Diagnostic Tool, 
Command  Prompt  and  lastly  to  re-install  Windows  [21]. 
Windows 7 32 bit failed to automatically repair Windows in 
the case of our Sabotager Rootkit.  The last option that could 
be used is System Restore.

D. Disabling System Restore

The last  obstacle  in  the way of  our  Sabotager  rootkit  is 
Windows System Restore.  System restore automatically tracks 
changes to a computer at all times and at specific intervals by 
creating  restore  points  that  contain  the  state  of  a  computer 
before  changes occur.   Restore points can also be manually 
created by a user. This allows the user to restore the computer 
to a previous state, by choosing a restore point on a date and 
time prior to when a change was made that may be causing 
problems [22].  This would mean that the OS could restore the 
computer back to a point before the installation of our rootkit. 
In  order  to  counter  this,  the  user  mode  component  of  our 
rootkit deletes all previous restore points on the computer and 
creates a new restore point after it installs the rootkit.  This is 
all  achieved  by  making  use  of  the  routines  provided  by 
SrClient.dll.  The next section will look at the error messages 
that the user will receive when the computer fails to boot.

E. Error Messages

In initial testing a bug check was generated also known as a 
blue screen of death for both Windows XP Professional 32 bit 
and  Windows  7  32  bit  however  recently  with  all  updates 
installed  up  until  the  9th of  April  2011  Windows  XP 
Professional 32 bit now when doing a normal boot displays a 
message stating that lsass.exe had failed with the error message 
“The  requested  Operation  was  unsuccessful”.   The  process 
lsass.exe is the Local Security Author Subsystem created by 
the  Session  Manager  which  plays  an  important  role  in 
performing user authentication during a login [15].  The error 
message  is  misleading  because  there  is  no  problem  with 
lsass.exe.  The following were the bug checks generated during 
testing with all updates installed up until the 9th of April 2011:

Windows  XP  Professional  32  bit  and  Windows  7 
Professional  32  bit  when  booting  into  safe  mode  both 
generated  a bug check  with the title BAD_POOL_CALLER 
with  stop  code  0x000000C2  with  the  first  parameter 
0x00000007.  This indicates that a driver has attempted to free 
memory which was already freed [23].  The only way to find 
out  which driver  is  responsible  would be  to  attach a  kernel 
debugger such as Kd.exe to the kernel or to the crash dump file 
created during the bug check.  

Windows 7 Professional 32 bit when doing a normal boot 
generated a bug check with the title “The video driver failed to 
initialize” with stop code 0x000000B4.  This indicates that the 
problem is a conflict with the parallel port and the video card 
[24].  The advice in [24] is to restart in safe mode and change 

the address of the parallel port to 0378, this however would 
not  resolve the problem.  The next section will  look at  the 
practical  uses  of  our  Sabotager  rootkit  from  an  attacker's 
perspective.

F. Practical Uses

To our knowledge this is the only type of malware which 
aims  specifically  to  make  a  user's  computer  unusable  by 
causing the OS not to boot in this way.  Although this at first 
might  seem  like  it  could  have  very  little  value  from  an 
attacker's perspective let's consider how an attacker could use 
such an electronic weapon to make money. 

The first  example we can look at  is  one where  the user 
takes  a  computer  in  for  a  service  at  a  store  for  example  a 
hardware upgrade, software installation etc.  The technician at 
the store performs the service but also sets up an installer to 
install our rootkit in say one month.  Within one month the user 
would start to run into all the problems that we discussed and it 
would be very likely that the user would bring the computer 
back  to  the  store  where  they  took  it  for  a  service.   The 
technician  at  the  store  could  then  charge  the  consumer  for 
anything for example a video card, a mother board, memory 
modules, data recovery etc.  The same could be performed by a 
store that  sells  computers  with pre-installed software  on the 
computer.  Another use of our rootkit could be that once the 
user  installs  our  rootkit  we  display  and  print  a  message 
informing the user that their computer has been infected and 
making it seem as if the message has been created by the OS. 
The message will instruct the user to download a paid for “fix” 
from some site and warn the user that if they don't the OS will 
become unusable.   

This concludes the discussion of our Sabotager rootkit, the 
next  section  will  discuss  our  second  rootkit  which  disables 
anti-malware programs and logs the keys pressed by the user.

VII. DISABLING ANTI-MALWARE PROGRAMS AND LOGGING 
KEYS 

Our  Evader  rootkit,  as  we have  named it,  logs  the keys 
pressed  by  the  user  and  stores  them  in  a  text  file,  it  also 
disables anti-malware programs running on the computer.  This 
rootkit  is  setup  to  be  loaded  by  the  OS  kernel  during 
initialization.   We will discuss each of these features in turn 
starting with the logging of keys pressed.

