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0. Introduction

In the course of the extensive research that has been done on problem solving 
in Al, several rather distinct ways have emerged for representing and thinking 
about problem solving tasks. One way to view problem solving is as search. We 
postulate some kind of space in which treasures are hidden. We build symbol 
structures (nodes) that model this space, and 'move' operators that alter these 
symbol structures, taking us from one node to another.* In this metaphor, 
solving a problem consists in searching the model of the space (selectively), 
moving from one node to another along links that connect them until a 
treasure is encountered.

A second way of viewing problem solving is as reasoning. We postulate a 
system of logic that allows us to deduce new statements from axioms and 
previously deduced statements. We represent a problem by a set of axioms in 
the formal language of our logic. In this metaphor, solving the problem consists 
in accumulating more and more information (more and more statements) by 
inference until the answer to the problem has been found.

A third way of viewing problem solving is as constraint satisfaction. We 
postulate a set of objects and various subsets defined by the constraints they 
satisfy. In this metaphor, solving a problem consists in narrowing down the 
original set to a subset or unique object that satisfies all of the constraints.

In no sense are the metaphors mutually exclusive; metaphors seldom are. 
The same problem-solving algorithm can be viewed, now as search, now as 
reasoning, now as constraint satisfaction. Consider, for example, a simple 
theorem-proving program that works forward from a set of axioms, applying its 
rules of inference to these to obtain new expressions that can be added to the
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axiom set. When it finishes tracing a path to a desired theorem, it has 
succeeded. Clearly it is a search algorithm.

At the same time, the theorem prover is adding, at each step of its search, 
new propositions that follow logically from its axioms. It is gradually ac­ 
cumulating a larger and larger collection of deduced propositions. Clearly it is 
reasoning.

Moreover, the theorem prover does not search in the space of all possible 
well-formed expressions. Each of the new expressions it creates is guaranteed, 
by the manner of its creation, to be deducible from the axioms. Expressions 
that do not satisfy this deducibility constraint are simply never generated. 
Clearly the theorem prover is also a constraint-satisfying system.

Although all three metaphors may be applied to the same algorithm, they do 
not say the same things about it or call attention to the same aspects of the 
problem-solving process. The search and constraint metaphors focus upon the 
process of finding the problem solution, while the reasoning metaphor focuses 
upon the logical validity of the linkage between initial problem state and 
solution. Search is centrally concerned with discovery, reasoning with proof.

The search algorithm is continually analyzing the situation from new view­ 
points, migrating from one state to another. Assertions that are true in one 
situation, or state, in the search space may not be true in other situations. 
Consider, for example, a search algorithm for choosing chess moves. At any 
given moment the algorithm focuses upon a particular chess position in which 
certain specified relations hold among the pieces. When the algorithm con­ 
siders a new move, the situation changes. Relations that held in the original 
position may no longer hold, and new ones may have been established. We 
cannot rely on the proposition, from previous knowledge, that the Queen is 
still pinned, or that the Rook is not attacked. Information is situation-specific 
and must be continually updated.

The reasoning algorithm is viewed as accumulating information. When the 
working-forward theorem prover takes a step, deducing a new theorem, all the 
theorems that were proved previously remain valid. There is no large question 
of revising or updating information. (We shall see presently, however, that not 
all reasoning systems are truth-maintaining or cumulative.)

The constraint-satisfying algorithm is viewed as taking giant steps. It does 
not create new objects, painstakingly, one at a time. Instead, it starts with the 
entire space of objects and eliminates whole classes of them at a step by 
applying successive constraints, until it has narrowed the set down to objects 
that satisfy all of the constraints.

It is the purpose of this paper to throw some light on the relations between 
the search and reasoning approaches to problem solving, and in particular to 
explore some of the issues that have been raised about the adequacy and 
efficiency of each of these approaches for solving problems in particular kinds 
of problem domains. It will not aim at comprehensiveness, but will focus on a
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small number of questions that seem fundamental. In particular, it will omit any 
discussion of the constraint-satisfaction approach.

The discussion will be organized in five main sections, the first devoted 
mainly to reasoning systems, the second to search systems, the third to 
comparing and contrasting the two types of systems when they are employed 
for problem representations that have real-world denotations, the fourth to the 
generation of representations for real-world problems, and the fifth to the 
continuing readjustment of representations to reality.

I 
1. Problem Solving as Reasoning

The reasoning metaphor the idea that problem solving consists in applying 
reason to problem situations has appealed to many researchers in artificial 
intelligence. 1 Some but not all of them have interpreted 'reasoning' to mean the 
use of a formal system of logic, the standard predicate calculus2 or some other, 
to represent and operate upon the problem situation.

1.1. Reasoning as logic

Landmark publications developing the idea that reasoning is to be equated 
with the employment of formal logic include McCarthy's "Programs with 
common sense" [4] and the McCarthy and Hayes paper, "Some philosophical 
problems from the standpoint of artificial intelligence" [6]. These papers are 
especially concerned with augmenting standard logic with supplementary in­ 
ference processes to handle the modal relations of possibility and causality that 
arise in reasoning about actions.

The domain of resolution theorem proving has always equated problem 
solving with deductive logic or to put the matter otherwise, has conceived of 
formal theorem proving systems as the fundamental engines for problem 
solving. Research in this domain has generally stayed within the boundaries of 
the standard predicate calculus, except that it was soon recognized that, in 
order to reduce search to manageable proportions, there had to be some 
replacement of axiom sets by additional inference rules to allow reasoning to 
move foreward in macro-steps.

Finally, in recent years, there has been considerable interest in systems for 
drawing inferences from information stored in large data bases, often in the 
form of semantic nets. The problems encountered in this domain have led to a 
burgeoning of non-standard, and usually non-monotonic, logics to deal with the 
need for terminating inference processes before all paths are exhausted, the 
need for providing default values to supply missing explicit information, and

'Note, for example, the emphasis upon predicate calculus representations in a standard textbook 
like Nilsson [7].

2I will use the phrase 'standard predicate calculus' as a shorthand for 'first-order or higher-order 
predicate calculus'.
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the need for resolving contradictions arising from the application of non- 
standard inference procedures [1].

