
Implementing Rootkits to Address Operating System
Vulnerabilities

Manuel Corregedor and Sebastiaan Von Solms
Academy of Computer Science and Software Engineering, University of Johannesburg

Johannesburg, South Africa
{mrcorregedor, basievs}@uj.ac.za

Abstract—Statistics show that although malware detection
techniques are detecting and preventing malware, they do not
guarantee a 100% detection and / or prevention of malware.
This is especially the case when it comes to rootkits that can
manipulate the operating system such that it can distribute other
malware, hide existing malware, steal information, hide itself,
disable anti-malware software etc all without the knowledge of
the user. This paper will demonstrate the steps required in order
to create two rootkits. We will demonstrate that by
implementing rootkits or any other type of malware a researcher
will be able to better understand the techniques and
vulnerabilities used by an attacker. Such information could then
be useful when implementing anti-malware techniques.

Keywords: Rootkits; vulnerabilities; malware; security

I. INTRODUCTION

Anyone who uses a computer for work or recreational
purposes has come across one or all of the following problems
directly or indirectly (knowingly or not): viruses, worms,
trojans, rootkits and botnets. This is especially the case if the
computer is connected to the Internet. The current commercial
products used by home users to detect and prevent malware are
either signature based or heuristic based [1][2][3].

The statistics in [4] show that although malware detection
techniques are detecting and preventing malware, they do not
guarantee a 100% detection and / or prevention of malware.
The reason for not being able to achieve a 100% detection and /
or prevention of malware is because malware authors make use
of sophisticated hiding techniques in order to prevent malware
from being detected by means of signature based techniques.
Such techniques are either entirely or partially based on code
obfuscation [5][2][6]. This has resulted in the emergence of
malware known as polymorphic and metamorphic malware.
Metamorphic malware makes use of code obfuscation in order
to change its code structure in such a way that very little bytes
remain that can be used as a signature [7][8]. Polymorphic
malware encrypts its payload using different keys each time to
make it undetectable. The polymorphic malware then makes
use of a decryptor to decrypt its malicious payload in order to
execute it. Polymorphic malware however can be identified by
the signature of its decryptor [7][8] which is why it makes use
of metamorphic decryptors to avoid being detected.
Metamorphic and polymorphic malware poses serious
challenges for anti-malware software specifically signature
based techniques, however rootkits are a more serious malware
threat.

A rootkit is a malicious program or set of programs that
tries to hide its existence on an infected computer by attacking
the Operating System (OS) by using one or a combination of
the following: modifying program binaries, hooking call tables
such as the System Service Descriptor Table (SSDT) and the
Interrupt Descriptor Table (IDT) to hijack the kernel's control
flow, modifying legitimate code to force a call to rootkit code
or by using DKOM (Direct Kernel Object Manipulation) [9]
[10][11][12][13]. Rootkits are designed to fundamentally
subvert the OS kernel and are capable of obtaining and
maintaining unrestricted control and access within the
compromised system without even being detected by anti-
malware software [14]. Rootkits can also hide other malicious
software or activities such as open network connections,
running processes and files on disk [10][11][12]. Long life
time rootkits are most likely to attempt to hide [11].

This paper will demonstrate the steps required in order to
implement two rootkits. The first rootkit can sabotage a
Windows OS by causing it to blue screen or to generate an
error after each reboot. The second rootkit can disable anti-
malware programs and log the keys pressed by the user. The
target OS environment is Windows XP Professional 32 bit and
Windows 7 Professional 32-bit, we will use OS to refer to these
two environments. The home user is the target of our rootkits.
The rationale for this paper is that in order to prevent attacks
from rootkits a researcher must first understand how rootkits
work and what vulnerabilities they expose. Once this is done
counter measures can be identified for the vulnerabilities. To
our knowledge no other papers exist that cover how rootkits are
implemented. We hope this paper will assist other security
researchers in understanding how rootkits work and what
vulnerabilities they exploit. Such information could then be
useful when implementing anti-rootkit techniques.

The remainder of this paper will be structured as follows: in
section 2 we will briefly discuss the tools required to
implement rootkits, sections 3, 4 and 5 will look at how to get
into the kernel, install the rootkits and manipulate the kernel.
Sections 6 and 7 will discuss our Sabotager and Evader rootkits
and their functions after which in section 8 we will discuss the
vulnerabilities of the OS that our rootkits exploit. Sections 9
and 10 will discuss how the vulnerabilities can be addressed.

II. TOOLS

A list of the tools used to develop the rootkits discussed in
this paper can be found in the table 1. It should be noted that
all tools are freely available from Microsoft. The rootkits we

TABLE I. DEVELOPMENT TOOLS

Name Description

Windows
Driver Kit

Tools and documentation necessary to develop kernel
mode drivers.

Windows
SDK

Tools and documentation necessary to develop user mode
applications.

Sysinternals
Suite

Contains useful tools such as Debug view that allows one
to view output from the kernel and other useful tools [16].

