
Detecting Scareware by Mining Variable Length
Instruction Sequences

Raja Khurram Shahzad
School of Computing

Blekinge Institute of Technology
SE-371 32 Karlskrona, Sweden

rks@bth.se

Niklas Lavesson
School of Computing

Blekinge Institute of Technology
SE-371 32 Karlskrona, Sweden

nla@bth.se

Abstract—Scareware is a recent type of malicious software
that may pose financial and privacy-related threats to novice
users. Traditional countermeasures, such as anti-virus software,
require regular updates and often lack the capability of detecting
novel (unseen) instances. This paper presents a scareware
detection method that is based on the application of machine
learning algorithms to learn patterns in extracted variable length
opcode sequences derived from instruction sequences of binary
files. The patterns are then used to classify software as legitimate
or scareware but they may also reveal interpretable behavior
that is unique to either type of software. We have obtained a
large number of real world scareware applications and designed
a data set with 550 scareware instances and 250 benign instances.
The experimental results show that several common data mining
algorithms are able to generate accurate models from the data
set. The Random Forest algorithm is shown to outperform the
other algorithms in the experiment. Essentially, our study shows
that, even though the differences between scareware and
legitimate software are subtler than between, say, viruses and
legitimate software, the same type of machine learning approach
can be used in both of these dissimilar cases.

Keywords- Scareware; Instruction Sequence; Classification

I. INTRODUCTION
This paper addresses the problem of detecting scareware, i.e.,
scam software with different forms of malicious payloads [1],
and presents a machine learning-based approach for detection
of this type of software. Many reports have been published in
the media regarding malicious software (malware) such as
viruses and worms. Such reports have arguably increased the
awareness of novice computer users about basic security
issues. Consequently, users are becoming more conscious
about the security and privacy of their systems and data.
Through media, friends, colleagues and security experts, users
have been advised to install detection software such as anti-
virus software or other protective measures. Success stories
about the detection and mitigation of virus and worm threats
have probably also played a part in enhancing the general
security awareness. However, personal computers are
becoming more and more attractive targets for cyber criminals
due in part to the electronic financial transactions that are
nowadays performed by private citizens from their personal
computers. Notable examples of such transactions include
Internet bank sessions and online credit card payments. This
development has caused a shift in the focus of the malware
authors from self-spreading malware such as worms, which
are easily detectable due to their distribution techniques, to
privacy invasive malware [2].

A recent addition to the family of privacy invasive
malware is known as rogue software, rogueware, or scareware.
In the remainder of this paper, the latter term will be used to
denote this type of software. Scareware represents scam
applications that usually masquerade as security applications
such as anti-malware software or more specifically anti-virus
software. In reality, however, scareware provides a minimum
level of security or no security at all [3][4]. This type of
software is especially crafted to include fake scanning dialogs,
artificial progress bars and fake alerts [5]. Scareware may
display fake lists of infected files and sometimes such lists are
so unsophisticatedly generated that they include files that may
not even exist on the computer or they may be incompatible
with the operating system [6]. Fig 1. shows the fake scanning
dialog of a particular scareware Rouge:W32/Winwebsec. The
fake scanning processes and the fake results are of course used
to scare users into believing that their system has been
compromised and that it is infected with malicious content.
The fake presentations are essentially carried out to convince
the user that they need anti-virus software or some other form
of protection. As a remedy for the fake situation, scareware
offers a free download, which may also be bundled with other
malware (such as trojans) or it may facilitate the installation of
additional malware. Scareware may also trick users into
paying registration fees in order to scan their system more
thoroughly to remove (fake) warnings. Such an example is
shown in Fig 2. which is the screenshot of payment screen
displayed by Rpuge:W32/Winwebsec. The additional
malware, which has been installed instead of protective
software, remains on the targeted computer regardless of
whether the registration fee is actually paid or not. Such
additional malware is typically used to collect personal data of
the user or to launch different forms of attacks.

A. Background
In 2003, Secure Works observed that spam advertisements for
fake anti-virus software were being sent to users by the
utilization of a vulnerability in the Microsoft Messenger
Service [7]. Two years later, in 2005, Microsoft reported about
the presence of scareware on web sites and web servers. Since
then and arguably due to the overwhelming financial incentive
to malware authors, the scareware has been increasing. The
scareware distribution mechanism is different from other
malware (such as viruses or worms). Scareware reaches the
target machine by employment of social engineering, stealth
techniques, or both of these approaches. User interaction is
required when scareware is distributed through social