What is shared in common among all of these approaches is the idea that 
reasoning should somehow be equated with the use of deductive logic. The 
near-synonymity of 'reasonable' and 'logical' in ordinary language lends seduc­ 
tive plausibility to this view. It is sometimes even demanded, especially in 
theorem proving, that the systems employed pass tests of completeness. Al­ 
though there seems to be a general preference for the standard predicate 
calculus over other formalisms, task demands have gradually forced departures 
from it. I have mentioned three kinds of deviations or augmentations  
above: addition of modal operators, augmentation of inference rules to simplify 
the axiom systems, and departures that admit non-monotonicity.

1.2. Reasoning in mathematics

Now the reasoning we ordinarily encounter in mathematics, and especially in 
applied mathematics, does not restrict itself to the explicit axioms and in­ 
ference rules of the predicate calculus, but uses much more powerful inference 
procedures. A linear equation, for example, can be rearranged to express any 
one of its variables as a linear function of the others. Each step of the 
rearrangement does not have to be justified by referring it back to the axioms 
of arithmetic and algebra although it presumably could be so justified. We 
simply define convenient sets of operators ('macros') to make such rearrange­ 
ments and use them as needed when we solve equations.

It is, of course, possible to introduce such operators formally through a 
higher-level axiomatization, or to embed them in a reasoning system by a 
device like Weyhrauch's [13] 'semantic attachment', which allows one to 
construct programs of arbitrary complexity in order to model syntactic struc­ 
tures of the formal system semantically. But in approaches of this hybrid kind, 
the semantic components have the properties of search systems rather than 
reasoning systems, and when they are relied upon to do all, or most, of the 
work of the logical system, one wonders what is gained by the formal syntactic 
embedding. The same comment applies to Nilsson's [7] proposal for introduc­ 
ing 'procedural attachments' into reasoning systems. Procedural attachments 
are operators of arbitrary complexity embedded in formal systems.

It will be useful to look at a simple example of problem solving (see [9] for 
additional discussion) that employs mathematical reasoning without making 
explicit the formal logic on which it rests. This particular example embodies 
both the metaphors of search and of reasoning, but especially the latter. 
Viewed as search, it employs a process of working forward, from initially 
known premises to conclusion. Viewed as reasoning, it employs a process of 
accumulating knowledge, until the values of all desired quantities have become 
known. A salient characteristic of systems that solve problems by accumulating
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knowledge is that once a statement is known to be true, it remains true. At no 
later step in the process can it lose its validity, once that has been established. 

Consider now the problem:

A partially filled beaker contains one liter of a 90% alcohol-water 
mixture. How much water must be added to dilute the mixture to 
80% alcohol?

What is known initially about the problem is that certain equations hold (e.g., the initial amount of alcohol equals 0.9 times the total initial quantity of 
liquid), and that certain quantities are given (e.g., the initial quantity of liquid is 
one liter). Other quantities are initially unknown (e.g., the amount of water to be added).

But the information given explicitly in the problem statement is by no means 
adequate for solving it. In addition to the equations that can be extracted from 
the statement, a number of others must be supplied by the problem solver. He 
is assumed to 'know' (irrespective of whether it is true empirically) that 
quantities of liquids are additive; that, for example, the final volume of the 
liquid is one liter plus the volume of the water added.

In this extremely simple problem situation (which is not simple, by the way, 
for most students of algebra), at least ten equations can be written down directly: (1) A, + dA = A2, (2) W, + dW = W2, (3) T, + dT = T2, (4) A, + W, = 
T,, (5) dA + d W = dT, (6) A2 + W2 = T2, where A, W, and T stand for alcohol, 
water, and liquid, respectively, the subscripts, 1 and 2, for quantities before and 
after water is added, and d for the amounts added. In addition, we have (7) A l = 0.9T,, and (8) A2 = 0.8T2. Finally, since no alcohol is added. (9) dA = 0, and 
(10) we are told that T, = 1.

A simple production system could solve each of these equations for the 
remaining unknown as soon as values were found for all but one of its 
variables. This system would rapidly arrive at the desired value for dW. For 
example, since T\ is known from (10), it could solve (7) for A\, and substitute 
that value and dA = 0 from (9) in (1), then solve the latter for A2. That value 
substituted in (8) yields T2, which substituted in (3) with the known value from 
(10) for TI, gives dT". Since dA and dT are now both known, (5) can at last be solved for d W.

The particular solution path just given is not unique; in fact there are 21 
different derivation sequences, each leading to the answer in five to seven 
steps. Different members of this set of sequences could be produced by slight variants of the production system. Notice that in this problem environment, 
there is no danger of exponential explosion from uncontrolled search. Initially, there are ten equations, not all independent. Each time the value of a variable 
is found, it can be stricken from the 'wanted list" and its value substituted in all 
the equations in which it appears. This sequence of actions needs be performed 
only once for each variable, and only a subset of the equations needs to be 
solved. As values are found for successive unknowns, the system quickly runs
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out of things to do and comes to a halt with the desired answer. The secret of 
its convergence is that it does not create new variables beyond those intro­ 
duced by the initial representation.

This is, of course, a trivial example3, although an examination of textbook 
problems in physics (kinematics and thermodynamics) reveals that it is not 
atypical of problems encountered in science courses. Experts typically solve 
these problems by working-forward methods that require little or no initial 
planning and that are very similar to the production system that I have sketched 
above.

In the algebra example, the explicit problem* statement mentions only three 
of the ten equations that are implicit in the situation (equations (7), (8), and 
(10)). All the rest, which mainly take the form of conservation laws, are 
supplied by the problem solver, who generates, in effect, the bounded problem 
space in which he then conducts his search4 . Thus the problem statement does 
not contain all of the information that is required to solve the problem. It relies 
on the 'common sense' as John McCarthy and others call it of the solver to 
provide a great many essential premises. In fact, in this particular case (and in 
many other textbook problems), it requires the solver to provide an assumption 
that is empirically false, for the volume of a mixture of water and alcohol is not 
exactly equal to the sum of the volumes of the water and the alcohol. Similarly, 
in textbook problems about falling bodies, the solver is generally expected to 
proceed as if the fall were taking place in a vacuum, unless the contrary is 
explicitly mentioned.

