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Abstract—Scareware is a recent type of malicious software 
that may pose financial and privacy-related threats to novice 
users. Traditional countermeasures, such as anti-virus software, 
require regular updates and often lack the capability of detecting 
novel (unseen) instances. This paper presents a scareware 
detection method that is based on the application of machine 
learning algorithms to learn patterns in extracted variable length 
opcode sequences derived from instruction sequences of binary 
files. The patterns are then used to classify software as legitimate 
or scareware but they may also reveal interpretable behavior 
that is unique to either type of software. We have obtained a 
large number of real world scareware applications and designed 
a data set with 550 scareware instances and 250 benign instances. 
The experimental results show that several common data mining 
algorithms are able to generate accurate models from the data 
set. The Random Forest algorithm is shown to outperform the 
other algorithms in the experiment. Essentially, our study shows 
that, even though the differences between scareware and 
legitimate software are subtler than between, say, viruses and 
legitimate software, the same type of machine learning approach 
can be used in both of these dissimilar cases. 
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I.  INTRODUCTION  
This paper addresses the problem of detecting scareware, i.e., 
scam software with different forms of malicious payloads [1], 
and presents a machine learning-based approach for detection 
of this type of software. Many reports have been published in 
the media regarding malicious software (malware) such as 
viruses and worms. Such reports have arguably increased the 
awareness of novice computer users about basic security 
issues. Consequently, users are becoming more conscious 
about the security and privacy of their systems and data. 
Through media, friends, colleagues and security experts, users 
have been advised to install detection software such as anti-
virus software or other protective measures. Success stories 
about the detection and mitigation of virus and worm threats 
have probably also played a part in enhancing the general 
security awareness. However, personal computers are 
becoming more and more attractive targets for cyber criminals 
due in part to the electronic financial transactions that are 
nowadays performed by private citizens from their personal 
computers. Notable examples of such transactions include 
Internet bank sessions and online credit card payments. This 
development has caused a shift in the focus of the malware 
authors from self-spreading malware such as worms, which 
are easily detectable due to their distribution techniques, to 
privacy invasive malware [2].  

A recent addition to the family of privacy invasive 
malware is known as rogue software, rogueware, or scareware. 
In the remainder of this paper, the latter term will be used to 
denote this type of software. Scareware represents scam 
applications that usually masquerade as security applications 
such as anti-malware software or more specifically anti-virus 
software. In reality, however, scareware provides a minimum 
level of security or no security at all [3][4]. This type of 
software is especially crafted to include fake scanning dialogs, 
artificial progress bars and fake alerts [5].  Scareware may 
display fake lists of infected files and sometimes such lists are 
so unsophisticatedly generated that they include files that may 
not even exist on the computer or they may be incompatible 
with the operating system [6]. Fig 1. shows the fake scanning 
dialog of a particular scareware Rouge:W32/Winwebsec. The 
fake scanning processes and the fake results are of course used 
to scare users into believing that their system has been 
compromised and that it is infected with malicious content. 
The fake presentations are essentially carried out to convince 
the user that they need anti-virus software or some other form 
of protection. As a remedy for the fake situation, scareware 
offers a free download, which may also be bundled with other 
malware (such as trojans) or it may facilitate the installation of 
additional malware. Scareware may also trick users into 
paying registration fees in order to scan their system more 
thoroughly to remove (fake) warnings. Such an example is 
shown in Fig 2. which is the screenshot of payment screen 
displayed by Rpuge:W32/Winwebsec. The additional 
malware, which has been installed instead of protective 
software, remains on the targeted computer regardless of 
whether the registration fee is actually paid or not. Such 
additional malware is typically used to collect personal data of 
the user or to launch different forms of attacks. 