engineering. For this purpose, advertisements are either sent
via spam e-mail or posted on popular social networking
websites. Scareware is misleadingly marketed as legitimate
software and, with user interaction; it is downloaded and
installed on personal computers. When it comes to stealth
techniques, vulnerabilities in web browsers or other popular
software are exploited in order to employ a so-called drive-by
download mechanism. Essentially, scareware is downloaded
and installed without any user interaction using such a
mechanism. It has been reported that the monetary conversion
rate of the fees obtained for fake scanning services can be as
much as 1.36% which can result in a gross income of $21,000
- $35000 for a period of 44 days [2]. Panda Labs reported that
an approximate overall gross income of 34 million per month
is generated by scareware [8]. Late in 2009, Symantec
Corporation reported about 43 million installation attempts
from more than 240 distinct families of scareware [9].
Recently a Swedish newspaper Aftonbladet reported that
according to U.S Department of Justice, 9, 60,000 users were
victims of rouge which caused a loss of 460 million krona
[10]. This alarming situation has received the attention of
legitimate security software companies. CA Global Security
Advisor, Secure Works and Microsoft published advisories
about scareware, which describe the general functionality of
scareware and tips for identifying this type of software [6]. To
reduce the probability of being fooled by scareware, novice
users are advised to install legitimate anti-malware software.
However, the problem with such software is that users need to
update it on regular basis as novel families of scareware are
continuously appearing.

Figure 1. Scanning screenshot of Rouge:W32/Winwebsec [11]

B. Traditional Countermeasures
Current anti-malware programs primarily rely on either

signature-based methods or heuristic-based methods for the
detection of scareware; techniques that were originally
developed for detecting computer viruses. The signature-based
approach revolves around the use of signature databases that
contain byte strings that are unique to different instances of
software. If these databases are allowed to become more than
a couple of weeks old, the detection rate will be significantly
reduced due to the fact that the approach cannot detect recent

scareware for which it lacks recorded signatures [6]. The
second approach, which relies on heuristic-based methods, is
based on more general rules that, e.g., may define malicious or
benign behavior. For both methods, anti-malware vendors
need to catch novel instances, analyze them, create new
signatures or rules and then update their databases. It is safe to
say that, between database updates, users may be exposed to
novel scareware instances. Thus, it is important for users to
have up-to-date and reliable protective measures.

Figure 2. Payment screenshot from Rouge:W32/Winwebsec [11]

C. Scope and Aim
In this paper, we present results from an experimental

evaluation of a new scareware detection method. The aim of
this method is to extend the traditional heuristic detection
approach by employing machine learning. The objectives of
the study are to assess the performance of the proposed
method, which can be described as an automated system for
extracting typical behavior of scareware and benign software
in the shape of variable length instruction sequences, and to
analyze such fragments of behavior in order to improve upon
the existing knowledge about scareware detection.

D. Outline
The remainder of this paper is organized as follows.

Section 2 presents related work by first introducing necessary
concepts and terminology in Section 2.1 and then reviewing
related studies in Section 2.2. Section 3 then describes the
employed methodology and the data preprocessing steps.
Section 4 reviews the experimental procedure. The subsequent
sections present the experimental results and the analysis.
Finally, Section 5 concludes the paper and gives some pointers
to future work.

II. RELATED WORK

A. Concepts and Terminology
To overcome the deficiency of traditional techniques

concerning the detection of novel instances, the potential of
various approaches, such as agent-based technologies and
artificial neural networks have been investigated. Data mining
(DM) and machine learning (ML) methods have been

extensively investigated in the field of text classification and
have showed promising results for many applications. As we
shall see, it is possible to benefit from this area of research
when addressing the scareware detection problem. However,
the idea of using DM and ML methods for making the
malware detection process automated and for extending the
heuristic-based detection approach for traditional malware is
not new; it originates from a study conducted in 2001 [12].

The process of ML-based malware classification
essentially follows standard classification and can thus be
divided into two sub stages: training and testing. During the
training stage, classifiers are generated from training sets that
feature some type of extracted malware and benign file
information as well as the predetermined classification of each
file and the predictive performance of the classifiers is then
evaluated during the testing stage.

For malware classification, data sets have been prepared
using various representations of files and by using different
features that are either present in the files or obtained from any
kind of meta analysis (for example, runtime generated digital
footprints). Features that are commonly extracted from a
binary file include: byte code n-grams, printable strings and
instruction sequences. The n-gram is a sequence of n
characters or n extracted words. Other features that are present
in binary files and that may also be used include system calls
(to application programming interfaces). The use of opcodes
as an alternative form of representation has also been
suggested [13]. An assembly instruction contains an operation
code (opcode) and maybe one or more operands for
performing the operation. Opcodes or sequences of opcodes
may be represented using n-grams, which, in turn, can be
viewed upon as words or terms if the learning problem is
defined as a text categorization problem.