Windows
Debugging
Tools

Contains a set of tools you can use to debug drivers,
applications and services.

implemented are both hybrid rootkits because they consist
of user mode and kernel mode components. This allows us to
have access to all of the kernel's data structures and procedures
while still having access to the user mode Windows API. We
also make use of a user mode component to communicate with
the kernel mode component. The rootkits are implemented as
kernel-mode drivers. A kernel-mode driver is a loadable
kernel-mode module that is intended to act as middleware
between the hardware and the OS's I/O manager [15]. It
communicates with the I/O Manager by making use of I/O
request packets (IRPs). The IRPs are created by the I/O
Manager on behalf of a user-mode application that wants to
communicate with the kernel-mode driver. There are three
ways to get the rootkits into the kernel [15], we will discuss
each in the next section.

III. GETTING INTO THE KERNEL

The first possible way of getting into the kernel is to use the
Service Control Manager (SCM).

A. Using The SCM

This is the easiest and most supported way to load a rootkit.
The rootkit is registered in the SCM database and as such
allows you to use the SCM to manage your rootkit by allowing
you to start, stop, restart, load, unload or delete the rootkit.
You can also specify when you want your rootkit to be loaded
i.e. on demand, auto (load when computer restarts), boot (load
by system boot loader), system (load during kernel
initialization) or disabled [17]. Using the SCM to load the
rootkit is also the most easily detectable by an administrator as
it leaves a lot of evidence in the registry as well as showing the
rootkit as a running service on the system. A rootkit can take
measures to obfuscate this information during runtime however
an offline analysis by an administrator will pick it up [15].
However an average home user will in most cases not be aware
of such evidence being left behind. In our implementation we
do not remove any evidence because we require that certain
information remains in the registry in order for one of our
rootkits to meet its objective, we will discuss this later.
Another possible way to load a rootkit into the kernel is to use
an undocumented function.

B. Using the System Call ZwSetSystemInformation

The ZwSetSystemInformation is an undocumented function
exported by ntdll.dll. It is possible to import this function and
use it to load your rootkit. The advantage is that you can load
the rootkit without any traces being visible in the registry. One
disadvantage is that the rootkit will be loaded into pageable

memory which means the memory manager may write your
code onto disk. This will cause a bug check if the rootkit
requires the code that has been paged to disk to handle
interrupts, acquire spin locks, or hook system calls [15].
Another disadvantage of using this approach is that you are not
able to easily manage your rootkit as in the case of using SCM.
Lastly this approach does not work in Windows Vista and later
[15]. Another possible way to load a rootkit into the kernel is
to inject code into the kernel.

C. Injecting Code into the Kernel

Injecting code into the kernel can be done by modifying
driver code paged to disk or by leveraging an exploit in the
kernel [15]. Leveraging an exploit in the kernel can either be
done by finding a vulnerability in the kernel itself or other
kernel mode drivers. Both techniques have the advantage that
the rootkit can be loaded without any traces being visible in the
registry. The disadvantages are that you will not be able to
easily manage the rootkit and the vulnerability you relying on
could be patched. The next section will discuss what method
we chose to install our rootkits.

D. Chosen Method

Our implementation which is targeted at the average home
user our rootkits make programmatic use of the Service
Control Manager. We also gave the service the misleading
description of "SDDL subsystem for Windows USB Resource
– Microsoft(C)" this coupled with our driver name msusb.sys
would be in our opinion enough to mislead an average home
user should they (although very unlikely) discover our rootkit.
It is also important to decide where you going to store the
actual rootkit file. Although the file can be stored anywhere it
should be stored in %windir%\system32\Drivers directory in
order reduce possible suspicion as this is the directory where
the majority of driver files are stored.

Once you have decided on what method you will use to get
your rootkit into the kernel the next step is to decide how your
rootkit will be installed and executed.

IV. INSTALLING THE ROOTKIT

We packaged our rootkits as an installer for a popular first
person shooter game. The installation displays a fake installer
window which remains open while the installation is taking
place. The installation consists of using the SCM to load the
rootkit, start it and set it up to be loaded by the system boot
loader. It also performs other activities which we will discuss
later. Once completed we display a message informing the
user that the installation failed due to missing files as well as
displaying a URL to any site of our choosing.

It should be noted that our chosen method of installation is
the easiest as it does not need any specific exploit in order to be
installed and relies solely on social engineering. It also relies
on the fact that since the target is an average home user he/she
will in most cases not be able notice any of the evidence left
behind by our installation. This means that the user has to rely
solely on the security software he/she is running on their
system. This is the first problem to which we will refer to later
on in this paper. The next section will describe how we
manipulate the kernel to perform what we need.

V. MANIPULATING THE KERNEL

Once in the kernel the rootkit can do any one of the
following: hook call tables such as the SSDT and the IDT to
hijack the kernel's control flow, modify legitimate code to force
a call to rootkit code or use DKOM. The rootkits we will be
discussing perform system call hooking and some DKOM. In
our implementation we hook the ZwSetValueKey and
ZwQuerySystemInformation system routines. We will start by
looking at what is needed before we can perform the actual
hooking.

A. Laying the Foundation for Hooking

Hooking is performed by firstly importing the routines you
want to hook from existing system modules. The import is
done during compile time by specifying an exact prototype of
the routine you want to import and using the keyword
NTSYSAPI to tell the compiler that it should not compile your
routine definition but should instead import the routine from an
existing system module. We also create routines with different
names but with the same routine signatures as the routines we
are hooking. We then provide the implementation for the new
routines. Now that we are able to get the addresses of the
routines we want to hook and the ones we want to replace them
with the next step is to perform the actual hooking.