A. Background 
In 2003, Secure Works observed that spam advertisements for 
fake anti-virus software were being sent to users by the 
utilization of a vulnerability in the Microsoft Messenger 
Service [7]. Two years later, in 2005, Microsoft reported about 
the presence of scareware on web sites and web servers. Since 
then and arguably due to the overwhelming financial incentive 
to malware authors, the scareware has been increasing. The 
scareware distribution mechanism is different from other 
malware (such as viruses or worms). Scareware reaches the 
target machine by employment of social engineering, stealth 
techniques, or both of these approaches. User interaction is 
required when scareware is distributed through social 



engineering. For this purpose, advertisements are either sent 
via spam e-mail or posted on popular social networking 
websites. Scareware is misleadingly marketed as legitimate 
software and, with user interaction; it is downloaded and 
installed on personal computers. When it comes to stealth 
techniques, vulnerabilities in web browsers or other popular 
software are exploited in order to employ a so-called drive-by 
download mechanism. Essentially, scareware is downloaded 
and installed without any user interaction using such a 
mechanism. It has been reported that the monetary conversion 
rate of the fees obtained for fake scanning services can be as 
much as 1.36% which can result in a gross income of $21,000 
- $35000 for a period of 44 days [2]. Panda Labs reported that 
an approximate overall gross income of 34 million per month 
is generated by scareware [8]. Late in 2009, Symantec 
Corporation reported about 43 million installation attempts 
from more than 240 distinct families of scareware [9]. 
Recently a Swedish newspaper Aftonbladet reported that 
according to U.S Department of Justice, 9, 60,000 users were 
victims of rouge which caused a loss of 460 million krona 
[10]. This alarming situation has received the attention of 
legitimate security software companies. CA Global Security 
Advisor, Secure Works and Microsoft published advisories 
about scareware, which describe the general functionality of 
scareware and tips for identifying this type of software [6]. To 
reduce the probability of being fooled by scareware, novice 
users are advised to install legitimate anti-malware software. 
However, the problem with such software is that users need to 
update it on regular basis as novel families of scareware are 
continuously appearing. 

 
Figure 1.  Scanning screenshot of Rouge:W32/Winwebsec [11]  

B. Traditional Countermeasures 
Current anti-malware programs primarily rely on either 

signature-based methods or heuristic-based methods for the 
detection of scareware; techniques that were originally 
developed for detecting computer viruses. The signature-based 
approach revolves around the use of signature databases that 
contain byte strings that are unique to different instances of 
software. If these databases are allowed to become more than 
a couple of weeks old, the detection rate will be significantly 
reduced due to the fact that the approach cannot detect recent 

scareware for which it lacks recorded signatures [6].  The 
second approach, which relies on heuristic-based methods, is 
based on more general rules that, e.g., may define malicious or 
benign behavior. For both methods, anti-malware vendors 
need to catch novel instances, analyze them, create new 
signatures or rules and then update their databases. It is safe to 
say that, between database updates, users may be exposed to 
novel scareware instances. Thus, it is important for users to 
have up-to-date and reliable protective measures. 

 
Figure 2.  Payment screenshot from Rouge:W32/Winwebsec [11] 

C. Scope and Aim 
In this paper, we present results from an experimental 

evaluation of a new scareware detection method. The aim of 
this method is to extend the traditional heuristic detection 
approach by employing machine learning. The objectives of 
the study are to assess the performance of the proposed 
method, which can be described as an automated system for 
extracting typical behavior of scareware and benign software 
in the shape of variable length instruction sequences, and to 
analyze such fragments of behavior in order to improve upon 
the existing knowledge about scareware detection. 

D. Outline 
The remainder of this paper is organized as follows. 

Section 2 presents related work by first introducing necessary 
concepts and terminology in Section 2.1 and then reviewing 
related studies in Section 2.2. Section 3 then describes the 
employed methodology and the data preprocessing steps. 
Section 4 reviews the experimental procedure. The subsequent 
sections present the experimental results and the analysis. 
Finally, Section 5 concludes the paper and gives some pointers 
to future work.  

II. RELATED WORK 

A. Concepts and Terminology  
To overcome the deficiency of traditional techniques 

concerning the detection of novel instances, the potential of 
various approaches, such as agent-based technologies and 
artificial neural networks have been investigated. Data mining 
(DM) and machine learning (ML) methods have been 



extensively investigated in the field of text classification and 
have showed promising results for many applications. As we 
shall see, it is possible to benefit from this area of research 
when addressing the scareware detection problem. However, 
the idea of using DM and ML methods for making the 
malware detection process automated and for extending the 
heuristic-based detection approach for traditional malware is 
not new; it originates from a study conducted in 2001 [12].  