It cannot be emphasized too strongly that the additional premises that must 
be supplied by the problem solver are empirical, and represent knowledge that 
he has about the world. Hence, it would be unreasonable to try to provide 
these premises by strengthening the logic used in the problem solving5 . Doing 
so would only lead to error on other problems where different empirical 
assumptions were to be made. There is no substitute for the problem solver 
knowing what can validly be assumed about the empirical situation in the 
context of any given problem. I shall have more to say later about how this 
knowledge might enter into the problem solving process.

3It can be trivialized further by making some of the explicit assumptions implicit. For example, if 
we make A\ = AI = A, suppressing the subscripts since the amount of alcohol is not changed, and 
if we rewrite equation (3) as T\ + d W = Ta, then we need only equations (3), (7), (8), and (10) which 
we solve successively for T\, A2, TI, and dW.

4In the simplified representation of footnote 3 equation (3) is one conservation assumption, the 
identification of A\ with A2 from equations (1) and (9) is the other.

5Of course, this particular consideration argues only against embedding these premises in the 
axioms of the logic, not against expressing them in the predicate calculus or some other language of 
logic.
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1.3. Implications of the example

Several lessons, then, can be drawn from the example of the mixture 
problem. The first is that nothing is to be gained in a case like this from 
translating the mathematical representation into a more formal representation 
in terms of the predicate calculus. In fact a great deal would be lost: 
specifically, the power of the inference rules of ordinary mathematical reason­ 
ing which reduce the problem space to trivial size and allow a solution to be 
found with the aid of a very simple search control structure. Of course, this 
power may be reintroduced into the formal system by the 'back door' of the 
semantic or procedural attachments mentioned in Section 1.2. But, as I have 
pointed out, using this back door is equivalent to replacing formal reasoning by 
search and modeling. We must beware, then, of equating 'reasoning' with the 
use of the predicate calculus.

The second important lesson is that problems like this one, as ordinarily 
stated, leave essential assumptions implicit, and that these include not only 
logical assumptions (i.e., what rules of inference are permitted), but also factual 
premises. A system for carrying out common sense reasoning must have 
capabilities for supplying appropriate factual assumptions.

1.4. Nondeterministic character of logic
The remark was made earlier that search is concerned with discovery, reason­ 
ing with proof. The rules of logic are permissive: they determine what in­ 
ferences may be drawn directly from a set of premises, not what inferences 
must be drawn, or in what order they must be drawn. A logic, taken by itself, 
may be viewed as a non-deterministic algorithm for finding (say, by breadth- 
first search) all of the consequences of a set of premises.

When it is important to be selective in drawing inferences, because the ones 
we are interested in constitute only a few elements in a large space of logical 
consequences, then the logic must be supplemented by some kind of control 
structure. A search strategy must be superimposed upon it. Thus, a system like 
PROLOG consists both of an underlying logic and a working-backward search 
algorithm. In this sense, reasoning processes are a subset of search processes; 
the subset that uses rules of inference as the sole operators.

The nondeterministic character of logic was obscured, in the example we 
have just been considering, by the small size of the total space of consequences 
and the power of the algebraic operators in taking sizable steps in transforming 
expressions. We could be indifferent to the order in which inferences were 
drawn because we would not be seriously delayed or inconvenienced if irrele­ 
vant ones were produced along the way to the consequence in which we were 
interested. As soon as we tackle problems where the search space is large, we 
must be concerned with finding an efficient search algorithm for controlling the 
order of application of operators.
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2. Problem Solving as Search

Although the mixture problem is perhaps most naturally viewed as a problem 
of reasoning, we have just seen that it can also be viewed in terms of search. 
The search space is the space of possible values of the variables that are 
unknowns after the problem has been represented and the conservation laws 
added. Each time the value of one variable has been found, a difference 
between present situation and desired goal has been reduced. The problem has 
been solved when no such differences remain.

The problem is especially well adapted to means-ends analysis because 
eliminating a difference (solving for a variable) does not reintroduce differences 
previously eliminated. Nor does the exact order of elimination matter; as soon 
as an operator is available for solving for a particular variable (i.e., as soon as 
that variable is the only remaining unknown in an equation) it can then 
immediately be applied.

2.1. A more familiar search problem
Nevertheless, the mixture problem is a rather atypical search problem. The 
venerable Missionaries and Cannibals problem will be more suitable for illus­ 
trating search processes. The problem is usually represented in terms of a set of 
states, each corresponding to a particular distribution of the missionaries, 
cannibals, and boat between the two banks of a river. Move operators act on 
these state representations to change the distribution i.e., to move from one 
state to another.

In the state-space representation, truths are only contingent. We can say, "in 
state A, there are two cannibals on the left bank", but not without 
qualification, "there are two canibals on the left bank". This contingency of 
assertions causes no difficulty when the state representation is used; at any 
given stage in the solution process a particular state S is instantiated. Since S 
incorporates, explicitly or implicitly, what is true of that state, test or inference 
processes can be constructed that will derive propositions that are true in S.

The representation can be viewed as a basis for all of these valid pro­ 
positions. "There are two cannibals on the left bank" is more or less explicitly 
represented, while "there are more cannibals than missionaries on the left 
bank" is more or less implicitly represented. That is to say, a process to test the 
validity of the former proposition will be simpler and more direct than a 
process to test the validity of the latter. 'Explicit' and 'implicit' are relative 
terms, depending both on the representation and upon the primitive tests that 
can extract information from it. Notice that no special logic is needed with this 
representation. The inferences involve, at most, ordinary mathematics. The 
contingency of statements is absorbed by incorporating the value of the current 
state as an argument in all of them.
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2.2. State-space representations

The state-space representation is borrowed from the classical representations 
of physics and other domains of applied mathematics. In these domains, a set 
of basis variables is selected (position and velocity in the case of classical 
dynamics), and each space-time point is characterized by a vector of the values 
of these variables. The laws of the system, typically in the form of differential 
equations, are the 'move operators'. Ordinary mathematical reasoning 
permits inferences to be drawn about the values of variables other than the 
basis variables. *

In the state-space representation the existence of a relatively small and 
parsimonious set of basis variables is of the greatest importance, for it permits 
relatively simple move operators to accomplish the shift from one state to 
another. To instantiate a state it is not necessary to derive all the propositions 
that are true in that state, nor to cancel all the propositions true in the previous 
state that are no longer true. Attention need be given only to the values of the 
basis variables.

