
An Architecture for Secure Searchable Cloud
Storage

Robert Koletka
Department of Computer Science

University of Cape Town,
South Africa

Email: robert.koletka@uct.ac.za

Andrew Hutchison
Department of Computer Science

University of Cape Town
Cape Town, South Africa

Email: hutch@cs.uct.ac.za

Abstract—Cloud Computing is a relatively new and appealing
concept; however, users may not fully trust Cloud Providers
with their data and can be reluctant to store their files on Cloud
Storage Services.

This paper describes a solution that allows users to securely
store data on a public cloud, while also allowing for searchability
through the user’s encrypted data. Users are able to submit
encrypted keyword queries and, through a symmetric searchable
encryption scheme, the system finds all files with such keywords
contained within.

The system is designed in such a manner that trust from
a public cloud provider is not required. The solution satisfies
confidentiality of data; data integrity is maintained, file sharing
is catered for and a user key-revocation scheme is in place. A
further advantage of this approach is that if there is a security
breach at the cloud provider, the user’s data will continue to
be secure since all data is encrypted. Users also do not need to
worry about Cloud Providers gaining access to their data illegally.

The architecture of the system consists of two components,
the Client side application and the Server application running
on the compute cloud. The client side application performs
all the security operations on the data. Along with saving and
retrieving data from the Storage Service, the Server application
performs the processing involved in handling the encrypted
queries. The performance overheads of such a system are
potentially significant in terms of additional processing time and
the size of the additional meta-data needed.

Preliminary results show that the storage overheads remain
fairly constant as input file sizes increase - as file sizes were
increased from 3Kb to 147Mb, the security overhead remained
between 1038b and 1053b. This overhead is basically insignificant
when storing large files.

Overall the benefits of a searchable encrypted cloud service
are significant and the approach is viable for using public clouds
while still retaining control of the data.

I. INTRODUCTION

Cloud computing is a model where various services are
offered over the Internet. There are a wide variety of services
offered by major companies, from applications to virtual
machines to storage space. By using a cloud provider, users
need not worry about the underlying implementations and
technicalities. For example, if a user has a Virtual Machine

(VM) running on Amazon’s Elastic Compute Cloud (EC2).
The user does not need to worry about the complexities of
running a data center. Users interact with the service by using
the interface provided.

There are various levels of abstraction in Cloud Computing,
namely Infrastructure as a Service(IaaS), Platform as
a Service(PaaS) and Software as a Service(SaaS). The
difference between these is the amount of control users have
over the software stack.

As appealing as the concept is, there are disadvantages,
as described by Armburst et al. in [1]. In their work they
describe a number of obstacles within the Cloud Computing
space, such as the ”Data Confidentiality” obstacle. A common
sentiment is that companies do not want to store their sensitive
corporate data within the cloud.

For this reason it was necessary to investigate a method
for providing users with a way of storing their data on a
Public Cloud without concern about security breaches at the
provider, or the provider accessing their confidential data.
Searching through encrypted data was an issue so it was
necessary to use current research in Searchable Cryptography
to allow users to search through their encrypted content.

The paper is structured as follows: Section 2 introduces
Related work. Section 3 describes the Requirements of such
a system. Section 4 covers the Data Structures used in the
system. Section 5 discusses the Architecture of the system
and Section 6 will discuss the Preliminary Results gathered
by this research. The paper concludes with some analysis in
Section 7 and propose some future work ideas in Section 8.

II. RELATED WORK

There are a large number systems that have been designed
to secure distributed storage. These storage systems that
don’t trust the storage medium are the most relevant in our
work. Systems like Sirius [2], Secure Network-Attached
Disks [3] and Plutus [4] all secure the data at the client
before sending it to the server. This technique allows data
to be stored on untrusted servers and so, even if there is a

TABLE I
SYSTEM REQUIREMENTS

Confidentiality Ensure the Confidentiality of the data being
stored

Integrity Maintain the Integrity of the data to ensure
that it has not been tampered with.

File Sharing Ensure that File Sharing can be catered for.

Key-Revocation Allow for Key-Revocation when user rights
need to be removed.