The process of ML-based malware classification 
essentially follows standard classification and can thus be 
divided into two sub stages: training and testing. During the 
training stage, classifiers are generated from training sets that 
feature some type of extracted malware and benign file 
information as well as the predetermined classification of each 
file and the predictive performance of the classifiers is then 
evaluated during the testing stage. 

For malware classification, data sets have been prepared 
using various representations of files and by using different 
features that are either present in the files or obtained from any 
kind of meta analysis (for example, runtime generated digital 
footprints). Features that are commonly extracted from a 
binary file include: byte code n-grams, printable strings and 
instruction sequences. The n-gram is a sequence of n 
characters or n extracted words. Other features that are present 
in binary files and that may also be used include system calls 
(to application programming interfaces). The use of opcodes 
as an alternative form of representation has also been 
suggested [13]. An assembly instruction contains an operation 
code (opcode) and maybe one or more operands for 
performing the operation. Opcodes or sequences of opcodes 
may be represented using n-grams, which, in turn, can be 
viewed upon as words or terms if the learning problem is 
defined as a text categorization problem.  

In text categorization, text files are commonly represented 
using the bag of words model, which is based on Salton’s 
vector space model [14]. A vocabulary of words or terms is 
extracted from the so-called document set.  For each term (t) 
in the vocabulary, its frequency (f) in a single document (d) 
and in the entire set (D) is calculated. A weight is assigned to 
each term, usually equal to its f in d; such weights are denoted 
term frequencies (tf). When the frequency (F) of each term is 
calculated in D, this is called Document Frequency (DF). The 
tf value of a term is further divided by the frequency of the 
most frequent term in the document, i.e., max(tf) to obtain a 
normalized Term Frequency (TF) within the  range of [0-1] as 
shown in Equation 1. An extended version of TF-DF is TF 
Inverse Document Frequency (TF-IDF), which combines TF 
and DF as shown in Equation 2; where N is the number of 
documents in the entire data set and DF is number of d in 
which t appears.  

Term Frequency )tf(max
tf    =   (1) 

TF Inverse Document 
Frequency  ⎟

⎠
⎞

⎜
⎝
⎛=

DF
NlogxTF       (2) 

The problem of n-gram-based malware classification in 
this context is perhaps different from the general text 
categorization case since a huge vocabulary or very large 

feature sets have to be produced. The size of the vocabulary 
creates two problems: most ML algorithms cannot directly 
process the vocabulary and a vast number of terms in the 
vocabulary do not provide any valuable information for 
classification. Therefore, it is necessary to obtain a subset of 
features by applying feature selection. The Categorical 
Proportional Difference (CPD) algorithm is a rather recent 
example of such an algorithm. In a number of text 
categorization experiments, CPD has outperformed other 
traditional feature selection algorithms such as: chi-square, 
information gain, mutual information, and odds ratio [15]. 
CPD represents a measure of the degree to which a word 
contributes in discriminating a specific class from other 
classes [15]. The possible outcome of CPD falls between [-1 – 
1] where a CPD value close to -1 indicates that a word occurs 
in an equal number of instances in all classes and a value of 1 
or in proximity to 1 indicates that a word occurs only in one 
class. A is the number of times word w and class c occur 
together and let B the number of times word w occurs without 
class c, then we may define CPD for a particular word w and 
class c as shown in Equation 3: 

   
BA
BA    )    c,w(CPD

+
−

=  (3) 

The reduced feature set can now be converted, e.g., into 
the Attribute-Relation File Format (ARFF). ARFF files are 
structured ASCII text files that include a set of data instances, 
each described by a set of features [16]. ARFF files are used 
as input to the Waikato Environment for Knowledge Analysis 
(Weka) [16] before applying learning algorithms in order to 
build and analyze classifiers. Essentially, Weka is a suite of 
machine learning algorithms and analysis tools for solving or 
analyzing data mining problems. There are, of course, many 
alternatives to Weka but we argue that this workbench is 
particularly fitting for developing our approach since it is 
released as open source and may be tuned, extended, or 
changed in any way. 