A. Logging Keys Pressed

Our  Evader  rootkit  is  implemented  as  a  filter  driver. 
Filtering  is  made  possible  through  Microsoft's  driver  model 
that supports a layered architecture such that it allows several 
drivers to work together in a chain in order to achieve a certain 
goal.  This architecture allows a driver to be injected into the 
driver stack and to leverage functionality that has already been 
implemented [15].   The filter  driver  can manipulate an IRP 
before passing it on to one of its adjacent drivers [15].  Our 
rootkit filters the PS/2 Keyboard in order to intercept all the 
key strokes.  The rootkit works as follows:  

A request for input by the Windows subsystem is sent to 
the keyboard driver prior to any key being pressed, when this 
request  occurs  an  IRP  is  automatically  created  by  the  I/O 
manager and sent down to the keyboard driver to await input 



from  the  keyboard  [15].   Our  rootkit  registers  a  dispatch 
routine for this IRP, this allows us to receive the IRP as it goes 
down  the  driver  stack.   When  the  IRP  passes  through  our 
dispatch routine, on the way to the keyboard driver, we register 
a completion routine for it such that when it completes i.e. gets 
the  keyboard  data  we  will  get  to  access  the  keyboard  data 
contained in it.  

The  one  challenge  faced  in  this  implementation  is  that 
when handling IRPs specifically the completion of IRPs the 
completion  routine  code  usually  executes  at  the  Interrupt 
Request Level (IRQL) of DISPATCH_LEVEL and in order to 
do things like write files to disk, which we require to do, the 
IRQL must be PASSIVE_LEVEL[15].  User mode programs 
and  threads  run  at  PASSIVE_LEVEL  [25].   In  order  to 
overcome this as shown in [15] we can allocate a  buffer  in 
memory that can be used to store the keyboard data captured 
and  we  create  a  thread  that  executes  at  PASSIVE_LEVEL. 
The  completion  routine  executing  at  DISPATCH_LEVEL 
stores the keys being logged into the buffer.  The thread that 
executes at PASSIVE_LEVEL reads the contents of the buffer 
and writes them to disk.  Access to the buffer is synchronised 
by making use of a mutex.  It  should be noted that all keys 
pressed will be logged regardless of what security measures a 
user has taken for example using HTTPS on a website.

This concludes our discussion on the key logging function 
of  our rootkit,  the next section will  discuss  how we disable 
anti-malware programs.

B. Disabling Anti-malware Programs

The first step to disable anti-malware programs is to hook 
the  ZwQuerySystemInformation  routine  as  described  earlier, 
We then call the original ZwQuerySystemInformation routine 
in order to filter the results of that call.  We then check the type 
of information that we are receiving in order to ensure that it is 
process information that we are receiving.  If it is we retrieve 
the  system  process  information  structure.   This  structure 
however  has  been  obfuscated  and  there  is  no  official 
documentation  detailing  all  of  its  attributes,  specifically  the 
ones that we are interested in such as the process name and 
process ID.  However by looking at sources such as [15] we 
can  get  the  undocumented  versions  of  such  structures.   It 
should be noted that such undocumented structure definitions 
could differ across different versions of Windows [15].

We then iterate through all the system process information 
structures, where each structure represents a current executing 
process on the computer.  We then compare each process name 
against a list of anti-malware program process names that we 
maintain.   We  terminate  the  process  if  it  has  a  name  that 
matches an anti-malware process name in our list.  Once again 
due  to  the  fact  that  we  are  executing  at  an  IRQL  of 
DISPATCH_LEVEL  we  are  not  allowed  to  terminate  the 
process.  We overcome this limitation once again by sharing a 
memory  location  between  the  code  executing  at 
DISPATCH_LEVEL  and  a  thread  executing  at 
PASSIVE_LEVEL.  The process ID is stored in this memory 
location by the code executing at DISPATCH_LEVEL.  The 
thread executing at PASSIVE_LEVEL retrieves the process ID 
and terminates the process.