Searchability Ensure that there is Searchability within the
encrypted data.

Compromised Keypair Ensue that the system can recover from a
Compromised Keypair.

Access Control Ensure Access Control to the server.

security breach at the server, the data will not be compromised.

Searchable encryption is the idea that a user can encrypt
data and then search for keywords within that data later to
find possible matches. Our work uses the techniques used by
Waters et al. [5]. They developed two systems that use both
symmetric and asymmetric searchable encryption techniques.
Their work is in turn based on the work done by Boneh et al
in [6].
Waters et al. [5] develop a system using two different
types of searchable schemes. The first is a symmetric
scheme and the second is an asymmetric scheme. They state
that a major drawback of the symmetric scheme is that an
adversary may compromise the secret key stored by the server.

Major Internet companies have found it commercially viable
to sell unused computing resources to the public. In order to
achieve this these companies have had to develop systems that
can handle very high system loads and that can scale across
hundreds of thousands of servers. Companies such a Google,
Facebook and Amazon have published a few papers on how
they achieve scalable storage. Google uses the Google File
System(GFS) [7] to store its large amounts of data. Many
higher level services such as Big Table [8] run on top of GFS.
Facebook uses Cassandra [9] for their mailbox storage system.
Amazon uses Dynamo [10] for their key-value store as used by
many of their services. A lot of these systems use Consistent
hashing [11] or some variant to achieve scalablility.

III. SYSTEM REQUIREMENTS

Before designing the system it was necessary to consider
the security requirements for this system. The security require-
ments are displayed in Table I

The system needs to ensure that the data being stored
remains confidential; this means that only authorised users are
able to gain access to encrypted content. The system needs to
ensure that the integrity of a file is maintained and to detect any
unauthorized changes. As with any file system, there has to be
mechanisms in place to ensure that files can be shared amongst
users. With the ability to provide users with access rights, the

Fig. 1. Secure File Object Data Structure

system should also be able to remove user rights. Filtering
through encrypted data is an issue, so it was necessary to
provide users with the ability to search through encrypted
content and return results matching such queries. The system
should also be able to recover from a compromised key pair.
The system must ensure that only valid client applications are
able to connect to the server.

IV. SYSTEM DATA STRUCTURES

A. Secure File Objects

The Secure File Object (SFO) is the container that is used
to securely store data on a Storage Service. All operations
performed on this container are handled on the client; any
unauthorized changes or modifications on this container will
be detected at the client.
In order to fulfill the requirements specified in Section III the
SFO needs to have a number of meta-data fields. The Fields
needed are shown in Figure 1.

Each user of this system needs a Public/Private Key-pair
as this allows for non-repudiation.
Data and SFO integrity is maintained by the Encrypted Data
and Secure File Object digests. The Secure File Object digest
can only be created by the file owner, whilst the Encrypted
Data digest is created by any user that has write access.
The SFO digest is a signed hash(Signed with the owners
Private Key) of all the fields to which only the owner can
modify. The Encrypted data digest is simply a signed hash

of the encrypted data field, signed by the Last Modified
Users Private key. The encrypted keywords field is the list of
keywords encrypted using a symmetric encryption algorithm.
Its use is further explained in Section V-E

User rights are maintained using the two lists, namely the
Read List and the Public Key List. The read list is simply a
mapping of a User ID to an encrypted File Encryption Key
(FEK). The FEK is encrypted with the user’s Public Key -
this allows the user to retrieve the FEK by looking up the
User ID from the list and decrypting with the corresponding
Private Key.

The Public key list is used for three operations: Integrity
Checks, Write Access and Key-Revocation. The Public Key
list maps User IDs to a [Public Key,IsWriter] tuple. When a
user modifies the encrypted content, that user generates an
encrypted data digest which is signed with the user’s private
key. The user then sets the Last Modified User ID field with
his own User ID. Subsequent users can then look up the Last
Modified Users ID Public Key in the Public Key list and use
that to check the integrity of the Encrypted Data digest.
The Public key list is used to maintain a list of users with
write access rights. This is done by setting the IsWrite field.
If a user’s write flag is set, this means that a user has rights to
modify the content. If an unauthorized user modifies content
then this transgression will be detected by subsequent users.
Key-Revocation is achieved by generating a new FEK and
using the Public Keys stored in the Public Key list to generate
a new Read List.