B. Related Directions of Research 
Opcodes have already been used to build signature 

databases that can be searched to detect different variants of 
worms [17]. To avoid the problem of having to manually 
update the databases of the scanners, data mining algorithms 
were later used as part of a scientific study to build a generic 
scanner [18]. In this study, experiments were performed on 
two different data sets: the first data set contained the opcode 
of each instruction and the second data set contained the 
opcode as well as the first operand of each instruction. The 
frequency of appearance in the virus class and in the benign 
class was used as a basis for feature selection. Results showed 
that the first data set produced better results than the second. 
In another study, opcode n-grams of different sizes were 
constructed to detect novel malware. By addressing the class 
imbalance problem properly, an accuracy of 96% was 
achieved [19]. The idea of using variable length instruction 
sequences was conceived as part of an attempt to detect 
worms. Frequently occurring instruction sequences were 
analyzed using ensemble learners to classify novel instances 
of worms. In an attempt to detect a more recent type of 
malware, called spyware, hexadecimal n-grams were used to 



represent binary files [20]. The most common n-grams for 
each class together with overall high frequency n-grams were 
used as features for building the classifiers. The spyware 
detection rate was recorded to be 90.5%.  

Hexadecimal n-grams have been used extensively as 
features in traditional malware classification problems. 
Experiments have been performed on viruses, worms and 
trojans. These types of malware are typically very distinct 
from the standard benign software program. Moreover, only a 
few studies have used only the opcode from the instruction as 
the feature of choice [17][18][19]. Today, very little is known 
about the appropriateness of using opcodes or instruction 
sequences as features when trying to detect the type of 
malware that is more similar to benign software in terms of 
behavior. In this paper, we investigate the concept of 
scareware which, to the best of our knowledge, has not been 
investigated in terms of how well it can be detected by mining 
instruction sequences. 

III. METHODOLOGY 
Generalizing the scareware detection method so it can 

detect novel instances can arguably be regarded as quite 
important for user protection. Another problem regarding the 
detection of scareware is that it may resemble legitimate 
software to such extents that it is difficult to detect differences. 
Recently, data mining classification algorithms have been 
heavily applied in order to automate and extend the heuristic-
based methods for detection of traditional malware. It is 
therefore of interest to investigate how well such classification 
algorithms can detect scareware. Consequently, we present a 
static analysis method based on data mining, which extends 
the general heuristic detection approach. In this context, a 
dynamic analysis method is used to detect malware instances 
by investigating runtime footprints while static analysis is 
carried out on files without any runtime execution. Our data 
set contains Windows-based executable scareware and benign 
files and this choice was made since the Windows operating 
system is still the most commonly used operating system, 
especially for novice users, and it is often considered more 
vulnerable than, e.g., Unix-based operating systems. We have 
disassembled our initial file database into instruction 
sequences and then we extracted the opcodes from each 
instruction. The extracted opcodes were combined into 
ordered lists, instruction sequences (IS), to produce our 
vocabulary. Each word in vocabulary is of variable length. We 
have used TF-IDF and CPD for generating the final data sets. 

A. File Sampling and Data Set Design 
As the threat of scareware is relatively new compared to, 

say, viruses and worms, there is unfortunately no default or 
public data set available for researchers to build classification 
models from. Therefore, we have created a data set of 800 
files out of which 550 are scareware (provided by Lavasoft 
from their scareware collection [4]). The remaining 250 files 
are benign and were downloaded from the website 
download.com [21]. This website claims that the software 
provided is spyware free. However, after downloading 
software from the website and scanning it with a commercial 
version of the F-Secure Client Security software [22], we 
discovered that some files were actually infected by so-called 

riskware. The infected instances were removed from the data 
set. 