In text categorization, text files are commonly represented
using the bag of words model, which is based on Salton’s
vector space model [14]. A vocabulary of words or terms is
extracted from the so-called document set. For each term (t)
in the vocabulary, its frequency (f) in a single document (d)
and in the entire set (D) is calculated. A weight is assigned to
each term, usually equal to its f in d; such weights are denoted
term frequencies (tf). When the frequency (F) of each term is
calculated in D, this is called Document Frequency (DF). The
tf value of a term is further divided by the frequency of the
most frequent term in the document, i.e., max(tf) to obtain a
normalized Term Frequency (TF) within the range of [0-1] as
shown in Equation 1. An extended version of TF-DF is TF
Inverse Document Frequency (TF-IDF), which combines TF
and DF as shown in Equation 2; where N is the number of
documents in the entire data set and DF is number of d in
which t appears.

Term Frequency)tf(max
tf = (1)

TF Inverse Document
Frequency ⎟

⎠
⎞

⎜
⎝
⎛=

DF
NlogxTF (2)

The problem of n-gram-based malware classification in
this context is perhaps different from the general text
categorization case since a huge vocabulary or very large

feature sets have to be produced. The size of the vocabulary
creates two problems: most ML algorithms cannot directly
process the vocabulary and a vast number of terms in the
vocabulary do not provide any valuable information for
classification. Therefore, it is necessary to obtain a subset of
features by applying feature selection. The Categorical
Proportional Difference (CPD) algorithm is a rather recent
example of such an algorithm. In a number of text
categorization experiments, CPD has outperformed other
traditional feature selection algorithms such as: chi-square,
information gain, mutual information, and odds ratio [15].
CPD represents a measure of the degree to which a word
contributes in discriminating a specific class from other
classes [15]. The possible outcome of CPD falls between [-1 –
1] where a CPD value close to -1 indicates that a word occurs
in an equal number of instances in all classes and a value of 1
or in proximity to 1 indicates that a word occurs only in one
class. A is the number of times word w and class c occur
together and let B the number of times word w occurs without
class c, then we may define CPD for a particular word w and
class c as shown in Equation 3:

BA
BA) c,w(CPD

+
−

= (3)

The reduced feature set can now be converted, e.g., into
the Attribute-Relation File Format (ARFF). ARFF files are
structured ASCII text files that include a set of data instances,
each described by a set of features [16]. ARFF files are used
as input to the Waikato Environment for Knowledge Analysis
(Weka) [16] before applying learning algorithms in order to
build and analyze classifiers. Essentially, Weka is a suite of
machine learning algorithms and analysis tools for solving or
analyzing data mining problems. There are, of course, many
alternatives to Weka but we argue that this workbench is
particularly fitting for developing our approach since it is
released as open source and may be tuned, extended, or
changed in any way.

B. Related Directions of Research
Opcodes have already been used to build signature

databases that can be searched to detect different variants of
worms [17]. To avoid the problem of having to manually
update the databases of the scanners, data mining algorithms
were later used as part of a scientific study to build a generic
scanner [18]. In this study, experiments were performed on
two different data sets: the first data set contained the opcode
of each instruction and the second data set contained the
opcode as well as the first operand of each instruction. The
frequency of appearance in the virus class and in the benign
class was used as a basis for feature selection. Results showed
that the first data set produced better results than the second.
In another study, opcode n-grams of different sizes were
constructed to detect novel malware. By addressing the class
imbalance problem properly, an accuracy of 96% was
achieved [19]. The idea of using variable length instruction
sequences was conceived as part of an attempt to detect
worms. Frequently occurring instruction sequences were
analyzed using ensemble learners to classify novel instances
of worms. In an attempt to detect a more recent type of
malware, called spyware, hexadecimal n-grams were used to

represent binary files [20]. The most common n-grams for
each class together with overall high frequency n-grams were
used as features for building the classifiers. The spyware
detection rate was recorded to be 90.5%.

Hexadecimal n-grams have been used extensively as
features in traditional malware classification problems.
Experiments have been performed on viruses, worms and
trojans. These types of malware are typically very distinct
from the standard benign software program. Moreover, only a
few studies have used only the opcode from the instruction as
the feature of choice [17][18][19]. Today, very little is known
about the appropriateness of using opcodes or instruction
sequences as features when trying to detect the type of
malware that is more similar to benign software in terms of
behavior. In this paper, we investigate the concept of
scareware which, to the best of our knowledge, has not been
investigated in terms of how well it can be detected by mining
instruction sequences.