1) Malicious Users: The design of the system assumes that
users can be trusted, i.e. if an owner grants access to a user,
that user will not be malicious. However measures should
be in place so the the system can detect any malicious activity.

If a user is granted read access, that user can modify the
contents, generate a Encrypted Data Digest and set the Last
Modified User ID field. However, when the next user loads
this file, that user will do an integrity check. As mentioned
an integrity check is done by looking up the Public Key of
the Last Modified User; since this IsWriter flag is not set, the
system will generate an error because an unauthorized user
has modified the contents.

If a read user adds write rights then this change will be
detected by subsequent users since the malicious user is
unable to generate a Secure File Object Digest. This will
inform subsequent users that there has been an unauthorized
change to the user permission lists.

There is another problem with malicious users that is not
easily fixed and a suitable solution is beyond the scope of this
research. That is the problem of a user taking ownership away
from the file owner.
Since all read users have access to all fields of the SFO, they

can create a new SFO (thus becoming the file owner), copy
the encrypted contents of the old SFO along with the read and
public key list, name the new SFO to that of the old SFO, and
delete the old version. To the other readers the file will still
look the same, however, the file has changed owners.
A solution to this problem is to implement a Public Key
Infrastructure (PKI) that allows users to check whether a File
ID maps to a given Owner Public Key. As this is outside the
scope of this research, a more naive approach was taken. The
file owner stores a local copy of the file list. This file list is
then used to do a reconciliation with the files store on the
Storage Service. Should there be a difference, then the owner
knows that some malicious activity has occurred.

B. Secure File Object Key Words

The Secure File Object Key Words(SFO Keywords) is
used to store the secure keywords as generated by the
owner. For every SFO stored in the Storage Service, there
is an attached SFO keywords File. These files are used
by the Server Application to perform the cryptographic
operations necessary for searchable cryptography as detailed
in Section V-E.

The SFO Keywords three fields are as follows:

• Random Bit String.
• Flag.
• List of encrypted Keywords.
How these three fields are related and used in finding

specific keywords is explained in more detail in Section V-E.

C. Network Messages

This system uses two types of network messages: a Request
Message and an Authentication Token.
The authentication token is used by the client to securely
transmit data across the network to the server. The fields in
the authentication token are as follows:

• Key / Container
• Encrypted Nonce
• Hash
These fields are used by the system in the authentication

process to establish a session key. Key / Container field
is used to transport the Encryption keys as well as other
information such as the access key hash. The encrypted nonce
is used for freshness as well as authenticating the server. The
hash field is a digest of the message, the details of which will
be explained in Section V-C.

The Request Message is used for the file-system operations
of the system. This message is sent from the client to the
server instructing the server which operation to perform. The
fields of this message are as follows:

• Container
• Message Type
• Digest

The Container field is used to pass any additional informa-
tion along with the request, such as a Search Capability or an
Object ID. The Message Type field instructs the server as to
the type of request that is being sent and the Digest is used to
maintain Integrity. The details of these operations and the use
of the Request Message will be explained in Section V-D.

V. SYSTEM ARCHITECTURE

The design of this system had to use techniques from secure
distributed storage systems where the storage medium is not
trusted. This allowed for all trust to be removed from the Cloud
provider.
The system was designed to have two components: a client
application that will handle all the security operations, and
a server application running within the Compute Cloud1 that
will interact with the Storage Service2 as shown in Figure 2.
The server application will also provide users with the ability
to search for keywords.