B. Hooking the SSDT

The first step to hooking the SSDT is to disable the write
protection enforced on the SSDT. This can be done easily by
clearing the 17th bit (WP) of the processor's CR0 register in
order to allow the CPU and hence the kernel mode code to
write to read only memory. In order to perform the hooking
we need the address of the SSDT, this address is exported by
ntoskrnl.exe as the symbol KeDescriptorTable. The
KeDescriptorTable consists of four entries of which one is the
address of the SSDT. We then locate the index in the SSDT
that contains the address of the routine that we want to hook
and swap the new routine address into the SSDT at that index.
The swap is performed by making use of the routine
InterlockedExchange which performs an atomic transaction.
An atomic transaction is necessary because the SSDT is shared
across several processors and hence we need exclusive access
to it. Once we swap the entries we re-enable write protection.

We have now demonstrated how easy it is to hook a routine
in the SSDT, the next section will describe how we use
hooking in one of our rootkits to cause the OS to generate an
error or a bug check at every boot.

VI. SABOTAGE

As mentioned our rootkits are setup to be loaded by the
system boot loader, this ensures that every time the computer
reboots our rootkit will be loaded by the system boot loader.
Our Sabotager rootkit, as we have named it, causes the OS to
generate an error or a bug check which is more commonly
known as a blue screen of death every time the computer
reboots. This is accomplished by hooking the ZwSetValueKey
routine which is used to replace or create a value entry for a
key in the registry[18][15]. Once the routine is hooked we do
nothing and we do not call the original ZwSetValueKey and as
such the OS cannot set any value in the registry, this causes the
OS to generate an error or a bug check during startup. The OS

however does have measures in place to deal with newly
installed drivers that could be causing problems during boot up.
We will not be discussing measures such as re-installing the
OS or backing up the OS from a stored image as this is usually
a last resort that a user would take to restoring their system
because by doing so they would in most cases loose all their
current personal data and / or programs.

A. Disabling Boot from Last Known Configuration

The one measure the OS has is that it allows you to boot
into the last known configuration by pressing F8 during boot
up. The last known configuration boot option makes use of the
last control set that was used to successfully boot the OS. A
control set contains system configuration information such as
device drivers and services that were used to boot the OS.
Control sets are stored under the SYSTEM key in the
HKEY_LOCAL_MACHINE subtree [19]. There could be
several control sets in the registry depending on how often the
user makes changes to the services and / or device drivers on
their computer.

The OS stores the number of the control set that was last
used to successfully boot the OS, this value is stored in the
registry value called LastKnownGood in subkey SELECT
under the SYSTEM key in the HKEY_LOCAL_MACHINE
subtree in the registry. Therefore if there is a problem during
boot up and the user chooses to use the last known
configuration then the OS will use the number of the control
set stored in LastKnownGood to boot up the system.

In order to counter this our rootkit simply overwrites the
value stored in LastKnownGood with an arbitrary value for
which no control set exists. Writing to the registry is achieved
by making use of ZwOpenKey and ZwSetValueKey. This
causes the last known configuration boot option to fail.

B. Disabling Safe Mode

The OS also allows the user to boot into safe mode by
pressing F8 during boot up. Safe mode allows a user to trouble
shoot problems that he/she may be having. Safe mode
according to [20] only starts the basic files and drivers
necessary to run Windows. However our rootkit still loaded
because we set it up to be loaded by the Windows boot loader.
The Windows boot loader loads all the drivers that are
classified as belonging to the boot class category in the registry
[15]. This is the reason why we left evidence of our rootkit
installation in the registry i.e. in order for the boot loader to
load our rootkit. The important thing to take note of is that our
rootkit is loaded before the Session Manager. The Session
Manager is responsible for starting all the processes necessary
for creating a login session for the user [15]. As such we can
conclude that the login session cannot be created because we
are blocking it from setting any values in the registry, which is
something that it requires in order to create the login session.
The other load options namely demand, auto and system do not
work in terms of meeting our needs.

It should be noted that by disabling the use of safe mode
and booting from last known configuration we have prevented
Windows XP 32 bit from being able to recover from our
Sabotager rootkit. However Windows 7 Professional 32 bit
can still make use of the Startup Repair feature and System

Restore. We will discuss the Windows 7 Startup Repair
feature next.

C. Windows 7 Startup Repair

The startup repair feature was first introduced in Windows
Vista. This feature attempts to automatically diagnose and
repair problems that prevent Windows from booting [21]. It
also provides access to other features such as System Restore,
System Image Recovery, Windows Memory Diagnostic Tool,
Command Prompt and lastly to re-install Windows [21].
Windows 7 32 bit failed to automatically repair Windows in
the case of our Sabotager Rootkit. The last option that could
be used is System Restore.

D. Disabling System Restore

The last obstacle in the way of our Sabotager rootkit is
Windows System Restore. System restore automatically tracks
changes to a computer at all times and at specific intervals by
creating restore points that contain the state of a computer
before changes occur. Restore points can also be manually
created by a user. This allows the user to restore the computer
to a previous state, by choosing a restore point on a date and
time prior to when a change was made that may be causing
problems [22]. This would mean that the OS could restore the
computer back to a point before the installation of our rootkit.
In order to counter this, the user mode component of our
rootkit deletes all previous restore points on the computer and
creates a new restore point after it installs the rootkit. This is
all achieved by making use of the routines provided by
SrClient.dll. The next section will look at the error messages
that the user will receive when the computer fails to boot.