III. METHODOLOGY
Generalizing the scareware detection method so it can

detect novel instances can arguably be regarded as quite
important for user protection. Another problem regarding the
detection of scareware is that it may resemble legitimate
software to such extents that it is difficult to detect differences.
Recently, data mining classification algorithms have been
heavily applied in order to automate and extend the heuristic-
based methods for detection of traditional malware. It is
therefore of interest to investigate how well such classification
algorithms can detect scareware. Consequently, we present a
static analysis method based on data mining, which extends
the general heuristic detection approach. In this context, a
dynamic analysis method is used to detect malware instances
by investigating runtime footprints while static analysis is
carried out on files without any runtime execution. Our data
set contains Windows-based executable scareware and benign
files and this choice was made since the Windows operating
system is still the most commonly used operating system,
especially for novice users, and it is often considered more
vulnerable than, e.g., Unix-based operating systems. We have
disassembled our initial file database into instruction
sequences and then we extracted the opcodes from each
instruction. The extracted opcodes were combined into
ordered lists, instruction sequences (IS), to produce our
vocabulary. Each word in vocabulary is of variable length. We
have used TF-IDF and CPD for generating the final data sets.

A. File Sampling and Data Set Design
As the threat of scareware is relatively new compared to,

say, viruses and worms, there is unfortunately no default or
public data set available for researchers to build classification
models from. Therefore, we have created a data set of 800
files out of which 550 are scareware (provided by Lavasoft
from their scareware collection [4]). The remaining 250 files
are benign and were downloaded from the website
download.com [21]. This website claims that the software
provided is spyware free. However, after downloading
software from the website and scanning it with a commercial
version of the F-Secure Client Security software [22], we
discovered that some files were actually infected by so-called

riskware. The infected instances were removed from the data
set.

B. Extraction and Data Preparation
For the purpose of our experiment, we needed to convert

our data set to a format that could be processed by learning
algorithms. We decided to represent files by using extracted
instruction sequences as features. The advantage of using IS as
a primary feature is that IS represent program control flow
blocks, which cannot be presented by binary or hexadecimal
n-grams or printable strings. Moreover each IS in this study
represents a function that can be located within the actual
program for the purpose of deeper analysis, even though such
a step is out of scope in the presented paper. We disassembled
each program using the Netwide disassembler (Ndisasm) [23],
which was configured to auto-synchronous mode to avoid
misalignment between the data and code segments [23]. The
generated output, from all the file segments, was stored in
regular text files and each entry contains the memory address
of the instruction field as well as the opcode and the operands.
popawxorimuladd
mulincaddaddaddpushpushimuldbpush
dbandmovinc
pushincaddmovaddincaddadd
inandmovpushpushpushpushpushpush
fisubincaddpushpushincadd
addpush
xlatband
addaddstdadcincaddrclpushpush
adcincaddpushpushand

Name :
Aliases:
Category:
Type:
Platform:

Rogue:W32/Winwebsec
Program:Win32/Winwebsec (Microsoft)
Riskware
Rogue
W32

Figure 3. Instruction Sequence extracted from Rouge:W32/Winwebsec

The disassembled files were further processed through a
parser to obtain the instruction sequences (ordered lists of
opcodes). During the extraction process, the end of an
instruction sequence was determined by identifying a
conditional or unconditional control transfer instruction or
function boundary. It is worth noting that these identified
control transfer instructions (such as: call, iret, jmp or jnz)
were not included in the generated instruction sequences. In
this way, we obtained variable length instruction sequences.
Each row in output contains single IS. Fig. 3 shows the
instruction sequences extracted from a scareware
Rouge:W32/Winwebsec along-with some other related
information of this particular scareware.

C. Feature Selection
Feature selection is performed to measure the correlation

of each feature with its class (scareware or benign). It is also
performed to estimate the role of that specific feature in
classification task. The measures used for feature selection by
any feature selection methods are not biased to any
classification algorithm or class which helps us in comparing
the performances of different classification algorithm.

Our disassembled files were in text format and each file
can be read as text string so we decided to use the bag of

words model, since it has been proven to be a suitable model
for similar problems. We used the StringToWordVector filter
in Weka to parse each string, extract the vocabulary and
produce word vectors. For our experiment, each word
represents a unique IS. We used TF-IDF for the weight
calculation of each word. Our vocabulary features top 1,625
unique words. We decided to perform a secondary feature
selection to eliminate features which will not contribute
significant in classification task. We applied CPD to obtain
reduced feature sets. As it is difficult to know beforehand the
optimal number of features to remove, we decided to generate
a number of data sets where each set was generated by
keeping a different number of attributes. This process resulted
in 19 reduced data sets for which 5-95% of the original
features were kept.