In  our  testing,  we  have  successfully  terminated  the 
following  anti-malware  programs:  Avira  AntiVir  Personal 

(10.0.0.611),  AVG  Internet  Security  2011  (10.0.1204), 
BitDefender  Total  Security  2011  (14.0.28.351),  F-Secure 
Internet Security 2011(10.51 build 106), avast! Free Antivirus 
(6.0.1000) and Microsoft Security Essentials (2.0.657.0).  All 
anti-malware programs were executing on 32 bit Windows XP 
Professional  with  all  updates  installed  up  until  the  11th  of 
March 2011.  Avira was the only anti-malware program that 
detected  our  Evader  Rootkit  by  making  use  of  a  generic 
detection routine. However when we changed the extension of 
our  rootkit  from  .sys  to  something  else  Avira  did  not 
automatically detect our rootkit.  This allowed us to install and 
execute the rootkit.  The next section will look at the practical 
uses of our Evader rootkit from an attacker's perspective.

C. Practical Uses

Our Evader rootkit could allow an attacker to disable the 
anti-malware program installed on a user's computer and install 
a rogue anti-malware program that looks just like the original 
anti-malware  program  that  just  got  disabled.   It  could  then 
deploy any other malware and take over the computer, the user 
would be none the wiser as he/she would still think they were 
protected.   Regardless  of  whether  or  not  the  anti-malware 
program is disabled, the rootkit will still be able to collect user 
information  through  the  key  logger.   This  concludes  the 
discussion of our rootkits.  The next section will discuss the 
vulnerabilities that we have identified by looking at how our 
rootkits have been implemented.

VIII. VULNERABILITIES

Through  the  implementation  of  our  rootkits  we  have 
identified the following categories of vulnerabilities the kernel, 
sharing memory, the registry, the Windows boot loader, system 
messages and the user.  We will discuss each in turn.

A. The Kernel

The first vulnerability is the fact that we can easily clear the 
17th bit (WP) of the processor's CR0 register allowing the CPU 
and hence our rootkits that run in kernel mode to write to linear 
read  only  memory  [26][15].   The  WP  flag's  purpose  is  to 
protect read only user-mode memory from being modified by 
kernel-mode threads.  It  should also be noted that user mode 
threads cannot modify read only memory regardless of whether 
or not the WP flag is set [26].  The WP flag is also used for 
implementing  the  copy-on-write  strategy  used  by  operating 
systems such as Linux [26][27]. 

The  other  vulnerability  is  that  we  can  easily  hook  the 
routines in the SSDT once write protection is disabled.  Lastly 
all  kernel-mode code is  considered  to  be trusted by the  OS 
kernel allowing our code to do whatever the OS can do since 
they execute at the same privilege level [15][28].

B. Sharing Memory

The vulnerability in this section deals with the sharing of a 
memory  buffer  between  two  threads,  where  one  thread  is 
executing  at  PASSIVE_LEVEL  and  the  other  at 
DISPATCH_LEVEL.  Specifically the allowance of a thread 
with a lower privilege level to read memory locations written 
to by a higher privilege level thread.  This vulnerability is what 
allows us to log our keys to disk and to terminate the anti-
malware programs.  



C. The Registry

In kernel mode it is very easy to modify the registry be it 
adding  new keys  or  modifying  existing keys.   It  should be 
noted  that  the  registry  is  Window's  central  hierarchical 
database that it uses to store information that it uses continually 
during  operation  such  as  the  profiles  for  each  user,  the 
applications installed on the computer  and the ports that  are 
being used [29].   Our rootkit simply blocked write access to 
the registry which is what caused the OS to not startup.  We 
also used the registry to disable the last know configuration 
boot up option.  It  should be noted that our rootkit could do 
several  other  things  such  as  disabling  user  accounts,  set  up 
programs  to  automatically  start,  change  several  security 
settings etc.   Several  malware  uses the registry as an attack 
vector for example the recent Win32/Afcore family of trojans 
also known as Coreflood makes use of the registry in order to 
allow itself to execute when Windows Explorer runs and when 
Internet  Explorer  is  launched [30].   Other examples of such 
malware are Vundo [31] and PWS:Win32/Zbot [32]. 

D. Windows Boot Loader

As discussed our Sabotager rootkit was setup to be loaded 
by the Windows boot loader by doing so our rootkit will be 
loaded even if booting into safe mode.  The vulnerability in this 
case is more relevant to Windows XP 32 bit because once safe 
mode is disabled the user will have no “built in” features to 
assist him/her.  