E. Error Messages

In initial testing a bug check was generated also known as a
blue screen of death for both Windows XP Professional 32 bit
and Windows 7 32 bit however recently with all updates
installed up until the 9th of April 2011 Windows XP
Professional 32 bit now when doing a normal boot displays a
message stating that lsass.exe had failed with the error message
“The requested Operation was unsuccessful”. The process
lsass.exe is the Local Security Author Subsystem created by
the Session Manager which plays an important role in
performing user authentication during a login [15]. The error
message is misleading because there is no problem with
lsass.exe. The following were the bug checks generated during
testing with all updates installed up until the 9th of April 2011:

Windows XP Professional 32 bit and Windows 7
Professional 32 bit when booting into safe mode both
generated a bug check with the title BAD_POOL_CALLER
with stop code 0x000000C2 with the first parameter
0x00000007. This indicates that a driver has attempted to free
memory which was already freed [23]. The only way to find
out which driver is responsible would be to attach a kernel
debugger such as Kd.exe to the kernel or to the crash dump file
created during the bug check.

Windows 7 Professional 32 bit when doing a normal boot
generated a bug check with the title “The video driver failed to
initialize” with stop code 0x000000B4. This indicates that the
problem is a conflict with the parallel port and the video card
[24]. The advice in [24] is to restart in safe mode and change

the address of the parallel port to 0378, this however would
not resolve the problem. The next section will look at the
practical uses of our Sabotager rootkit from an attacker's
perspective.

F. Practical Uses

To our knowledge this is the only type of malware which
aims specifically to make a user's computer unusable by
causing the OS not to boot in this way. Although this at first
might seem like it could have very little value from an
attacker's perspective let's consider how an attacker could use
such an electronic weapon to make money.

The first example we can look at is one where the user
takes a computer in for a service at a store for example a
hardware upgrade, software installation etc. The technician at
the store performs the service but also sets up an installer to
install our rootkit in say one month. Within one month the user
would start to run into all the problems that we discussed and it
would be very likely that the user would bring the computer
back to the store where they took it for a service. The
technician at the store could then charge the consumer for
anything for example a video card, a mother board, memory
modules, data recovery etc. The same could be performed by a
store that sells computers with pre-installed software on the
computer. Another use of our rootkit could be that once the
user installs our rootkit we display and print a message
informing the user that their computer has been infected and
making it seem as if the message has been created by the OS.
The message will instruct the user to download a paid for “fix”
from some site and warn the user that if they don't the OS will
become unusable.

This concludes the discussion of our Sabotager rootkit, the
next section will discuss our second rootkit which disables
anti-malware programs and logs the keys pressed by the user.

VII. DISABLING ANTI-MALWARE PROGRAMS AND LOGGING
KEYS

Our Evader rootkit, as we have named it, logs the keys
pressed by the user and stores them in a text file, it also
disables anti-malware programs running on the computer. This
rootkit is setup to be loaded by the OS kernel during
initialization. We will discuss each of these features in turn
starting with the logging of keys pressed.

A. Logging Keys Pressed

Our Evader rootkit is implemented as a filter driver.
Filtering is made possible through Microsoft's driver model
that supports a layered architecture such that it allows several
drivers to work together in a chain in order to achieve a certain
goal. This architecture allows a driver to be injected into the
driver stack and to leverage functionality that has already been
implemented [15]. The filter driver can manipulate an IRP
before passing it on to one of its adjacent drivers [15]. Our
rootkit filters the PS/2 Keyboard in order to intercept all the
key strokes. The rootkit works as follows:

A request for input by the Windows subsystem is sent to
the keyboard driver prior to any key being pressed, when this
request occurs an IRP is automatically created by the I/O
manager and sent down to the keyboard driver to await input

from the keyboard [15]. Our rootkit registers a dispatch
routine for this IRP, this allows us to receive the IRP as it goes
down the driver stack. When the IRP passes through our
dispatch routine, on the way to the keyboard driver, we register
a completion routine for it such that when it completes i.e. gets
the keyboard data we will get to access the keyboard data
contained in it.

The one challenge faced in this implementation is that
when handling IRPs specifically the completion of IRPs the
completion routine code usually executes at the Interrupt
Request Level (IRQL) of DISPATCH_LEVEL and in order to
do things like write files to disk, which we require to do, the
IRQL must be PASSIVE_LEVEL[15]. User mode programs
and threads run at PASSIVE_LEVEL [25]. In order to
overcome this as shown in [15] we can allocate a buffer in
memory that can be used to store the keyboard data captured
and we create a thread that executes at PASSIVE_LEVEL.
The completion routine executing at DISPATCH_LEVEL
stores the keys being logged into the buffer. The thread that
executes at PASSIVE_LEVEL reads the contents of the buffer
and writes them to disk. Access to the buffer is synchronised
by making use of a mutex. It should be noted that all keys
pressed will be logged regardless of what security measures a
user has taken for example using HTTPS on a website.

This concludes our discussion on the key logging function
of our rootkit, the next section will discuss how we disable
anti-malware programs.