There is no requirement, of course, that the representation be minimal in 
this sense. In some circumstances it may be convenient to carry other, redun­ 
dant, variables along as well, updating the values of these at the same time as 
the values of the basis variables are updated. The important point is that such 
redundant updating may be convenient, but it is not necessary. A great deal of 
the power of classical mathematics to represent quite complex systems hinges 
on this fact.

23. STRiPS-like systems

This economy of representation is exploited effectively in systems like STRIPS 
[2]. In order to avoid the necessity of updating every proposition that is true in 
a particular state, the representation is usually limited to a set of basis 
variables, which are updated by application of move operators that add and 
delete elements (propositions) from the representation. Properties of a state 
that are not included in the basis are derived from the basis by ordinary 
reasoning from premises that refer to a single state. Since truth is maintained 
within each state, no special non-monotonic logics are needed. When it is 
desired to keep around information about states other than the current state, 
this information can simply be labeled with the name of the state in which it 
holds.

STRiPS-like systems often provide another important kind of processing 
efficiency. In many systems, the move operators alter only a few characteristics 
of the situations to which they are applied. Properties of the state that are 
unchanged in the succeeding state are simply retained in the representation 
without any need for processing. They now are interpreted as holding in the 
successor state rather than the predecessor state. The differential and
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difference equation systems of physics and economics seldom have this con­ 
venient property, since in general the values of all state variables change at 
each Instant'. But many of the problems we deal with in AI are much kinder in 
this respect, the move operators affecting only a few components at a time.

In the AI literature, STRiPS-like systems have often been treated as reasoning 
systems rather than search systems. (The initial STRIPS publication [2] is sub­ 
titled, "A new approach to the application of theorem proving to problem 
solving".) The analysis here suggests that, on the contrary, their power lies in 
their ability to model the movement of a system through state space without 
updating all the facts about successor states by explicit deduction. This ability, 
in turn, stems from the fact that the move operators serve as powerful 
inference rules, dispensing with the need for repeated reference to an underly­ 
ing formal deductive logic.

2.4. Reasoning about actions

The systems of classical physics with which I have been comparing AI state- 
space search systems are, of course, systems for predicting system behavior, not 
systems for choosing actions. Their move operators define what must happen, 
not what may happen. Their logics are deterministic, not non-deterministic. 
Perhaps different methods are required when the task changes from prediction 
to planning or choice. Perhaps the case for modal or other non-monotonic 
logics rests on the need for considering alternative possible worlds in addition 
to an actual world path.

That this is not the case can be seen by examining any of the many 
normative formal systems that have been constructed in economics and opera­ 
tions research for choosing optimizing or satisficing policies. Techniques like 
dynamic programming, for example, employ state-space representations with 
parsimonious bases, and qualify all assertions about the values of variables by 
the states for which they hold. The visible evidences of this are the time 
subscripts that are prominent in every equation. The methods of reasoning 
employed are the methods of ordinary mathematics; no special logics are 
required or used. In the contemporary logical literature, this approach goes 
under the rubric of 'possible world semantics'. I have discussed the logical 
foundations for these kinds of normative and predictive models more fully in 
[10, Chapters 3.1 and 3.2].

In the literature of non-monotonic and modal logics, I do not believe that it 
has been observed that the physical sciences and economics have, for many 
generations, been using the state-space representation and standard mathema­ 
tical reasoning to analyze the paths of systems through time, and that no 
particular problems of truth maintenance arise. The temporal (or spatial) 
contingency in the values of variables is dealt with economically and rigorously 
by the use of subscript notation.
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In accord with what we discovered about reasoning systems in the previous 
section a consideration of systems that solve problems by search indicates that 
the power of such systems depends in considerable measure upon the use of 
efficient move operators which serve as macro inference rules. Provided that 
such operators are defined appropriately reasoning carried out with their aid is 
rigorous, in the same sense that applied mathematics is rigorous, and dispenses 
with the need for a more formal logical apparatus.

3. Model and Reality

The earliest discussions of modal logics for AI focussed mainly on the problems 
of reasoning about actions. McCarthy and Hayes [6] sought to construct a 
causal calculus containing predicates like CANCAUSE(A, C), where A is an 
action and C a consequence. Modal logics of this kind with appropriate 
inference rules neither too weak nor too strong have proved to be very 
elusive [11].

3.1. Logics of causality and possibility

The basic difficulty in constructing a logic that will handle satisfactorily the 
modalities of possibility and causality lies in the rules of composition. We are 
tempted, in analogy with the predicate calculus, to introduce a rule that would 
allow us, given "A enables 1?" and "A enables C", to infer "A enables B and 
C". But it is certainly not the case that "$15000 in the bank enables us to buy 
that car" and "$15000 in the bank enables us to buy that yacht" allow us to 
infer "$15000 in the bank enables us to buy that car and that yacht".

Many other paradoxes of this kind can easily be constructed [11]. They 
generally stem from some sort of non-independence of events. When events 
are in fact interdependent, composition laws of ordinary strength produce 
paradoxes. But in the absence of such laws, the logic is too weak to make the 
inferences we need for solving problems by reasoning about causality and 
possibility.

This difficulty can be avoided by employing the modal concepts as heuristics 
instead of embedding them in a system of logical reasoning. For example, 
ops-like heuristics for means-ends reasoning perform the basic functions of a 
calculus of causality and possibility. The search procedure of OPS is built on the 
implicit premise that if the present situation differs from the goal situation by 
features A, B, C,..., then the goal situation can be attained by removing the 
differences A, B, C,... , in some order. Of course this premise is false unless 
the matrix of connections between differences and operators can be trian- 
gularized. This matrix can be triangularized just under those conditions when 
an appropriate composition axiom would be valid in the modal logic; that is, 
just when there is independence among the actions.

The advantage of proceeding heuristically is that we then do not assert
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statements that turn out to be invalid, we merely consider possibilities, which 
may or may not be realized. Of course there are other search heuristics besides 
means-ends analysis. A preference for heuristics over modal logics does not 
commit us to this particular one.