IV. EXPERIMENT
The aim of the experiment is to evaluate classifier

performance on the task of detecting scareware by learning
from variable length instruction sequences and to assess the
impact of feature selection using categorical proportional
difference. Learning algorithms can be categorized according
to their learning bias, that is, by the way their designs restrict
the search space and dictate how this space is traversed. When
categorizing the commonly used algorithms in this manner, a
rather small number of algorithm families can be identified,
e.g.: tree inducers, rule set inducers, neural networks, instance-
based learners, and Bayesian learners. We have tried to select
at least one representative algorithm from each family. As our
study extends the heuristic based detection technique which
uses rules set so we used families of algorithms which either
uses rules or help in developing rule set. These families of
algorithms are rules based and decision tree. Except these
families we also used support vector machine, Bayesian
theorem based algorithms and nearest neighbor concepts for
classification. All the algorithms were used at their default
configuration in WEKA.

A. Learning algorithms
1) ZeroR

ZeroR is a rule-based algorithm. ZeroR works as a random
guesser, modeling a user that makes an uninformed decision
about software by always predicting the majority class (the
class to which most of the data instances belong) [16]. This
algorithm is frequently used as a baseline to measure the
performance gain of other algorithms in classification against
chance.

2) JRip
JRip is an implementation of the Ripper algorithm. This
algorithm tries to generate an optimized rule set for
classification. Rules are added on the basis of coverage (that
is, how many data instances they cover) and accuracy [24]. A
data instance is classified as positive if a rule matches;
otherwise it is classified as negative. JRip also features an
optimization step in which redundant or bad rules are
discarded.

3) J48
J48 is a decision-tree-based learning algorithm, which uses the
concept of information entropy [25]. Decision trees
recursively partition instances from the root node to some leaf

node and a tree is constructed. For partitioning, J48 uses the
attribute with the highest information gain and stops if all
instances of same class are present in the subset. In learning,
they adopt top-down approach and traverse the tree to make a
set of rules, which is used for classification.

4) Sequential Minimal Optimization (SMO)
SMO belongs to support vector machines. During
classification, SMO finds the optimal hyper-plane, which
maximizes the distance/margin between two classes thus
defining the decision boundaries. It is used for classification
and regression [26].

5) Naive Bayes
Naive Bayes (NB) is based on Bayes’ theorem and generates a
probabilistic classifier with independence assumptions, i.e.,
the different features in the data set are assumed not to be
dependent of each other. Therefore, presence (or absence) of a
particular feature of a class is not dependent on the presence
(or absence) of any other feature [27].

6) IBk
IBk is k-nearest neighbor classifier which uses Euclidean
distance [28]. Predictions from the neighbors is obtained and
weighted according to their distance from test instance.
Majority class of closest k neighbors is assigned to new
instance.

7) Random Forest
Random Forest (RF) is an ensemble learner. A specified
number of decision trees are created and their mode is
obtained for prediction predictions [29]. Being an ensemble
learner, it has superiority of having combined decision which
is not the case for other algorithms therefore it is expected to
produce better accuracy than single decision tree.

B. Evaluation
We tested each learning algorithm by performing 10 fold

cross-validation (CV) tests to ensure that the generated
classifiers are not tested on the training data. Confusion
matrices were generated by using the responses from
classifiers. The following four measures defined the elements
of the generated confusion matrices: True Positives (TP)
represent the correctly identified scareware programs, False
Positives (FP) represent legitimate software that has been
classified as scareware, True Negatives (TN) represent
correctly identified legitimate programs and False Negatives
(FN) represent scareware programs that were incorrectly
classified as legitimate software applications. We argue that
the false negatives carry the highest cost from the users’
perspective.

The performance of each classifier was evaluated using
Detection Rate (DR), which is the percentage of correctly
identified scareware, as shown in Equation 4. False Negative
Rate, which is the percentage of wrongly identified benign
programs (see Equation 5), and Accuracy (ACC), the
percentage of correctly identified programs (see Equation 6).
The last evaluation measure used was Area Under Receiver
Operating Characteristic Curve (AUC). AUC is essentially a
single-point value derived from a ROC curve, which is
commonly used when the performance of a classifier needs to
be evaluated for the selection of a high proportion of positive

TABLE I. LEARNING ALGORITHM AUC RESULTS FOR DIFFERENT LEVELS OF FEATURE SELECTION.