B. Disabling Anti-malware Programs

The first step to disable anti-malware programs is to hook
the ZwQuerySystemInformation routine as described earlier,
We then call the original ZwQuerySystemInformation routine
in order to filter the results of that call. We then check the type
of information that we are receiving in order to ensure that it is
process information that we are receiving. If it is we retrieve
the system process information structure. This structure
however has been obfuscated and there is no official
documentation detailing all of its attributes, specifically the
ones that we are interested in such as the process name and
process ID. However by looking at sources such as [15] we
can get the undocumented versions of such structures. It
should be noted that such undocumented structure definitions
could differ across different versions of Windows [15].

We then iterate through all the system process information
structures, where each structure represents a current executing
process on the computer. We then compare each process name
against a list of anti-malware program process names that we
maintain. We terminate the process if it has a name that
matches an anti-malware process name in our list. Once again
due to the fact that we are executing at an IRQL of
DISPATCH_LEVEL we are not allowed to terminate the
process. We overcome this limitation once again by sharing a
memory location between the code executing at
DISPATCH_LEVEL and a thread executing at
PASSIVE_LEVEL. The process ID is stored in this memory
location by the code executing at DISPATCH_LEVEL. The
thread executing at PASSIVE_LEVEL retrieves the process ID
and terminates the process.

In our testing, we have successfully terminated the
following anti-malware programs: Avira AntiVir Personal

(10.0.0.611), AVG Internet Security 2011 (10.0.1204),
BitDefender Total Security 2011 (14.0.28.351), F-Secure
Internet Security 2011(10.51 build 106), avast! Free Antivirus
(6.0.1000) and Microsoft Security Essentials (2.0.657.0). All
anti-malware programs were executing on 32 bit Windows XP
Professional with all updates installed up until the 11th of
March 2011. Avira was the only anti-malware program that
detected our Evader Rootkit by making use of a generic
detection routine. However when we changed the extension of
our rootkit from .sys to something else Avira did not
automatically detect our rootkit. This allowed us to install and
execute the rootkit. The next section will look at the practical
uses of our Evader rootkit from an attacker's perspective.

C. Practical Uses

Our Evader rootkit could allow an attacker to disable the
anti-malware program installed on a user's computer and install
a rogue anti-malware program that looks just like the original
anti-malware program that just got disabled. It could then
deploy any other malware and take over the computer, the user
would be none the wiser as he/she would still think they were
protected. Regardless of whether or not the anti-malware
program is disabled, the rootkit will still be able to collect user
information through the key logger. This concludes the
discussion of our rootkits. The next section will discuss the
vulnerabilities that we have identified by looking at how our
rootkits have been implemented.

VIII. VULNERABILITIES

Through the implementation of our rootkits we have
identified the following categories of vulnerabilities the kernel,
sharing memory, the registry, the Windows boot loader, system
messages and the user. We will discuss each in turn.

A. The Kernel

The first vulnerability is the fact that we can easily clear the
17th bit (WP) of the processor's CR0 register allowing the CPU
and hence our rootkits that run in kernel mode to write to linear
read only memory [26][15]. The WP flag's purpose is to
protect read only user-mode memory from being modified by
kernel-mode threads. It should also be noted that user mode
threads cannot modify read only memory regardless of whether
or not the WP flag is set [26]. The WP flag is also used for
implementing the copy-on-write strategy used by operating
systems such as Linux [26][27].

The other vulnerability is that we can easily hook the
routines in the SSDT once write protection is disabled. Lastly
all kernel-mode code is considered to be trusted by the OS
kernel allowing our code to do whatever the OS can do since
they execute at the same privilege level [15][28].

B. Sharing Memory

The vulnerability in this section deals with the sharing of a
memory buffer between two threads, where one thread is
executing at PASSIVE_LEVEL and the other at
DISPATCH_LEVEL. Specifically the allowance of a thread
with a lower privilege level to read memory locations written
to by a higher privilege level thread. This vulnerability is what
allows us to log our keys to disk and to terminate the anti-
malware programs.

C. The Registry

In kernel mode it is very easy to modify the registry be it
adding new keys or modifying existing keys. It should be
noted that the registry is Window's central hierarchical
database that it uses to store information that it uses continually
during operation such as the profiles for each user, the
applications installed on the computer and the ports that are
being used [29]. Our rootkit simply blocked write access to
the registry which is what caused the OS to not startup. We
also used the registry to disable the last know configuration
boot up option. It should be noted that our rootkit could do
several other things such as disabling user accounts, set up
programs to automatically start, change several security
settings etc. Several malware uses the registry as an attack
vector for example the recent Win32/Afcore family of trojans
also known as Coreflood makes use of the registry in order to
allow itself to execute when Windows Explorer runs and when
Internet Explorer is launched [30]. Other examples of such
malware are Vundo [31] and PWS:Win32/Zbot [32].

D. Windows Boot Loader

As discussed our Sabotager rootkit was setup to be loaded
by the Windows boot loader by doing so our rootkit will be
loaded even if booting into safe mode. The vulnerability in this
case is more relevant to Windows XP 32 bit because once safe
mode is disabled the user will have no “built in” features to
assist him/her.