3.2. Non-monotonic reasoning

Most recent discussions of non-monotonic logics have emphasized rather 
different issues from those just discussed, and, particularly the issue of what 
might be called 'inference from insufficient evidence'. The gist of such in­ 
ference is the assertion of certain propositions without direct proof on the basis 
of their consistency with the remaining propositions, so that there is no reason 
for them not to be true. An example would be, "If there is no known reason 
why you cannot take a bus to get to X, you can take a bus."

Why it would be convenient to have inference rules of this kind will become 
apparent a little later. Using them calls for several pieces of machinery. First, 
there must be a procedure for deciding what is sufficient evidence for asserting 
a proposition, or sufficient evidence that it does not contradict other pro­ 
positions. Second, such systems leave open the possibility that what is at one 
time non-contradictory, hence assertable, later becomes contradictory. Hence, 
there must be a procedure for resolving contradiction when it is discovered. 
Obviously, many different inference systems can be constructed by ringing the 
changes on these two procedures.

John McCarthy [5] has recently used the Missionaries and Cannibals puzzle to 
illustrate why he believes there is a need for modal and non-monotonic 
reasoning. He points out that the puzzle is usually represented formally by a 
state description much like the one I sketched earlier. He then goes on to 
object [5, pp. 29-30]:

We are not presently concerned with the heuristics of the problem but rather with 
the correctness of the reasoning that goes from the English statement of the 
problem to ... [the formal]... state space representation. A generally intelligent 
computer program should be able to carry out this reasoning. Of course, there are 
the well known difficulties in making computers understand English, but suppose 
the English sentences describing the problem have already been rather directly 
translated into first order logic. The correctness of ... [the formal]... represen­ 
tation is not an ordinary logical consequence of these sentences for two further 
reasons.

First, nothing has been stated about the properties of boats or even of the fact 
that rowing across the river doesn't change the numbers of missionaries or 
cannibals or the capacity of the boat. Indeed it hasn't been stated that situations 
change as a result of action. These facts follow from common sense knowledge, so 
let us imagine that common sense knowledge, or at least the relevant part of it, is 
also expressed in first order logic.

The second reason we can't deduce the propriety of ... [the formal] ... 
representation is deeper. Imagine giving someone the problem, and after he 
puzzles for a while, he suggests going upstream half a mile and crossing on a
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bridge. "What bridge", you say. "No bridge is mentioned in the statement of the 
problem." And this dunce replies. "Well, they don't say there isn't any bridge." 
... So you modify the problem to exclude bridges, and pose it again, and the 
dunce proposes a helicopter...

In spite of our irritation with the dunce, it would be cheating to put into the 
statement of the problem that there is no other way to cross the river than using 
the boat and that nothing can go wrong with the boat. A human doesn't need such 
an ad hoc narrowing of the problem, and indeed the only watertight way to do it 
might amount to specifying the [formal] representation in English. Rather we 
want to avoid the excessive qualification and get the [formal] representation by 
common sense reasoning as humans ordinarily do.

If we return for a moment to our earlier water-alcohol example, we see that 
the very same difficulties that McCarthy points to in the Missionaries and 
Cannibals puzzle were present in that algebra problem. Equations crucial for 
solving the problem were absent from the problem statement, and no explicit 
assurances were given that the equations given and inferred constituted all the 
relations constraining the situation. The "fact that rowing across the river 
doesn't change the numbers of missionaries or cannibals or the capacity of the 
boat" is precisely the same kind of conservation assumption as the assumption 
that the total volume of liquid will be the sum of the original volume and the 
volume of water added.

3.3. Common sense knowledge

McCarthy is surely right, then, in observing that the problem solver must 
supply common sense knowledge that is not explicit in the problem statement. 
Is he right, however, in supposing that this common sense knowledge must be 
supplied, as in the algebra case, in the form of explicit propositions? The 
knowledge is needed independently of whether we take a search viewpoint or a 
reasoning viewpoint. How is such knowledge represented in a state-space 
representation of the Missionaries and Cannibals puzzle, and where does the 
knowledge come from?

A typical representation of the puzzle in a list-processing language might 
consist of a property list for each bank of the river. The value of 'missionaries' 
could be either the number of missionaries on that bank, or a list of them; and 
the cannibals and boat could be represented correspondingly by two similarly 
encoded properties. The move operator would alter the values of each of these 
properties for both banks of the river, but in such a way as to conserve the total 
number of missionaries, cannibals, and boats. Tests to insure the legality of the 
move could be incorporated in the move operator, or could be separate 
routines.

By this legerdemain, the assumptions of conservation of missionaries, can­ 
nibals, and boats can be embedded in the representation without proposi- 
tionalizing them. The system does not reason that these quantities must be 
conserved, nor does it know any propositions that could be used as premises in
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such reasoning. All this knowledge is built into the structure of the move 
operator, which does conserve them.

As we have already seen, we can restore the reasoning viewpoint by a 
procedure that we also use in formal logic. In logic, we generally have a choice 
between adding new axioms to a system or adding new rules of inference. If we 
regard the move operators in a state-space representation as truth-preserving 
rules of inference, then what we have done is to postulate such a rule rather 
than augmenting the axioms.

The analogy, while formally defensible, must be interpreted with caution. 
The conservation assumptions embedded in what we are now calling a rule of 
inference, are, as has already been emphasized, empirical, not logical, assump­ 
tions. Any claims for their legitimacy must be based on factual knowledge and 
not on purely logical arguments. Lest we be beguiled by the 'obviousness' of 
conservation principles, we should remind ourselves of several things we know 
about them.

First, as Piaget has shown, children are not born ready to assume that objects 
are conserved when they disappear momentarily from sight. This assumption is 
acquired by learning and/or maturation. There is a large psychological lit­ 
erature in the Piagetian tradition on the acquisition of conservation principles. 
Second, the human species as a whole has been a long time arriving at the 
more sophisticated conservation principles, like conservation of mass and 
conservation of energy. There apparently was nothing self-evident about these 
principles. Their discovery cost scientists much sweat and tears, if not blood. 
Third, quantities are not in fact always conserved. We have seen that even the 
simple assumptions of conservation of volume in mixture experiments are not 
always empirically correct.