A. Client Application

As mentioned earlier, the client application is responsible
for all the cryptographic operations that will be performed on
the SFO. The user logs into the application providing an RSA
Keypair as specified in a settings file. The Settings file also
includes the address of the Compute Cloud Server Instance,
the ID of the User Logged in, the Alias within the keystore
and Storage Access keys.
Once a user is logged in they can perform a number of
functions based on their access rights. A user with read rights
can perform the following operations:

• Load an SFO from the Storage Service
• Check the SFO and Data integrity
• List Users and Rights
• Save an SFO to the Storage Service
• Save the SFO contents to the File System.
The only operation that may seem peculiar is ”Save an

SFO to the Storage Service”. These users can perform this
operation since they are not allowed to change the contents, so
in essence they are simply uploading the same SFO that they
have downloaded. As mentioned in Section IV-A1, malicious
users with only read access can modify file contents but such
actions will be detected because these users cannot generate
a contents digest.

Users with write access rights can perform all the operations
of the read users along with the following operations:

• Modify Contents
• Generate Encrypted Data Digest
• Set Last Modified User ID
As explained in Section IV-A, users with write access need

to be able to generate the Encrypted Data Digest and set the
Last Modified User ID so that subsequent users can validate
the authenticity of the changes performed on the contents.

1Such as Amazon’s Elastic Compute Cloud
2Such as Amazon’s Simple Storage Service (S3)

The file owner has rights to perform all the operations of
the previous two users along with the following operations:

• Create SFO
• Add Users
• Modify User Rights
• Remove Users
• Generate SFO Digest
• Generate Secure Keyword list
• View / Modify Keywords
• Generate Search Capability
Only the file owner is allowed to modify the keywords

attached to a file. The details of these operations is explained
in Section V-E.

The Client application executes a number of file system
commands namely:

• Put
• Get
• Delete
• List
• Search
The Put command is used to store an SFO on the Storage

Service. The Get command is used to retrieve a file from
the Storage Service given a file name. The Delete command
is used to delete an object from the Storage Service given
a file name. The List command is used to return a list of
items within the Storage Service3.The Search command takes
a search capability and sends this request to the server; the
server then responds with a list of files matching the search
capability as explained in Section V-E.

B. Server Application

The Server Application is used to handle all client requests
and runs in the Compute Cloud. This application is used to
authenticate clients and provide a secure connection between
the client and the Storage Service. The bulk of the processing
that is performed is when responding to search queries as
described in Section V-E, otherwise it simply receives requests
and pushes them forward to the Storage Service.

C. Authentication Protocol

Each client has a local copy of the server’s Public Key. The
client uses this key to establish a secure connection between
itself and the server. The client generates a symmetric session
key, encrypts this key with the server public key and sends it
to the server. The client then sends its public key, a nonce
and the Access Key hash all encrypted with the session key
to the sever.
In order for the server to connect to the storage service it
needs these Access Keys4. The server can then validate the
user by hashing its Access keys to those received from the
client. If the hashes match, the client is allowed to access
the system. The server then stores the client’s public key and

3In the case S3, returns a list of objects in the bucket
4In the Case of S3 a secret key and access key is needed

Fig. 2. Overall System Architecture

sends the incremented nonce back to the client. If the client
receives the correctly incremented nonce the client knows
that it is securely communicating with a valid server. The
protocol is displayed formally as follows.

Using the following definitions:
C: Client
S: Server
KS : Session Key
CPu: Client Public Key
CPr: Client Private Key
SPu: Server Public Key
SPr: Server Private Key
AK: Access Keys

The protocol can be represented as follows:
C → S: [H[SecretKey |AccessKey]]EKs

C → S: [[CPu]EKs |[Nonce]EKs |[H[AK]]EKs]
S → C: [Nonce+1]EKs

After establishing a secure connection with the server the
client is then able to securely transmit messages with the
server using the session key, the details of which will be
explained further in Section V-D.

D. File-System Operations

Once a secure connection has been established between
the client and the server as explained in the Section V-C, the
client can then send file operation requests to the server. If
the client wishes to send an object to the server, the client
creates a new Secure File Object and then sends this object
to the server along with a digest encrypted with the session
key. The server can thus confirm the integrity of the message
and the authenticity of the object, formally shown below.