E. System Messages

This section looks at the system messages displayed and
not displayed during the execution of our rootkits. The first
thing worth noticing is that we were able to delete all the
restore points on the computer without a single warning or
confirmation message being displayed to the user. We also
noticed that after installing updates on Windows XP 32 bit
Professional that the kernel was outputting debugging
information which we saw using debug view (dbgview.exe),
the message displayed was: “A driver is mapping physical
memory 0001F000->0001FFFF that it does not own. This can
cause internal CPU corruption. A checked build will stop in
the kernel debugger so this problem can be fully debugged.”

This message is the result of our rootkit hooking
ZwSetValueKey. The user should be made aware of such a
problem by means of a pop up warning the user that the
program just installed could be performing malicious activities.
This could then help the user in establishing what caused the
problem.

Lastly all the bug checks generated and messages displayed
as mentioned are misleading and do not help the user to
resolve the problem. Furthermore some of the solutions
proposed to resolve the bug checks would be very difficult for
an average home user to perform.

F. The User

This section addresses the last category of vulnerabilities
namely the user of the computer. Firstly the installation of our
rootkit is only possible if the user executes our installer which
is why we used social engineering to trick the user into
thinking he/she is executing a file that will install a well known
game. It should be noted that we could easily make it seem

like the installer is for some other type of software. Secondly
the user does not posses adequate knowledge or experience to
determine which drivers/services should or should not be
running on a computer. This is the reason why we do not
attempt to hide the evidence of our rootkits existence.

The last vulnerability is that the average home user relies
entirely on their anti-malware software protecting them and as
such is given a false sense of security. This false sense of
security contributes to a user executing our installer because
their anti-malware program indicated that our installer and
rootkits were not malicious. In addition to our tests where we
disabled the anti-malware programs we also scanned our
rootkits using www.virustotal.com on the 17th of April 2011. A
total of 42 anti-malware programs were used namely AhnLab-
V3, AntiVir, Antiy-AVL, Avast, Avast5, AVG, BitDefender,
CAT-QuickHeal, ClamAV, Commtouch, Comodo, DrWeb,
Emsisoft, eSafe, eTrust-Vet, F-Prot, F-Secure, Fortinet, Gdata,
Ikarus, Jiangmin, K7AntiVirus, Kaspersky, McAfee, McAfee-
GW-Edition, Microsoft, NOD32, Norman, nProtect, Panda,
PCTools, Prevx 3.0, Rising, Sophos, SUPERAntiSpyware,
Symantec, TheHacker, TrendMicro, TrendMicro-HouseCall,
VIPRE, ViRobot and VirusBuster.

All anti-malware programs failed to detect our Sabotager
rootkit. Only Avira as in our tests was able to detect our
Evader rootkit, all the other anti-malware programs were
unable to do so. This serves to demonstrate the dangers of a
false negative. This concludes our discussion regarding the
vulnerabilities we have identified, the next section will look at
how some of these vulnerabilities have been addressed in
versions of Windows Vista 64 bit and later.

IX. VULNERABILITIES ADDRESSED IN 64 BIT WINDOWS

As mentioned at the start of our paper our rootkits have
been written for 32 bit versions of Windows. Some of the
vulnerabilities identified in the previous section have been
addressed in versions of Windows Vista 64 bit and later. The
64 bit version of Windows Vista and later differs from its 32
bit counterparts as follows [33]:

• 64-bit versions require that all device drivers be
digitally signed by the developer.

• 64-bit versions of Windows provide Kernel Patch
Protection also known as PatchGuard which helps
prevent a malicious program from doing the following
[34]: Modifying system service tables such as the
SSDT, allocating memory and using it as the kernel
and patching any part of the kernel (AMD64 only).

Although the changes greatly improve the security of the 64
bit versions of the OS, as we will discuss in the next section, it
is still possible to bypass these security improvements.

A. Bypassing Driver Signing and Kernel Patch Protection

To get around the fact that drivers must be signed what
rootkit developers could do, if they had the money, is start a
front company and purchase a signing certificate (software
publishing certificate) and then use it to sign their rootkits. An
alternative method would be to find a vulnerability in a signed
driver and exploit that vulnerability in order to load their
unsigned rootkits [15].

http://www.virustotal.com/

The first problem with PatchGuard is that it still executes in
kernel-mode where the rootkit executes. Although Microsoft
have used anti-debugging, anti-detection and obfuscation
techniques to make it very difficult for anyone to locate and
disable PatchGuard, it is still possible for a rootkit to
manipulate PatchGuard. There are technical papers [35][36]
[37] that have already demonstrated how to disable or co-exist
with PatchGuard, although these are for older versions of
PatchGuard it serves to demonstrate that it is possible to
disable PatchGuard. It should be noted that when anti-malware
programs and malware run with the same privilege level trying
to counteract each other, that it is in most case a losing battle
for anti-malware programs as new vulnerabilities always
emerge that the malware can exploit [12][13][38]. The next
section will look at the architecture that we believe future anti-
malware programs should be based on in order to deal with the
vulnerabilities we have identified.