We return again to the conclusions of our earlier discussion. The common 
sense knowledge that has to be provided for problem representations is 
empirical knowledge, specific to the domain of the problem under con­ 
sideration and subject to revision as empirical knowledge changes. But this 
knowledge need not be provided in the form of explicit propositions; alter­ 
natively, it can be embedded implicitly in move operators that simulate the 
effects of actions or events in the world that is being modeled. It is stretching 
matters to interpret these move operators as 'rules of inference', for empirical 
as well as logical assumptions are built into them implicitly.

Taking the reasoning viewpoint toward problem solving can encourage the 
attitude that all problem assumptions should be explicit and propositionalized. 
Experience with problem solvers using the state-space representation suggests 
that it may be far more expendient to embed much of the knowledge (empirical as 
well as logical) in operators.

3.4. Common sense reasoning

We turn next to the second problem posed by McCarthy's dunce. How does 
the problem solver know that there are not alternative operators in addition to



SEARCH AND REASONING IN PROBLEM SOLVING 21

those of which he is aware? What rules of reasoning allow him to assume, in 
the Missionaries and Cannibals puzzle, that there is not a bridge half a mile 
upstream?

Despite the fact that McCarthy here refers to 'reasoning' rather than 
'knowledge', this difficulty is not really different from the previous one. 
Whether a bridge does or doesn't exist is not a matter of logic, but a matter of 
fact. If there is a convenient bridge, and it is not included in the formal 
problem representation, then the latter is a factually incorrect description of 
the problem.

In order to produce a correct problem representation, it is certainly not 
necessary to propositionalize everything that is absent that there is not a 
bridge, that there is no helicopter, and so on. Mother Hubbard did not have to 
enumerate all the items that were not in her cupboard; she simply had to 
observe that she could see its back wall, hence that it was bare. Whether we 
adopt the reasoning viewpoint or the search viewpoint, it remains true that we 
can reason correctly about problem situations on the basis of a representation 
that only specifies explicitly what is true of the situation, and omits mention of 
what is not true. And what is or isn't true is a matter of fact, not of logic.

3.5. Bounded rationality

Many of the difficulties that have been raised with respect to common sense 
reasoning disappear when we recognize that we are not concerned with a world 
in which problems can always be solved, and moreover in some optimal way. 
We are concerned with the kinds of bounded rationality of which human beings 
are capable.

The 'reasoning' that is called for in problem solving is generally inductive 
rather than deductive. We wish to find a sequence of actions that will transform 
the initial situation into a situation satisfying the solution conditions. There is 
usually no requirement that the solution be unique or, for that matter, that it 
satisfy any conditions of optimality. As posed, the Missionaries and Cannibals 
puzzle does not require us to get across the river as speedily as possible, or with 
the least labor on the part of missionaries. The solution can, of course, be 
regarded as a proof that taking certain actions will realize a certain goal, but 
there exists no deduction that will prove that these actions must be taken to 
attain this goal.

Now this observation takes away much of our concern for the possibility that 
there may be bridges upstream. Our ignorance of additional alternatives does 
not make it impossible for us to solve the problem. Mankind had many 
effective transportation systems before it learned how to build and fly air­ 
planes. Our formal representation simply includes those alternatives of which 
we are aware or have access to. Failure to include other possibilities in the 
representation should not be interpreted as implying, logically or empirically, 
that no other possibilities exist.

It is fortunate that this is so; otherwise, we would be able to solve hardly any



22 
H.A. SIMON

real-world problems. It has long been noted [12] that human beings generally satisfice look for adequate rather than optimal solutions to their problems. One of the major reasons they do so is that they can seldom be sure that their problem representations contain all the alternatives. Another reason they do so is that, even within a given problem representation, it may be immensely less difficult to find some solution to the problem than to find a unique best solution.

4. Generating the Representation
But I have really only redefined the problem posed by McCarthy; I have not solved it. The difficulty he points to is a real one, but its nature is not revealed by applying the rubric of 'common sense reasoning'. The problem is to specify how we can go from an informal specification of a task to the formal specification whether the latter be in terms of the first-order predicate cal­ culus or a state-space representation.

Problems may be posed in natural language (e.g., the problems at the end of a physics textbook chapter), or they may be posed by stimuli coming directly from the real sensory world. McCarthy makes a useful distinction between real-world problems and puzzles. In puzzles, there is an implicit guarantee that no unmentioned alternatives of action exist (there are no bridges up the river). Nevertheless, puzzles may still require empirical knowledge, like conservation laws, for their solution. In the case of real-world problems, we are provided with no assurances that we possess all the relevant information. Hence, by acquiring more real-world information, either in the process of solving the problem or as a deliberate prelude to attempting it, we may drastically alter the problem formulation, that is, pose a new and different problem to be solved.Regardless of whether we are faced with a puzzle or a real-world problem, at some point we use the information available to us to create a formal problem representation in which we can conduct our search or reasoning. It is after that representation has been created that the problem of logical reasoning arises. Up to that point, no formal situation on which a system of logic could operate has been presented to us.
When we use the reasoning metaphor, constructing a representation 'simply' requires providing a set of assertions about what is and isn't true of the problem world, but a set complete enough to serve as the axiomatic base for the inference engine. When we use the search metaphor, it requires providing the objects and relations that define the state space and the operators for changing states. If a reasoning system is augmented by macro-operators  procedural and semantic attachments to facilitate search, then these must be supplied in exactly the same way.
When can we say about the process of creating a search representation? There exist at present several AI programs that cast some light on this
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question. I will discuss two of them: the UNDERSTAND program built by J.R. 
Hayes and myself [3], and the ISAAC program built by Gordon Novak [8]. The 
crucial characteristic of both of them, for present purposes, is that they 
translate problems posed in natural language into formal state-space represen­ 
tations.

4.1. The UNDERSTAND program

The UNDERSTAND program [3] was designed to handle puzzle-like problems. 
That is to say, it does not have empirical knowledge of any real-world domain, 
and would fail if such knowledge were required for a correct problem for­ 
mulation. Though lacking specific empirical knowledge, it is prepared to make 
empirical assumptions of several sorts in the process of generating problem 
representations. The operators it builds embody implicit conservation prin­ 
ciples, and it creates representations of only those things, properties, and 
actions that can reasonably be inferred from the problem statement.