E. System Messages

This section looks at  the system messages displayed  and 
not displayed during the execution of our rootkits.  The first 
thing  worth  noticing  is  that  we  were  able  to  delete  all  the 
restore  points  on  the  computer  without  a  single  warning  or 
confirmation message being displayed to the user.   We also 
noticed  that  after  installing  updates  on  Windows XP 32 bit 
Professional  that  the  kernel  was  outputting  debugging 
information which we saw using debug view (dbgview.exe), 
the message  displayed  was:   “A driver  is  mapping physical 
memory 0001F000->0001FFFF that it does not own.  This can 
cause internal CPU corruption.  A checked build will stop in 
the kernel debugger so this problem can be fully debugged.” 

This  message  is  the  result  of  our  rootkit  hooking 
ZwSetValueKey.   The user should be made aware of such a 
problem  by  means  of  a  pop  up  warning  the  user  that  the 
program just installed could be performing malicious activities. 
This could then help the user in establishing what caused the 
problem. 

Lastly all the bug checks generated and messages displayed 
as  mentioned  are  misleading  and  do  not  help  the  user   to 
resolve  the  problem.   Furthermore  some  of  the  solutions 
proposed to resolve the bug checks would be very difficult for 
an average home user to perform.

F. The User

This section addresses  the last category of vulnerabilities 
namely the user of the computer.  Firstly the installation of our 
rootkit is only possible if the user executes our installer which 
is  why  we  used  social  engineering  to  trick  the  user  into 
thinking he/she is executing a file that will install a well known 
game.  It should be noted that we could easily make it seem 

like the installer is for some other type of software.  Secondly 
the user does not posses adequate knowledge or experience to 
determine  which  drivers/services  should  or  should  not  be 
running on a computer.   This is  the reason why we do not 
attempt to hide the evidence of our rootkits existence.

The last vulnerability is that the average home user relies 
entirely on their anti-malware software protecting them and as 
such is given a false sense of security.   This false sense of 
security contributes to a user executing our installer because 
their  anti-malware  program  indicated  that  our  installer  and 
rootkits were not malicious.  In addition to our tests where we 
disabled  the  anti-malware  programs  we  also  scanned  our 
rootkits using www.virustotal.com on the 17th of April 2011.  A 
total of 42 anti-malware programs were used namely AhnLab-
V3, AntiVir, Antiy-AVL, Avast, Avast5, AVG, BitDefender, 
CAT-QuickHeal,  ClamAV,  Commtouch,  Comodo,  DrWeb, 
Emsisoft, eSafe, eTrust-Vet, F-Prot, F-Secure, Fortinet, Gdata, 
Ikarus, Jiangmin, K7AntiVirus, Kaspersky, McAfee, McAfee-
GW-Edition,  Microsoft,  NOD32,  Norman,  nProtect,  Panda, 
PCTools,  Prevx  3.0,  Rising,  Sophos,  SUPERAntiSpyware, 
Symantec,  TheHacker,  TrendMicro,  TrendMicro-HouseCall, 
VIPRE, ViRobot and VirusBuster.  

All anti-malware programs failed to detect our Sabotager 
rootkit.   Only Avira  as  in  our  tests  was  able  to  detect  our 
Evader  rootkit,  all  the  other  anti-malware  programs  were 
unable to do so.  This serves to demonstrate the dangers of a 
false  negative.   This  concludes our discussion regarding the 
vulnerabilities we have identified, the next section will look at 
how  some  of  these  vulnerabilities  have  been  addressed  in 
versions of Windows Vista 64 bit and later.

IX. VULNERABILITIES ADDRESSED IN 64 BIT WINDOWS

As mentioned at the start  of our paper our rootkits have 
been  written  for  32  bit  versions  of  Windows.  Some of  the 
vulnerabilities  identified  in  the  previous  section  have  been 
addressed in versions of Windows Vista 64 bit and later.  The 
64 bit version of Windows Vista and later differs from its 32 
bit counterparts as follows [33]:

• 64-bit  versions  require  that  all  device  drivers  be 
digitally signed by the developer.  

• 64-bit  versions  of  Windows  provide  Kernel  Patch 
Protection  also  known  as  PatchGuard  which  helps 
prevent a malicious program from doing the following 
[34]:   Modifying  system  service  tables  such  as  the 
SSDT, allocating memory and using it  as the kernel 
and patching any part of the kernel (AMD64 only).

Although the changes greatly improve the security of the 64 
bit versions of the OS, as we will discuss in the next section, it 
is still possible to bypass these security improvements.