X. ADDRESSING THE VULNERABILITIES

In figure 1 we show the current architecture employed by
most commercial anti-malware products. The important thing
to take note of is the fact that components of the anti-malware
program run in both user mode and kernel mode. Anti-
malware drivers that run with the same privilege level as a
malware's kernel mode driver can be compromised. We
propose that all future malware architectures should be based
on the architecture presented in figure 2 below. This
architecture is very similar to current ongoing research in [11]
[13][10][38] that propose the use of hypervisors and
virtualization techniques to deal with rootkits. Such an
architecture would significantly reduce the chance that
malware would be able to disable or compromise the anti-
malware program because the anti-malware program would be,
at all times, executing at a higher privilege level than the
malware. We also propose using an authorisation mechanism,
indicated on figure 2 by a lock icon, to prevent
PASSIVE_LEVEL threads from reading data from a memory
location that has been written to by a DISPATCH_LEVEL
thread.

Lastly anti-malware program developers need to start
taking some responsibility in assisting and educating the user
when it comes to malware threats including social engineering
attacks. This is indicated in figure 2 as the Anti-malware
Program Advisor component. This component should provide
the user with up to date information regarding social
engineering attacks as well as a database where a user could
refer to for help when in a situation where they are unsure of
what to do. Additionally it should provide users with
interactive, clear and easy to understand messages when a
threat is detected in order to better assist the user. Such a
component could significantly reduce the chances of
preventing the malware from being installed.

Figure 1. Current anti-malware architecture

Figure 2. Future anti-malware architecture

XI. CONCLUSION AND FUTURE WORK

This paper has demonstrated the steps taken in order to
implement two rootkits that could collectively disable anti-
malware programs, log keys and prevent the OS from booting.
The steps demonstrated what vulnerabilities the rootkits
exploited namely the kernel, sharing memory, the registry, the
Windows boot loader, system messages and the user. The
measures currently used to address the identified vulnerabilities
were discussed and weaknesses identified. An architectural
model based on current ongoing research was proposed for
future anti-malware programs.

We have shown that current anti-malware program
architectures have several weaknesses which can be exploited
by rootkits when executing at the same privilege level as the
OS. This paper has also demonstrated that by developing a
rootkit or any other type of malware a researcher will be able to
better understand how they work and therefore will be able to
counter the techniques used by them and by doing so prevent
the malware from causing any damage.

The use of hypervisors to prevent malware is nothing new,
however we believe that more focus should be given to
assisting the user in making the correct decisions, this is
especially true for a home users who do not have policies in
place to assist them. Future work will consist of implementing
the current proposed architecture, extending the architecture as
we identify vulnerabilities, adding to our rootkits and
developing additional malware in order to better understand
how they work.

REFERENCES

[1] Yin, H., Song, D.: Panorama: capturing system-wide information flow
for malware detection and analysis. In Proceedings of the 14th ACM
conference on Computer and communications security, pp.116--127.
ACM, New York, October 2007.

[2] Zhou, Y., Inge, M.: Malware detection using adaptive data compression.
In Proceedings of the 1st ACM workshop on Workshop on AISec, pp.
53--60. ACM, New York, 2008.

[3] Zolkipli, M.F., Jantan, A.: A Framework for Malware Detection Using
Combination Technique and Signature Generation. In Computer
Research and Development, 2010 Second International Conference, pp.
196--199. IEEE, New York, June 2010.

[4] Volume 9 of the Microsoft Security Intelligence Report (SIR).
http://www.microsoft.com/security/sir/default.aspx, 12 November 2010.

[5] Dalla Preda, M., Christodorescu, M., Jha, S., Debray, S.: A semantics-
based approach to malware detection. In ACM Transactions on
Programming Languages and Systems, ACM, New York, August 2008.

[6] Christodorescu, M., Jha, S., Kruegel, C.: Mining specifications of
malicious behavior. In Proceedings of the 1st India software engineering
conference, pp. 4--14. ACM, New York, 2008.

[7] Campo-Giralte, L., Jimenez-Peris, R., Patino-Martinez, M.:
PolyVaccine: Protecting Web Servers against Zero-Day, Polymorphic
and Metamorphic Exploits. In 28th IEEE International Symposium on
Reliable Distributed Systems, 2009. SRDS '09, pp. 91--99. IEEE, New
York, September 2009.

[8] Leder, F., Steinbock, B., Martini, P.: Classification and detection of
metamorphic malware using value set analysis. In 2009 4th International
Conference on Malicious and Unwanted Software (MALWARE), pp.
39--46. IEEE, New York, October 2009.

[9] Sparks, S., Embleton, S., Zou, C.: A Chipset Level Network Backdoor:
Bypassing Host-Based Firewall & IDS. In Proceedings of the 4th
International Symposium on Information, Computer, and
Communications Security, pp. 125 -- 134. ACM, New York, 2009.

[10] Riley, R., Jiang, X., Xu, D.: Multi-Aspect Profiling of Kernel Rootkit
Behavior. In Proceedings of the 4th ACM European conference on
Computer systems, pp. 47--60. ACM, New York, April 2009.

[11] Jones, S., Arpaci-Dusseau, A., Arpaci-Dusseau, R.: VMM-based
Hidden ProcessDetection and Identification using Lycosid. In
Proceedings of the fourth ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, pp. 91--100. ACM, New
York, March 2008.

[12] Vasisht, V., Lee, H.: SHARK: Architectural Support for Autonomic
Protection Against Stealth by Rootkit Exploits. In 41st IEEE/ACM
International Symposium on Microarchitecture, pp. 106--116. IEEE
Computer Society, Washington DC, 2008.