Given natural-language instructions for a problem, UNDERSTAND undertakes 
to determine from them what objects and classes of objects the problem situation 
contains, what relations hold among objects, and what operators can be applied to 
alter situations (taking account of the legality conditions for the application of 
operators). Its seeks also to find a characterization of the starting situation and the 
goal situation. It chooses a representation for objects and their relations, and 
builds a data structure that represents the starting situation. Finally it builds 
programs that operate on the representation in the manner defined by the legal 
move operators of the problem statement. If it succeeds, UNDERSTAND builds a data 
structure and set of operators that could be turned over to a ops-like problem- 
solving system, and that would provide to that system the information it would 
need to undertake attempts at finding the solution.6

For example, confronted with a natural-language description of the Mis­ 
sionaries and Cannibals problem, UNDERSTAND would proceed somewhat as 
follows. It would recognize the problem statement as mentioning four kinds of 
objects: river banks, missionaries, cannibals, and boats. It would detect the 
numbers of each of these. It would also recognize that certain sentences in the 
problem instructions describe a 'move' operator, and, associated with it, 
conditions of legality.

Using this information, UNDERSTAND would transform the natural language 
representation into a state-space representation with an associated operator for 
legal moves. The representation of the initial situation might consist of a data 
structure for each river bank. The list of missionaries, cannibals, and boat on 
that bank could be the value of an attribute of this structure. The move

*The UNDERSTAND program, as implemented, did not include a process for defining differences or for building the matrix of connections between differences and operators. From the information it provides, however, a GPS system with learning capabilities could generate these.
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operator would remove a subset of these items from the list for one river bank 
and place them on the list for the other bank, after checking that all the 
conditions for a legal move were satisfied (i.e., checking the lists for the 
presence of the boat on the FROM side, and for the differences between 
numbers of missionaries and cannibals after the move was made)7 .

In order to construct a problem representation, UNDERSTAND does not have to 
understand what missionaries, cannibals, boats, or river banks are. Syntactic 
cues will generally suffice to identify these as objects and the missionaries, 
cannibals, and boat as associated, at any time,<with a river bank. The program 
needs a little more knowledge to handle the move operator correctly. It might 
be given, for example, a definition of 'row' as: "to row a X across a Y is to 
move the X and all objects associated with the X from the Y bank where it 
was located to the other Y bank". This information could be provided in the 
problem instructions, or it could have been made available to UNDERSTAND 
previously.

It is not quite correct to say that UNDERSTAND knows nothing about the 
world. It operates on the basis of minimal information, and uses syntactic cues 
wherever possible to reduce its reliance on real-world knowledge. It creates a 
representation that is no more complex than is needed to represent the 
information presented to it, and does not create entities spontaneously. 
Because of the way in which it goes about constructing representations and 
operators, it makes a number of conservation assumptions for example, the 
move operator conserves objects.

A large part of UNDERSTAND'S knowledge is incorporated in the set of basic 
operators it has available, operators like 'move', 'change', and 'copy'. Each of 
these operators embodies different conservation assumptions. Other knowledge 
is used to build the legality tests. For example, predicates like 'less' and 'more' 
are available, and can be applied to various sets of objects. This knowledge is 
so scanty that UNDERSTAND can deal only with puzzles that deliberately abstract 
from real-world information. Even within the domain of puzzles, there are no 
guarantees, of course, that UNDERSTAND will represent a problem correctly (i.e., 
as the person who created it intended). Since correctness is an empirical rather 
than a logical matter, there can be no such guarantees.

4.2. The ISAAC program

Novak's [8] ISAAC program shows how we might begin to move from puzzle 
domains to problems denoting situations in the real world, still restricting 
ourselves, however, to problems stated in natural-language prose.

7A11 of the detail here has to be stated conditionally, since the precise representation that 
UNDERSTAND would construct, and the nature of the corresponding operators, would both depend 
on the language used to describe the problem. For examples of some of the alternative possibilities, 
see [3].
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ISAAC is designed to deal with the kinds of problems that are found in physics 
textbooks specifically problems in statics. The general strategy of ISAAC is 
similar to that of UNDERSTAND, with one important difference. As we would 
expect from the nature of its task, ISAAC depends far more than UNDERSTAND 
upon pre-stored empirical knowledge about the domain of its problems. In its 
memory are stored a number of object schemas, in the form of property list 
structures, that describe the kinds of objects that appear in statics problems  
levers, for example, masses, pivots, and so on. It also knows such facts as that a 
'man' can be treated (in statics problems!) as either a mass or a pivot.

When ISAAC recognizes a term (e.g., 'lever') in a problem statement, it maps 
the referent of the term onto the appropriate object schema in memory, using 
the information about the referent provided in the problem statement to 
instantiate a copy of the schema. Thus, a representation is created of a 
particular lever, with particular dimensions, point of attachment, and so on. 
ISAAC assembles these instantiated object schemas to form a representation of 
the whole problem. This latter representation, or problem schema, can then be 
used by other components of ISAAC that incorporate laws of mechanics to 
generate the appropriate equations and solve them.

Clearly, an ISAAC capable of operating over a wide range of problem domains 
would have to have a large store of appropriate object schemas even, one 
might say, as you and I. A human expert in any domain might possess tens or 
possibly hundreds of thousands of such schemas. (Natural language vocabu­ 
laries of college graduates are of the order of 50000 words.) But our present 
concern is not with how large the body of knowledge must be for a system to 
exhibit common sense in some domain. Our interest is in how that knowledge 
might be organized. The experience with ISAAC suggests that propositionalizing 
the knowledge, in any usual sense and within the format of a standard 
logic, is not the only way to proceed, and may well not be the best way.

5. Hie Reasoning of Robots

UNDERSTAND and ISAAC handle problems presented in natural language, but not 
real-world problems where new information can continue to be acquired while 
the solution is being executed. To see what is involved here, we must consider 
some additional objections raised by McCarthy's dunce. I take up again 
McCarthy's narrative [5, p. 30]:

You now see that while a dunce, he is an inventive dunce. Despairing of getting 
him to accept the problem in the proper puzzler's spirit, you tell him the solution. 
To your further annoyance, he attacks your solution on the grounds that the boat 
might have a leak or lack oars...