Data SMO Naive Bayes IBk Jrip J48 R Forest

5% 0.717(0.119) 0.787(0.030) 0.778(0.030) 0.657(0.129) 0.500(0.000) 0.781(0.030)

10% 0.812(0.038) 0.829(0.044) 0.851(0.036) 0.809(0.040) 0.788(0.031) 0.857(0.036)

15% 0.860(0.045) 0.802(0.049) 0.896(0.037) 0.817(0.054) 0.869(0.043) 0.937(0.027)

20% 0.878(0.040) 0.814(0.045) 0.928(0.036) 0.868(0.047) 0.877(0.048) 0.958(0.021)

25% 0.864(0.042) 0.809(0.045) 0.924(0.034) 0.872(0.044) 0.874(0.054) 0.959(0.020)

30% 0.883(0.041) 0.804(0.045) 0.908(0.043) 0.885(0.038) 0.876(0.056) 0.960(0.021)

35% 0.885(0.041) 0.805(0.045) 0.927(0.036) 0.883(0.044) 0.880(0.053) 0.962(0.022)

40% 0.880(0.043) 0.815(0.045) 0.938(0.032) 0.885(0.041) 0.901(0.043) 0.964(0.018)

45% 0.892(0.041) 0.832(0.044) 0.930(0.034) 0.887(0.043) 0.904(0.047) 0.965(0.021)

50% 0.900(0.036) 0.855(0.043) 0.932(0.031) 0.893(0.043) 0.896(0.048) 0.966(0.019)

55% 0.906(0.035) 0.897(0.040) 0.928(0.033) 0.893(0.041) 0.896(0.051) 0.969(0.020)

60% 0.910(0.033) 0.923(0.033) 0.935(0.029) 0.894(0.047) 0.900(0.044) 0.972(0.017)

65% 0.910(0.031) 0.879(0.056) 0.938(0.028) 0.893(0.042) 0.894(0.046) 0.972(0.017)

70% 0.909(0.031) 0.710(0.056) 0.938(0.028) 0.901(0.038) 0.893(0.047) 0.970(0.019)

75% 0.909(0.031) 0.667(0.044) 0.938(0.028) 0.898(0.039) 0.893(0.047) 0.968(0.021)

80% 0.909(0.031) 0.657(0.043) 0.938(0.028) 0.901(0.039) 0.916(0.041) 0.970(0.021)

85% 0.909(0.031) 0.656(0.043) 0.938(0.029) 0.898(0.043) 0.915(0.037) 0.971(0.018)

90% 0.911(0.031) 0.658(0.042) 0.939(0.027) 0.896(0.039) 0.910(0.036) 0.970(0.019)

95% 0.915(0.031) 0.668(0.044) 0.938(0.028) 0.901(0.039) 0.906(0.038) 0.971(0.022)
instances in the data set [16]. Therefore it plots the DR on the
x-axis in function of the False Positive Rate on the y-axis at
different points. The higher AUC of an algorithm indicates
that this algorithm is more robust and better in classification.
In many situations, accuracy can also be a reasonable
estimator of performance (the performance on completely new
data). However, AUC has the benefits of being independent of
class distribution and cost [30] unless the skewness of the
class distribution is extreme.

Detection Rate
FNTP

TP
+

= (4)

False Negative Rate
FNTP

FN
+

=
(5)

Accuracy
FNFPTNTP

TNTP
+++

+
= (6)

C. Results
The main experimental results, that is, the AUC of the

seven included algorithms on the 19 data sets, are shown in
Table I. In this table, ZeroR is used as a baseline (and can be
regarded as a random guesser) with AUC of 0.500 (0.000) for
all the datasets. All algorithms had performed better than base
algorithm. Random Forest outperformed the other algorithms
and its best performance (DR of 0.977, FNR of 0.023 and FPR
of 0.197) was recorded at the 60% keep level (a data set with
974 features).

The Naive Bayes yielded an acceptable detection rate
(0.857) but its FPR at different data sets was too high (i.e. up
to 0.688) for practical use. Moreover, Naive Bayes also
exhibited a high variance in performance related to the
different data sets. Due to this behavior, it is not possible to
consider this algorithm as reliable for the studied problem. On

the same data set other algorithms also achieved either the
highest AUC or near to the highest value with ignorable
differences such as SMO achieved AUC 0.910 and highest
AUC with 95% features was 0.915, IBk achieved 0.935 while
the highest AUC was 0.938 for dataset of 65% features. JRip
and J48 both achieved AUC of 0.894 and 0.900 respectively
while their highest AUC was 0.901 and 0.916 for data sets
with 70% and 80% features. Due to these ignorable minor
differences in results, we considered that dataset with 60%
features is a better option for our problem.