[13] S. Josse.: Rootkit detection from outside the Matrix. In Journal in
Computer Virology Volume 3, Issue 2, pp. 113--123. Springer, 30 June
2007.

[14] Li, J., Wang, Z., Jiang, X., Grace, M., Bahram, S.: Defeating Return-
Oriented Rootkits With "Return-less" Kernels. In Proceedings of the 5th
European conference on Computer systems, pp. 195 -- 208. ACM, New
York, 2010.

[15] Blunden, B.: The Rootkit Arsenal: Escape and Evasion in the Dark
Corners of the System. Wordware Publishing, Inc., Texas, 2009.

[16] Windows Sysinternals. http://technet.microsoft.com/en
us/sysinternals/default, 15 February 2011.

[17] SC.
http://www.microsoft.com/resources/documentation/windows/xp/all/pro
ddocs/en-us/sc.mspx?mfr=true, 11 April 2011.

[18] ZwSetValueKey.
http://www.osronline.com/ddkx/kmarch/k111_5yya.htm, 9 April 2011.

[19] What are Control Sets? What is CurrentControlSet?
http://support.microsoft.com/kb/100010, 9 April 2011.

[20] What is safe mode? http://windows.microsoft.com/en-US/windows-
vista/What-is-safe-mode, 10 April 2011.

[21] Startup, http://windows.microsoft.com/en-
US/windows7/products/features/startup-repair, 10 April 2011.

[22] Understanding System Restore.
http://www.microsoft.com/resources/documentation/windows/xp/all/pro
ddocs/en-us/app_system_restore_hss_understand.mspx?mfr=true, 9
April 2011.

[23] How to Debug "Stop 0xC2" or "Stop 0x000000C2" Error Messages.
http://support.microsoft.com/kb/265879, 11 April 2011.

[24] Err Msg: Stop 0x000000B4 The Video Driver Failed to Initialize.
http://support.microsoft.com/kb/240369, 11 April 2011.

[25] What is IRQL?
http://blogs.msdn.com/b/doronh/archive/2010/02/02/what-is-irql.aspx,
11 April 2011.

[26] Intel 64 and IA-32 Architectures Software Developer's Manual. April
2011.

[27] Hailperin, M. Operating Systems and Middleware: Supporting
Controlled Interaction. Thomson Course Technology, 2007.

[28] TanenBaum, A., Woodhull, A.: Operating Systems Design and
Implementation., Chapter 1. , New Jersey, 2006.

[29] Windows registry information for advanced users.
http://support.microsoft.com/kb/256986, 14 April 2011.

[30] Wong, J., Williams, J.: MSRT April '11: Win32/Afcore.
http://blogs.technet.com/b/mmpc/archive/2011/04/13/msrt-april-11-
win32-afcore.aspx, 13 April 2011.

[31] Wong, J.: Vundo Employs Worm Behavior.
http://blogs.technet.com/b/mmpc/archive/2009/04/22/vundo-employs-
worm-behavior.aspx, 22 April 2009.

[32] Sanico, J.: Got Zbot?
http://blogs.technet.com/b/mmpc/archive/2010/03/11/got-zbot.aspx, 11
March 2010.

[33] A description of the differences between 32-bit versions of Windows
Vista and 64-bit versions of Windows Vista.
http://support.microsoft.com/kb/946765, 5 April 2011.

[34] Patching Policy for x64-Based Systems. http://msdn.microsoft.com/en-
us/windows/hardware/gg487350.aspx, 5 April 2011.

[35] Skywing: Bypassing PatchGuard on Windows x64.
http://www.uninformed.org/?v=3&a=3&t=pdf, December 2005.

[36] Skywing: Subverting PatchGuard Version 2.
http://www.uninformed.org/?v=6&a=1&t=pdf, December 2006.

[37] Skywing: PatchGuard Reloaded: A Brief Analysis of PatchGuard
Version 3. http://www.uninformed.org/?v=8&a=5&t=pdf%20,
September 2007.

[38] Chubachi, Y., Shinagawa, T., Kato, K.: Hyperviosr-based Prevention of
Persistent Rootkits. In Proceedings of the 2010 ACM Symposium on
Applied Computing, pp. 214 -- 220. ACM, New York, June 2010.

	I. Introduction
	II. Tools
	III. Getting into the kernel
	A. Using The SCM
	B. Using the System Call ZwSetSystemInformation
	C. Injecting Code into the Kernel
	D. Chosen Method

	IV. Installing the rootkit
	V. Manipulating the kernel
	A. Laying the Foundation for Hooking
	B. Hooking the SSDT

	VI. Sabotage
	A. Disabling Boot from Last Known Configuration
	B. Disabling Safe Mode
	C. Windows 7 Startup Repair
	D. Disabling System Restore
	E. Error Messages
	F. Practical Uses

	VII. Disabling Anti-malware Programs and Logging Keys
	A. Logging Keys Pressed
	B. Disabling Anti-malware Programs
	C. Practical Uses

	VIII. Vulnerabilities
	A. The Kernel
	B. Sharing Memory
	C. The Registry
	D. Windows Boot Loader
	E. System Messages
	F. The User

	IX. Vulnerabilities Addressed in 64 bit Windows
	A. Bypassing Driver Signing and Kernel Patch Protection

	X. Addressing the Vulnerabilities
	XI. Conclusion and Future Work