Using the following definitions:
C: Client
S: Server
KS : Session Key

MT: Message Type (File System Operation)
Co: Container
SH: SFO Hash
SFO: Secure File Object

The protocol can be represented as follows:

1) Upload Commands: Such as sending a file to the Server
C → S: [MT |Co |[H[MT |Co]]EKs]
C → S: [SFO]
C → S: [MT |SH |[H[MT |SH]]EKs]

2) Download Commands: Such a receiving a file or file list
from the server.
C → S: [MT |Co |[H[MT |Co]]EKs]
S → C: [SFO]
S → C: [MT |SH |[H[MT |SH]]EKs]

E. Searchability

This is the operation when users can submit encrypted
keywords to the server. The server then performs cryptographic
operations over the files in the Storage Service, returning
the results of the query. The scheme used by the server
to determine the results of the query is derived from the
Searchable Symmetric scheme that was developed in [5].
Waters et al. [5] developed two schemes in their research;
a symmetric and an asymmetric searchable scheme. The
symmetric scheme was chosen as it has a performance
advantage over the asymmetric scheme. The advantages of
an asymmetric scheme over the symmetric scheme are also
not applicable to this system. It is important to note that
generating these searchable keywords is a one-way process.
Once a searchable keyword is generated, there is no way of
retrieving the original keyword. For this reason there is an
encrypted keywords field attached to each SFO. This field is
encrypted using a symmetric algorithm with the file owner’s
secret key so that only the owner may see what searchable
keywords are attached to a specific SFO. This extra field in

the SFO plays no part in the query process though.

1) Secure Keyword Generation: In order to provide
the secure searchability functionality, there are number of
extra parameters needed. Each list of keywords needs a flag
and a random bit string r as stored in the Secure File Object
Keyords file Section IV-B. Let Wi be the i-th word in the
keyword list. HS is a hash function keyed with the secret S.
Hmac-SHA1 is used for the hash function H and padding is
some random bits. For each keyword the server computes the
following:

ai = HS(Wi), bi = Hai(r), ci = bi⊕ (flag |padding)

ci is the encrypted keyword that will be used by the server
to determine which ci matches a given search capability. The
list generate by creating ci from each wi is stored together
with the SFO when uploaded to the Storage Server.

2) Keyword Search: Once the owner has created an
Encrypted Keywords List (EKL) for an SFO and uploaded
this SFO along with the keywords to the Storage Service,
users are able to submit search capabilities and receive search
results.
Search capabilities can only be generated by the file owner
since the secret S is needed. If a user wishes to get a search
capability for keyword W then the owner will generate it as
follows:

dw = Hs(w)

The Owner then provides this search capability to the user,
who then sends it to the server. Upon receiving dw the server
then performs the following operations per file.

p = Hdw
(r), since r is stored with the encrypted keyword

list. For each ci in the EKL the server computes:
x = p⊕ci.

If the first l bits of x match the flag then there is a match for
the current file. It returns the file name as one of the search
results. This operation is repeated for every file in the Storage
Service.

VI. PROOF OF CONCEPT PRELIMINARY RESULTS

In developing a secure storage system, it is necessary
to keep the security overhead low with regards to performance
and storage. A user would not want to wait for long periods of
time while the system is busy performing all the cryptographic
operations. Since this system is storing data on a Storage
Provider, one does not want to have a large security storage
overhead since this will incur higher usage costs.

Figure 3 shows a graph of the security overhead for
varying file sizes for AES and DES encryption algorithms.
This experiment was set up to only have one user per

Fig. 3. Additional Security Storage Overhead

Fig. 4. Additional Security Storage Overhead as a Percentage of Input Size

file and only four secure keywords of five characters
in length per file. All the filenames were six characters
in length. It is important to keep these attributes static as
they can distort the security overhead sizes of the various files.

The total overhead is the overhead of the SFO as well
as the overhead of the Secure File Object Keywords file.
The size of the flag and random bit string depends on input
parameters. In this experiment the sizes of each were 17b and
65b respectively. The size of the encrypted keywords field for
four keywords was 80b which equates to 162b of additional
secure keywords storage per Secure File Object.

The file sizes range from approximately 3Kb to 147Mb.
As is shown in the graph the size of the security overhead is
between 1038b and 1053b.