The dunce's new objections are not as easily disposed of as those we 
considered earlier. Now it is more than a matter of not finding the best solution 
because we are ignorant of the existence of a bridge. Now it is objected that,
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because of our ignorance, the solution may not be a solution at all, for we may not have included in our representation of the problem all of the operator conditions. Ignorance of a necessary condition for workability of a solution may be much more damaging than ignorance of additional possible solution paths.
A proper answer to this objection is "just as in the real world". Every day, probably, someone does paint himself into a corner, and someone does generate and attempt to execute a plan that is infeasible. There is no way in which 'logic' or reasoning can assure us that our premises form a complete set, or, indeed, that some of them may not be empirically false.
The formal state-space representations of problems, which we use in searching or reasoning about them, are at best simplified and approximate models of the real world. We operate on the representations as though they were the real world, and sometimes the lacunae and inaccuracies are not so damaging as to prevent us from forming reasonably realizable plans. If we wish to formalize the rule of insufficient reason we are following in building and using such models, it is: "The things we have left out don't matter to a damaging extent, and the things that are in the model are as accurate as they need to be." Assuring ourselves that a model has these properties in relation to particular decision tasks is a difficult job, but mainly an empirical job, and not an exercise in logic.
The fact that models represent the real world only very imperfectly and incompletely does not make them useless. An important mitigating circum­ stance is that plans do not usually have to be executed without periodic feedback from the external world. When, in the process of plan execution, actual outcomes fail to match expected outcomes, the model of the situation and the solution can be revised to fit the reality. The unrealism of planning models need not always be remedied by making them more realistic, hence more complex. In many situations, it may be advantageous to carry out problem solving in the context of the over-simple model, and to depend on feedback to provide the second-order approximation.
The relation between the state-space representation and the external world is not unlike the relation between an abstract planning space and the original problem space that has been abstracted. In the more abstract space, proposed problem solutions are generated which must then be tested against the ad­ ditional constraints of the external world or the problem space, as the case may be. In Gelernter and Rochester's early geometry theorem prover, the semantic 

space of diagrams performed the same function of enabling hypotheses to be made quickly and cheaply, subject to subsequent test of their validity.
What distinguishes robotics, then, from other areas of AI (except for this analogy with planning) is that the robot is embedded in an external environ­ ment that it can sense and act upon. This has two consequences. First, it imposes a severe performance test: the robot's performance is evaluated by its behavior in its external environment, not by its self-imagined behavior in a toy
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problem space. Second, the robot can adapt the complexity and other proper­ 
ties of its internal problem space to its own computational capabilities, 
depending upon feedback to eliminate the discrepancies between expectations 
and reality [10, Chapter 5.3].

For this reason, robotics appears to be the most promising area in AI in 
which to study everyday problem solving. The peculiar flavor of robotics 
research is that it continually reminds the researcher that the representation is 
not the reality, and that only by constant readaptation of the former to the 
latter can actions be produced that are likely to be reasonably effective in the 
external world. Producing models at an adequate letel of accuracy and com­ 
plexity, and feedback mechanisms sufficiently sensitive to keep them in ad­ 
justment is not a matter of logic. It is mainly a matter of having good, 
empirically valid, scientific theories of how the outside world works. The 
critical component of human bounded rationality is empirical knowledge.

6. Conclusion

It has been the purpose of this paper to consider some of the relative 
advantages and disadvantages of viewing problem solving as a process of search 
or a process of reasoning, respectively. John McCarthy has pointed out that in 
assessing problem solving procedures we must consider not only their per­ 
formance in solving problems once those problems have been represented, but 
also their adequacy in representing problems when those problems are presen­ 
ted initially in natural-language prose, or when the problems are to be regarded 
not as toy laboratory tasks but as denoting real situations in the real world 
outside. In this paper, I have discussed the role of reasoning both in problem 
solution and in problem representation.

Our discussion has made clear that in its initial presentation, whether by 
verbal means or by direct confrontation with the external world, problem 
information is usually radically incomplete, and must be supplemented by 
information supplied by the problem solver. Most of this information does not 
derive from principles of logic, but represents empirical assumptions about the 
problem domain. Whatever the form of problem representation, this know­ 
ledge must somehow be available to the problem solver and cannot be supplied 
by the problem statement. In search-oriented problem solving systems, like 
UNDERSTAND or ISAAC, this information is supplied by schemas stored in 
memory, and matched to cue information provided by the problem statement.

There are some fundamental and nearly universal difficulties that have to be 
overcome in problem representation. There are the difficulties of interpretation 
and translation of natural language prose or information gained through the 
senses into internal representations. There are difficulties of supplying the 
alternative actions that are not mentioned in the problem statement. There are 
difficulties of supplying additional information about the objects in the problem
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representation. There are difficulties of supplying all of the side conditions that 
must be met if those actions are to be feasible.

There have been numerous suggestions for building non-standard logics that 
would, in essence, supply this additional information required by the problem- 
solving system. The flaw in these suggestions is that almost all the information 
required is empirical information, which will vary from one problem situation 
to another. It is not information about permissible forms of logical inference. 
Hence, it seems unproductive to look for standard, domain-independent rules 
that will take the place of specific empirical assumptions, varying from one 
problem to the next.

The alternative procedure is to store in the memory of the problem solver 
schemas that embody such information, and that can be evoked by appropriate 
cues in the problem statement and by appropriate sensory cues. That is 
procedure employed by problem solving systems like UNDERSTAND and ISAAC 
that use state-space representations, and by SCRIPT schemes.

But even these systems lack an important component that is essential for 
successful response to real-world situations. That component is a feedback 
mechanism which receives sensory information from the external world that 
enables it continually to adjust its expectations to the unfolding reality. Only as we 
begin to build systems with such capabilities will we be able to talk about 'common 
sense'. It is perhaps more than an etymological accident that the second word in 
that idiom refers explicitly to this feedback tie with the outside world.

Finally, reasoning, in the sense of accumulating information by inference, is 
only one of the several thinking processes that are useful for solving problems. 
And formal logic is only one of the instruments for reasoning. I have tried to 
make the case here for employing in AI the whole range of available in­ 
formation processes and for not equating thinking with formal logic.
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