B. Extraction and Data Preparation 
For the purpose of our experiment, we needed to convert 

our data set to a format that could be processed by learning 
algorithms. We decided to represent files by using extracted 
instruction sequences as features. The advantage of using IS as 
a primary feature is that IS represent program control flow 
blocks, which cannot be presented by binary or hexadecimal 
n-grams or printable strings. Moreover each IS in this study 
represents a function that can be located within the actual 
program for the purpose of deeper analysis, even though such 
a step is out of scope in the presented paper. We disassembled 
each program using the Netwide disassembler (Ndisasm) [23], 
which was configured to auto-synchronous mode to avoid 
misalignment between the data and code segments [23]. The 
generated output, from all the file segments, was stored in 
regular text files and each entry contains the memory address 
of the instruction field as well as the opcode and the operands. 
popawxorimuladd
mulincaddaddaddpushpushimuldbpush 
dbandmovinc 
pushincaddmovaddincaddadd 
inandmovpushpushpushpushpushpush 
fisubincaddpushpushincadd 
addpush 
xlatband 
addaddstdadcincaddrclpushpush 
adcincaddpushpushand 

Name : 
Aliases:    
Category: 
Type: 
Platform: 

Rogue:W32/Winwebsec 
Program:Win32/Winwebsec (Microsoft) 
Riskware 
Rogue 
W32 

Figure 3.  Instruction Sequence extracted from Rouge:W32/Winwebsec 

The disassembled files were further processed through a 
parser to obtain the instruction sequences (ordered lists of 
opcodes). During the extraction process, the end of an 
instruction sequence was determined by identifying a 
conditional or unconditional control transfer instruction or 
function boundary.  It is worth noting that these identified 
control transfer instructions (such as: call, iret, jmp or jnz) 
were not included in the generated instruction sequences. In 
this way, we obtained variable length instruction sequences. 
Each row in output contains single IS. Fig. 3 shows the 
instruction sequences extracted from a scareware 
Rouge:W32/Winwebsec along-with some other related 
information of this particular scareware.   

C. Feature Selection 
Feature selection is performed to measure the correlation 

of each feature with its class (scareware or benign). It is also 
performed to estimate the role of that specific feature in 
classification task. The measures used for feature selection by 
any feature selection methods are not biased to any 
classification algorithm or class which helps us in comparing 
the performances of different classification algorithm.  

Our disassembled files were in text format and each file 
can be read as text string so we decided to use the bag of 



words model, since it has been proven to be a suitable model 
for similar problems.  We used the StringToWordVector filter 
in Weka to parse each string, extract the vocabulary and 
produce word vectors. For our experiment, each word 
represents a unique IS. We used TF-IDF for the weight 
calculation of each word. Our vocabulary features top 1,625 
unique words. We decided to perform a secondary feature 
selection to eliminate features which will not contribute 
significant in classification task. We applied CPD to obtain 
reduced feature sets. As it is difficult to know beforehand the 
optimal number of features to remove, we decided to generate 
a number of data sets where each set was generated by 
keeping a different number of attributes. This process resulted 
in 19 reduced data sets for which 5-95% of the original 
features were kept.  

IV. EXPERIMENT  
The aim of the experiment is to evaluate classifier 

performance on the task of detecting scareware by learning 
from variable length instruction sequences and to assess the 
impact of feature selection using categorical proportional 
difference. Learning algorithms can be categorized according 
to their learning bias, that is, by the way their designs restrict 
the search space and dictate how this space is traversed. When 
categorizing the commonly used algorithms in this manner, a 
rather small number of algorithm families can be identified, 
e.g.: tree inducers, rule set inducers, neural networks, instance-
based learners, and Bayesian learners. We have tried to select 
at least one representative algorithm from each family. As our 
study extends the heuristic based detection technique which 
uses rules set so we used families of algorithms which either 
uses rules or help in developing rule set. These families of 
algorithms are rules based and decision tree. Except these 
families we also used support vector machine, Bayesian 
theorem based algorithms and nearest neighbor concepts for 
classification. All the algorithms were used at their default 
configuration in WEKA.  

A. Learning algorithms 
1) ZeroR 

ZeroR is a rule-based algorithm. ZeroR works as a random 
guesser, modeling a user that makes an uninformed decision 
about software by always predicting the majority class (the 
class to which most of the data instances belong) [16]. This 
algorithm is frequently used as a baseline to measure the 
performance gain of other algorithms in classification against 
chance. 