A. Bypassing Driver Signing and Kernel Patch Protection

To get  around the fact  that  drivers  must be signed what 
rootkit developers could do, if they had the money, is start a 
front  company  and  purchase  a  signing  certificate  (software 
publishing certificate) and then use it to sign their rootkits.  An 
alternative method would be to find a vulnerability in a signed 
driver  and  exploit  that  vulnerability  in  order  to  load  their 
unsigned rootkits [15].   

http://www.virustotal.com/


The first problem with PatchGuard is that it still executes in 
kernel-mode where the rootkit executes.  Although Microsoft 
have  used  anti-debugging,  anti-detection  and  obfuscation 
techniques to make it very difficult for anyone to locate and 
disable  PatchGuard,  it  is  still  possible  for  a  rootkit  to 
manipulate PatchGuard.   There are technical  papers [35][36]
[37] that have already demonstrated how to disable or co-exist 
with  PatchGuard,  although  these  are  for  older  versions  of 
PatchGuard  it  serves  to  demonstrate  that  it  is  possible  to 
disable PatchGuard.  It should be noted that when anti-malware 
programs and malware run with the same privilege level trying 
to counteract each other, that it is in most case a losing battle 
for  anti-malware  programs  as  new  vulnerabilities  always 
emerge that the malware can exploit [12][13][38].  The next 
section will look at the architecture that we believe future anti-
malware programs should be based on in order to deal with the 
vulnerabilities we have identified.

X. ADDRESSING THE VULNERABILITIES

In figure 1 we show the current architecture employed by 
most commercial anti-malware products.  The important thing 
to take note of is the fact that components of the anti-malware 
program  run  in  both  user  mode  and  kernel  mode.   Anti-
malware  drivers  that  run  with the same privilege  level  as  a 
malware's  kernel  mode  driver  can  be  compromised.   We 
propose that all future malware architectures should be based 
on  the  architecture  presented  in  figure  2  below.   This 
architecture is very similar to current ongoing research in [11]
[13][10][38]  that  propose  the  use  of  hypervisors  and 
virtualization  techniques  to  deal  with  rootkits.   Such  an 
architecture  would  significantly  reduce  the  chance  that 
malware  would  be  able  to  disable  or  compromise  the  anti-
malware program because the anti-malware program would be, 
at  all  times,  executing  at  a  higher  privilege  level  than  the 
malware.  We also propose using an authorisation mechanism, 
indicated  on  figure  2  by  a  lock  icon,  to  prevent 
PASSIVE_LEVEL threads from reading data from a memory 
location  that  has  been  written  to  by a  DISPATCH_LEVEL 
thread.  

Lastly  anti-malware  program  developers  need  to  start 
taking some responsibility in assisting and educating the user 
when it comes to malware threats including social engineering 
attacks.   This  is  indicated  in  figure  2  as  the  Anti-malware 
Program Advisor component.  This component should provide 
the  user  with  up  to  date  information  regarding  social 
engineering attacks as well as a database where a user could 
refer to for help when in a situation where they are unsure of 
what  to  do.   Additionally  it  should  provide  users  with 
interactive,  clear  and  easy  to  understand  messages  when  a 
threat  is  detected  in  order  to  better  assist  the  user.   Such  a 
component  could  significantly  reduce  the  chances  of 
preventing the malware from being installed.  

Figure 1. Current anti-malware architecture

Figure 2. Future anti-malware architecture

XI. CONCLUSION AND FUTURE WORK

This  paper  has  demonstrated  the  steps  taken  in  order  to 
implement  two  rootkits  that  could  collectively  disable  anti-
malware programs, log keys and prevent the OS from booting. 
The  steps  demonstrated  what  vulnerabilities  the  rootkits 
exploited namely the kernel, sharing memory, the registry, the 
Windows  boot  loader,  system  messages  and  the  user.   The 
measures currently used to address the identified vulnerabilities 
were  discussed  and weaknesses  identified.   An architectural 
model  based  on  current  ongoing  research  was  proposed  for 
future anti-malware programs.

We  have  shown  that  current  anti-malware  program 
architectures have several weaknesses which can be exploited 
by rootkits when executing at the same privilege level as the 
OS.  This paper has also demonstrated that  by developing a 
rootkit or any other type of malware a researcher will be able to 
better understand how they work and therefore will be able to 
counter the techniques used by them and by doing so prevent 
the malware from causing any damage.

The use of hypervisors to prevent malware is nothing new, 
however  we  believe  that  more  focus  should  be  given  to 
assisting  the  user  in  making  the  correct  decisions,  this  is 
especially true for a home users who do not have policies in 
place to assist them.  Future work will consist of implementing 
the current proposed architecture, extending the architecture as 
we  identify  vulnerabilities,  adding  to  our  rootkits  and 
developing additional  malware  in  order  to  better  understand 
how they work. 
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