D. Analysis
We created 19 different datasets and each dataset was

having 5% less features than its successor. Experimental
results indicated that a step of 5% was not enough to create
significant difference in the result. NB has been an exception
to this, which showed a random trend with increased or
decreased percentage of features. However if we look at the
datasets created with the difference of 10% features then the
difference in results is quite prominent. If the step is increased
up to 20% difference of features, then a clear and
understandable difference of results is present. If we review
the overall performances on the various data sets, it is clear
that the performance of most algorithms was quite high on the
60% feature selection level. It seems that number of kept
features at this level is properly balanced with the number of
instances from each class.

int 0x21
push sp
push word 0x7369
and [bx+si+0x72],dh
outsw

Figure 4. A disassembled function in one particular scareware instance

In order to understand the classification process and to find
interesting features, we analyzed the models generated by
JRip, J48, and SMO. Models created by other algorithms
cannot be visualized, so it was not possible to perform their
analysis. We found three kinds of features i.e. features present
only in scareware, features present only in legitimate, features
which were treated differently by different algorithms. Table
II. shows some selected features with a high impact on the
classification decision. Features 1 and 7 are used to indicate
scareware by all three models. However, features 2, 5, 8, and 9
were considered as a scareware indicative feature by two
algorithms but were ignored by the remaining algorithms.
Features 2, 3, 6, and 10 seem to be considered as legitimate
software indicative features by all algorithms. Finally, feature
4 is regarded as a legitimate indicator by JRip but as a
scareware indicator by SMO.

In order to demonstrate the information provided by a
single feature, we traced the features from Table II. to the
disassembled binary files. One such example is provided in
Fig. 4. As per our understanding the function in Fig. 4 seems
to indicate an attempt to transfer some specific string data to
the user for display or transfer from user to some other end.
The particular contents of the memory are not available to us
since we are performing a static analysis and thus to get a
deeper understanding, we would have to manually analyze a
larger portion of disassembled code. However, it is clear that
some functionality is present only in scareware instances,
which would suggest that it is possible to differentiate them
from benign files on a general level. However, it would be
hard for a human expert to detect and analyze such subtle
differences; therefore we argue that our automatic approach is
superior, especially when considering the fact that regular
applications can contain several thousands of lines of code.

TABLE II. SELECTED FEATURES AND THEIR NUMBER OF
OCCURRENCE IN EACH CLASS

S L S L S L
1 pushpushandoutsw >0 >0 -0.142
2 ormovadd >0 -0.0813
3 inswpopaw >=1 0.1940
4 incoutswoutsb >=1 -0.0195
5 addmovmovmovcmp >0 -0.0615
6 leadb >1 >0 0.2016
7 dbdecmov >0 >0 -0.0848
8 outswarplfs >0 -0.0223
9 movpushmov >0 -0.0572

10 Pushaddpush >1 0.1704

F.No Feature

Jrip J48 SMO

 S – Scareware, L – Legitimate software.

V. CONCLUSIONS AND FUTURE WORK
We have extended the heuristic-based detection technique

using a variable length instruction sequence mining approach
for the purpose of scareware detection. Since scareware is a
rather recent software security threat, there are no publicly
available data sets to generate classification models from. We
have therefore obtained a large sample of scareware
applications and designed an algorithm for extracting
instruction sequences from these applications (and similarly
for legitimate software). The data sets used in this study will
be publically available at http://www.bth.se/com/rks. The

experimental results are promising: the Random Forest
algorithm managed to yield an AUC score of 0.972 after the
complete data set was processed using the categorical
proportional difference feature selection algorithm. Moreover,
the results also indicate that our method is trustworthy since
the false negative rate (the rate of scareware classified as
legitimate) is considerably low (0.023). For future work, we
aim to conduct further experiments on an even larger
collection of scareware and benign files. We also plan to
employ a hybrid identification method, which would integrate
variable length instruction sequences with features extracted
from, e.g., the end user license agreement or the information
about the system calls a particular program makes.

REFERENCES
[1] Microsoft, “Rogue Security Software | Fake Virus Alerts |

Scareware.” [Online]. Available:
http://www.microsoft.com/security/antivirus/rogue.aspx. [Accessed:
12-Jan-2011].

[2] G. Cluley, “Sizing Up The Malware Threat - Key Malware Trends for
2010,” Network Security, vol. 2010, no. 4, pp. 8-10.

[3] The Washington Post, “Security Fix - Massive Profits Fueling Rogue
Antivirus Market.” [Online]. Available:
http://voices.washingtonpost.com/securityfix/2009/03/obscene_profits
_fuel_rogue_ant.html?wprss=securityfix. [Accessed: 13-Jan-2011].

[4] Lavasoft AB, “Lavasoft.” [Online]. Available:
http://www.lavasoft.com/. [Accessed: 13-Jul-2010].

[5] M. Cova, C. Leita, O. Thonnard, A. Keromytis, and M. Dacier, “An
Analysis of Rogue AV Campaigns,” in Recent Advances in Intrusion
Detection, pp. 442–463.