VII. ANALYSIS

Preliminary results show that this system places very
little overhead on files. In doing an analysis of the Secure File
Object data structure, the additional storage needed comprises
of a static amount plus a variable amount that is dependant
on the number of read and write users and the number of

keywords, as shown below:

Overhead = 566b + 136b(r) + 136b(w) +8b(w)

where b is bytes and 556b is comprised of the new
file name and the owner idADD (however these size changes
are negligible). According to [12] the average length of an
English word is 4.5 letters, rounded up to 5 letters, and
equates to approximately 8 bytes of encrypted text hence the
8b(w).

As shown in Figure 3, using a DES encryption scheme
is more efficient in terms of storage overhead than an AES
encryption scheme. The overhead formula does not take into
account the increase in size of the encrypted content, meaning
how much more space does the encrypted data occupy over
the unencrypted data. On average this was approximately 4
Bytes more with a Standard Deviation of 2.47. The spikes in
the graph are due to the additional padding needed by the
DES and AES encryption algorithms. These spikes are never
more than one block; for DES this is an additional 8 bytes
and 16 bytes for AES. It is for this reason that the AES graph
has larger spikes than the DES graph.

Figure 4 illustrates the percentage overhead of security
for a given input size. The graph shows that as the size of the
input file increases, the percentage overhead drops. This is due
to the security overhead remaining fairly constant, regardless
of the input size. For files of 10Kb in size, the overhead is
approximately 10%, then as the file sizes increase over 200Kb
this overhead drops to below 1%.

VIII. CONCLUSION AND FUTURE WORK

This paper has shown that Searchable Secure Storage
can be achieved on a Public Cloud provider with minimal
storage overheads. Users are able to store their data securely
on an untrusted Cloud Storage service along with the ability to
search through their data. The architecture follows a traditional
Client / Server model with the client performing all the
cryptographic operations and the server performing the search
operations in a secure and confidential manner. Preliminary
results show that the security overhead with regards to space
is minimal. As file sizes increase, the percentage overhead
becomes less than 1% for file sizes greater than approximately
200kb. The processing overhead for this system is currently
being investigated.
Further research includes exploring the use of encrypted
indexes in improving the processing time needed to respond
to user queries.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “Above the clouds:
A berkeley view of cloud computing,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS 2009 28, 2009.

[2] E. Goh, H. Shacham, N. Modadugu, and D. Boneh, “SiRiUS: Securing
remote untrusted storage,” in Proceedings of the Tenth Network and
Distributed System Security (NDSS) Symposium. Citeseer, 2003, pp.
131–145.

[3] E. Miller, D. Long, W. Freeman, and B. Reed, “Strong security for
network-attached storage,” in Proceedings of the 2002 Conference on
File and Storage Technologies (FAST), 2002, pp. 1–13.

[4] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, “Plutus:
Scalable secure file sharing on untrusted storage,” in Proceedings of the
2nd USENIX Conference on File and Storage Technologies. USENIX
Association, 2003, pp. 29–42.

[5] B. Waters, D. Balfanz, G. Durfee, and D. Smetters, “Building an
encrypted and searchable audit log,” in ISOC Network and Distributed
System Security Symposium (NDSS 2004). Citeseer, 2004.

[6] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public key
encryption with keyword search,” in Advances in Cryptology-Eurocrypt
2004. Springer, 2004, pp. 506–522.

[7] S. Ghemawat, H. Gobioff, and S. Leung, “The Google file system,” in
ACM SIGOPS Operating Systems Review, vol. 37, no. 5. ACM, 2003,
pp. 29–43.

[8] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. Gruber, “Bigtable: A distributed storage
system for structured data,” ACM Transactions on Computer Systems
(TOCS), vol. 26, no. 2, pp. 1–26, 2008.

[9] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 35–40, 2010.

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” ACM SIGOPS Operating
Systems Review, vol. 41, no. 6, pp. 205–220, 2007.

[11] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the World Wide Web,” in Pro-
ceedings of the twenty-ninth annual ACM symposium on Theory of
computing. ACM, 1997, pp. 654–663.

[12] C. Shannon, “Prediction and entropy of printed English,” Bell System
Technical Journal, vol. 30, no. 1, pp. 50–64, 1951.