2) JRip 
JRip is an implementation of the Ripper algorithm. This 
algorithm tries to generate an optimized rule set for 
classification. Rules are added on the basis of coverage (that 
is, how many data instances they cover) and accuracy  [24]. A 
data instance is classified as positive if a rule matches; 
otherwise it is classified as negative. JRip also features an 
optimization step in which redundant or bad rules are 
discarded.  

3) J48 
J48 is a decision-tree-based learning algorithm, which uses the 
concept of information entropy [25]. Decision trees 
recursively partition instances from the root node to some leaf 

node and a tree is constructed. For partitioning, J48 uses the 
attribute with the highest information gain and stops if all 
instances of same class are present in the subset. In learning, 
they adopt top-down approach and traverse the tree to make a 
set of rules, which is used for classification.  

4) Sequential Minimal Optimization (SMO) 
SMO belongs to support vector machines. During 
classification, SMO finds the optimal hyper-plane, which 
maximizes the distance/margin between two classes thus 
defining the decision boundaries. It is used for classification 
and regression [26].  

5) Naive Bayes 
Naive Bayes (NB) is based on Bayes’ theorem and generates a 
probabilistic classifier with independence assumptions, i.e., 
the different features in the data set are assumed not to be 
dependent of each other. Therefore, presence (or absence) of a 
particular feature of a class is not dependent on the presence 
(or absence) of any other feature [27]. 

6) IBk 
IBk is k-nearest neighbor classifier which uses Euclidean 
distance [28]. Predictions from the neighbors is obtained and 
weighted according to their distance from test instance. 
Majority class of closest k neighbors is assigned to new 
instance.  

7) Random Forest 
Random Forest (RF) is an ensemble learner. A specified 
number of decision trees are created and their mode is 
obtained for prediction predictions [29]. Being an ensemble 
learner, it has superiority of having combined decision which 
is not the case for other algorithms therefore it is expected to 
produce better accuracy than single decision tree. 

B. Evaluation 
We tested each learning algorithm by performing 10 fold 

cross-validation (CV) tests to ensure that the generated 
classifiers are not tested on the training data. Confusion 
matrices were generated by using the responses from 
classifiers. The following four measures defined the elements 
of the generated confusion matrices: True Positives (TP) 
represent the correctly identified scareware programs, False 
Positives (FP) represent legitimate software that has been 
classified as scareware, True Negatives (TN) represent 
correctly identified legitimate programs and False Negatives 
(FN) represent scareware programs that were incorrectly 
classified as legitimate software applications. We argue that 
the false negatives carry the highest cost from the users’ 
perspective.  

The performance of each classifier was evaluated using 
Detection Rate (DR), which is the percentage of correctly 
identified scareware, as shown in Equation 4. False Negative 
Rate, which is the percentage of wrongly identified benign 
programs (see Equation 5), and Accuracy (ACC), the 
percentage of correctly identified programs (see Equation 6). 
The last evaluation measure used was Area Under Receiver 
Operating Characteristic Curve (AUC). AUC is essentially a 
single-point value derived from a ROC curve, which is 
commonly used when the performance of a classifier needs to 
be evaluated for the selection of a high proportion of positive 



TABLE I.  LEARNING ALGORITHM AUC RESULTS FOR DIFFERENT LEVELS OF FEATURE SELECTION. 

Data SMO Naive Bayes IBk Jrip J48 R Forest

5% 0.717(0.119) 0.787(0.030) 0.778(0.030) 0.657(0.129) 0.500(0.000) 0.781(0.030) 

10% 0.812(0.038) 0.829(0.044) 0.851(0.036) 0.809(0.040) 0.788(0.031) 0.857(0.036) 

15% 0.860(0.045) 0.802(0.049) 0.896(0.037) 0.817(0.054) 0.869(0.043) 0.937(0.027) 

20% 0.878(0.040) 0.814(0.045) 0.928(0.036) 0.868(0.047) 0.877(0.048) 0.958(0.021) 

25% 0.864(0.042) 0.809(0.045) 0.924(0.034) 0.872(0.044) 0.874(0.054) 0.959(0.020) 