[6] M. A. Rajab, L. Ballard, P. Mavrommatis, N. Provos, and X. Zhao,
“The Nocebo Effect on The Web: An Analysis of Fake Anti-virus
Distribution,” in Proceedings of the 3rd USENIX conference on
Large-scale exploits and emergent threats: botnets, spyware, worms,
and more (LEET 10), 2010, pp. 3-3.

[7] J. Stewart, “Windows Messenger Popup Spam on UDP Port 1026.”
[Online]. Available:
http://www.secureworks.com/research/threats/popup-spam/.
[Accessed: 19-Nov-2010].

[8] L. Corrons, “The Business of Rogueware,” Web Application Security,
pp. 7–7, 2010.

[9] Symantec Corporation, “Symantec Report on Rogue Security
Software Press Kit.” [Online]. Available:
http://www.symantec.com/about/news/resources/press_kits/detail.jsp?
pkid=istr_rogue_security. [Accessed: 20-Jan-2011].

[10] “Aftonbladet.” [Online]. Available:
http://www.aftonbladet.se/nyheter/article13218796.ab. [Accessed: 24-
Jun-2011].

[11] “Swedish Windows Security User Group.” [Online]. Available:
http://winsec.se/?cat=166. [Accessed: 23-Jun-2011].

[12] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, “Data Mining
Methods for Detection of New Malicious Executables,” in
Proceedings of the IEEE Symposium on Security and Privacy (S&P
2001), pp. 38-49.

[13] S. Dolev and N. Tzachar, “Malware Signature Builder and Detection
for Executable Code,” U.S. Patent EP2189920.

[14] G. Salton, A. Wong, and C. S. Yang, “A Vector Space Model for
Automatic Indexing,” Communications of the ACM, vol. 18, pp. 613–
620.

[15] M. Simeon and R. Hilderman, “Categorical Proportional Difference:
A Feature Selection Method for Text Categorization,” in Proceedings
of the Seventh Australasian Data Mining Conference (AusDM 2008),
2008, vol. 87, pp. 201-208.

[16] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed. Morgan Kaufmann, 2005.

[17] A. Sulaiman, K. Ramamoorthy, S. Mukkamala, and A. H. Sung,
“Disassembled Code Analyzer for Malware (DCAM),” in
Proceedings of the IEEE International Conference on Information
Reuse and Integration (IRI-2005), 2005, pp. 398-403.

[18] Jau-Hwang Wang, P. S. Deng, Yi-Shen Fan, Li-Jing Jaw, and Yu-
Ching Liu, “Virus Detection using Data Mining Techinques,” in
Proceedings of IEEE 37th Annual 2003 International Carnahan
Conference on Security Technology, 2003, pp. 71-76.

[19] R. Moskovitch et al., “Unknown Malcode Detection using OPCODE
Representation,” in Proceedings of the 1st European Conference on
Intelligence and Security Informatics (EuroISI 2008), 2008, pp. 204-
215.

[20] R. K. Shahzad, S. I. Haider, and N. Lavesson, “Detection of Spyware
by Mining Executable Files,” in Proceedings of the International
Conference on Availability, Reliability, and Security (ARES 10), 2010,
pp. 295-302.

[21] CNET, “Free Software Downloads.” [Online]. Available:
http://download.cnet.com/. [Accessed: 02-Jan-2010].

[22] F-Secure Corporation, “F-Secure - A Global IT Security & Antivirus
Provider.” [Online]. Available: http://www.f-secure.com/. [Accessed:
02-Oct-2010].

[23] “The Netwide Assembler: NASM.” [Online]. Available:
http://www.nasm.us/. [Accessed: 13-Jul-2010].

[24] W. W. Cohen, “Learning Trees and Rules with Set-valued Features,”
in Proceedings of the Thirteenth National Conference on Artificial
Intelligence, 1996, pp. 709-716.

[25] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers Inc., 1993.

[26] J. Platt, “Sequential Minimal Optimization: A Fast Algorithm for
Training Support Vector Machines,” Technical Report MST-TR-98-
14. Microsoft Research, 1998.

[27] C. Feng and D. Michie, “Machine Learning of Rules and Trees,” in
Machine learning, neural and statistical classification, Ellis Horwood,
1994, pp. 50-83.

[28] T. Cover and P. Hart, “Nearest Neighbor Pattern Classification,”
IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21-27,
Jan. 1967.

[29] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, Oct. 2001.

[30] F. Provost, T. Fawcett, and R. Kohavi, “The Case Against Accuracy
Estimation for Comparing Induction Algorithms,” in Proceedings of
the Fifteenth International Conference on Machine Learning (ICML
98), 1998, pp. 445-53.