30% 0.883(0.041) 0.804(0.045) 0.908(0.043) 0.885(0.038) 0.876(0.056) 0.960(0.021) 

35% 0.885(0.041) 0.805(0.045) 0.927(0.036) 0.883(0.044) 0.880(0.053) 0.962(0.022) 

40% 0.880(0.043) 0.815(0.045) 0.938(0.032) 0.885(0.041) 0.901(0.043) 0.964(0.018) 

45% 0.892(0.041) 0.832(0.044) 0.930(0.034) 0.887(0.043) 0.904(0.047) 0.965(0.021) 

50% 0.900(0.036) 0.855(0.043) 0.932(0.031) 0.893(0.043) 0.896(0.048) 0.966(0.019) 

55% 0.906(0.035) 0.897(0.040) 0.928(0.033) 0.893(0.041) 0.896(0.051) 0.969(0.020) 

60% 0.910(0.033) 0.923(0.033) 0.935(0.029) 0.894(0.047) 0.900(0.044) 0.972(0.017) 

65% 0.910(0.031) 0.879(0.056) 0.938(0.028) 0.893(0.042) 0.894(0.046) 0.972(0.017) 

70% 0.909(0.031) 0.710(0.056) 0.938(0.028) 0.901(0.038) 0.893(0.047) 0.970(0.019) 

75% 0.909(0.031) 0.667(0.044) 0.938(0.028) 0.898(0.039) 0.893(0.047) 0.968(0.021) 

80% 0.909(0.031) 0.657(0.043) 0.938(0.028) 0.901(0.039) 0.916(0.041) 0.970(0.021) 

85% 0.909(0.031) 0.656(0.043) 0.938(0.029) 0.898(0.043) 0.915(0.037) 0.971(0.018) 

90% 0.911(0.031) 0.658(0.042) 0.939(0.027) 0.896(0.039) 0.910(0.036) 0.970(0.019) 

95% 0.915(0.031) 0.668(0.044) 0.938(0.028) 0.901(0.039) 0.906(0.038) 0.971(0.022)  
instances in the data set [16].  Therefore it plots the DR on the 
x-axis in function of the False Positive Rate on the y-axis at 
different points. The higher AUC of an algorithm indicates 
that this algorithm is more robust and better in classification. 
In many situations, accuracy can also be a reasonable 
estimator of performance (the performance on completely new 
data). However, AUC has the benefits of being independent of 
class distribution and cost [30] unless the skewness of the 
class distribution is extreme. 

Detection Rate  
FNTP

TP  
+

=  (4) 

False Negative Rate 
FNTP

FN   
+

=  
(5) 

Accuracy  
FNFPTNTP

TNTP
+++

+
=  (6) 

C. Results 
The main experimental results, that is, the AUC of the 

seven included algorithms on the 19 data sets, are shown in 
Table I. In this table, ZeroR is used as a baseline (and can be 
regarded as a random guesser) with AUC of 0.500 (0.000) for 
all the datasets. All algorithms had performed better than base 
algorithm. Random Forest outperformed the other algorithms 
and its best performance (DR of 0.977, FNR of 0.023 and FPR 
of 0.197) was recorded at the 60% keep level (a data set with 
974 features).  

The Naive Bayes yielded an acceptable detection rate 
(0.857) but its FPR at different data sets was too high (i.e. up 
to 0.688) for practical use. Moreover, Naive Bayes also 
exhibited a high variance in performance related to the 
different data sets. Due to this behavior, it is not possible to 
consider this algorithm as reliable for the studied problem. On 

the same data set other algorithms also achieved either the 
highest AUC or near to the highest value with ignorable 
differences such as SMO achieved AUC 0.910 and highest 
AUC with 95% features was 0.915, IBk achieved 0.935 while 
the highest AUC was 0.938 for dataset of 65% features. JRip 
and J48 both achieved AUC of 0.894 and 0.900 respectively 
while their highest AUC was 0.901 and 0.916 for data sets 
with 70% and 80% features. Due to these ignorable minor 
differences in results, we considered that dataset with 60% 
features is a better option for our problem. 

D. Analysis 
We created 19 different datasets and each dataset was 

having 5% less features than its successor. Experimental 
results indicated that a step of 5% was not enough to create 
significant difference in the result. NB has been an exception 
to this, which showed a random trend with increased or 
decreased percentage of features. However if we look at the 
datasets created with the difference of 10% features then the 
difference in results is quite prominent. If the step is increased 
up to 20% difference of features, then a clear and 
understandable difference of results is present. If we review 
the overall performances on the various data sets, it is clear 
that the performance of most algorithms was quite high on the 
60% feature selection level. It seems that number of kept 
features at this level is properly balanced with the number of 
instances from each class. 

int 0x21
push sp 
push word 0x7369 
and [bx+si+0x72],dh 
outsw 

Figure 4.  A disassembled function in one particular scareware instance 



In order to understand the classification process and to find 
interesting features, we analyzed the models generated by 
JRip, J48, and SMO. Models created by other algorithms 
cannot be visualized, so it was not possible to perform their 
analysis. We found three kinds of features i.e. features present 
only in scareware, features present only in legitimate, features 
which were treated differently by different algorithms. Table 
II. shows some selected features with a high impact on the 
classification decision. Features 1 and 7 are used to indicate 
scareware by all three models. However, features 2, 5, 8, and 9 
were considered as a scareware indicative feature by two 
algorithms but were ignored by the remaining algorithms. 
Features 2, 3, 6, and 10 seem to be considered as legitimate 
software indicative features by all algorithms. Finally, feature 
4 is regarded as a legitimate indicator by JRip but as a 
scareware indicator by SMO. 

In order to demonstrate the information provided by a 
single feature, we traced the features from Table II. to the 
disassembled binary files. One such example is provided in 
Fig. 4. As per our understanding the function in Fig. 4 seems 
to indicate an attempt to transfer some specific string data to 
the user for display or transfer from user to some other end. 
The particular contents of the memory are not available to us 
since we are performing a static analysis and thus to get a 
deeper understanding, we would have to manually analyze a 
larger portion of disassembled code. However, it is clear that 
some functionality is present only in scareware instances, 
which would suggest that it is possible to differentiate them 
from benign files on a general level. However, it would be 
hard for a human expert to detect and analyze such subtle 
differences; therefore we argue that our automatic approach is 
superior, especially when considering the fact that regular 
applications can contain several thousands of lines of code. 

TABLE II.  SELECTED FEATURES AND THEIR NUMBER OF 
OCCURRENCE IN EACH CLASS 

S L S L S L
1 pushpushandoutsw >0 >0 -0.142
2 ormovadd >0 -0.0813
3 inswpopaw >=1 0.1940
4 incoutswoutsb >=1 -0.0195
5 addmovmovmovcmp >0 -0.0615
6 leadb >1 >0 0.2016
7 dbdecmov >0 >0 -0.0848
8 outswarplfs >0 -0.0223
9 movpushmov >0 -0.0572

10 Pushaddpush >1 0.1704

F.No Feature

Jrip J48 SMO

         S – Scareware, L – Legitimate software. 

V. CONCLUSIONS AND FUTURE WORK 
We have extended the heuristic-based detection technique 

using a variable length instruction sequence mining approach 
for the purpose of scareware detection. Since scareware is a 
rather recent software security threat, there are no publicly 
available data sets to generate classification models from. We 
have therefore obtained a large sample of scareware 
applications and designed an algorithm for extracting 
instruction sequences from these applications (and similarly 
for legitimate software). The data sets used in this study will 
be publically available at http://www.bth.se/com/rks. The 

experimental results are promising: the Random Forest 
algorithm managed to yield an AUC score of 0.972 after the 
complete data set was processed using the categorical 
proportional difference feature selection algorithm. Moreover, 
the results also indicate that our method is trustworthy since 
the false negative rate (the rate of scareware classified as 
legitimate) is considerably low (0.023). For future work, we 
aim to conduct further experiments on an even larger 
collection of scareware and benign files. We also plan to 
employ a hybrid identification method, which would integrate 
variable length instruction sequences with features extracted 
from, e.g., the end user license agreement or the information 
about the system calls a particular program makes. 
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