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Abstract In a typical Web recommendation system, objects are often described
by many attributes. It also needs to serve many users with a diversified range of
preferences. In other words, it must be capable to efficiently support high dimen-
sional preference queries that allow the user to explore the data space effectively
without imposing specific preference weightings for each dimension. The skyline
query, which can produce a set of objects guaranteed to contain all top ranked objects
for any linear attribute preference combination, has been proposed to support this
type of recommendation applications. However, it suffers from the problem known
as ‘dimensionality curse’ as the size of skyline query result set can grow exponentially
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with the number of dimensions. Therefore, when the dimensionality is high, a
large percentage of objects can become skyline points. This problem makes such
a recommendation system less usable for users. In this paper, we propose a stronger
type of skyline query, called core skyline query, that adopts a new quality measure
called vertical dominance to return only an interesting subset of the traditional
skyline points. An efficient query processing method is proposed to find core skyline
points using a novel indexing structure called Linked Multiple B’-trees (LMB). Our
approach can find such superior skyline points progressively without the need of
computing the entire set of skyline points first.

Keywords preference query - recommendation systems - high dimensional data -
vertical dominance - core skyline points - linked multiple B’-tree

1 Introduction

The World Wide Web has brought an unprecedented amount of information and
choices to our modern society. To make better use of such information, it demands
a Web Information System, being an online shop, a service marketplace or a Web-
based social networking platform, to make targeted and relevant recommendations
using as much as possible information for a wide range of users. An effective and
efficient recommendation system is critical to improving sales, growth and customer
satisfaction. This goal, however, is very challenging to achieve. Among many issues,
one technical problem yet to be satisfactorily addressed is preference query process-
ing for multidimensional data when there is no single preference function to combine
all dimensions of an object into one score that can be used to rank objects. The
cruces of the this problem include: (1) the lack of a single or a small set of pre-
defined preference functions to combine values form different attributes, as a large
user community naturally leads to different and often changing preferences for the
importance of attributes; and (2) the intrinsic difficulty of ranking objects in a high
dimensional space (in the case of Web applications, high dimensionality comes from
the fact that data objects are often described by a rich set of attributes).

Consider the following simplified example for a web site that compares new
laptops. There are six models and each model is described by eight attributes here.
Although it is possible to prioritize the laptops using a single attribute, such as price,
a user may be interested in comparing products based on multiple attributes. How
to rank the laptops using multiple attributes is a very difficult problem. As one can
see from this example, if all eight attributes are considered there is no single model
which is an overall winner. So the question is: which laptops should be recommended
to the user?

Generally speaking, an object to be ranked by a recommendation system can be
considered as a point in a multidimensional space, where a dimension is an attribute
of the object. Let X = {x;|i = 1..n} be a set of points in an N dimensional space
D = D; x --- x Dy. That s, x; is represented by N attributes, x;(d;, - - - , dn), where
d; € D;. The difficulty to rank these objects with all attributes comes from the lack
of a total order in a multidimensional space. In order to make a recommendation
of a reasonably-sized subset of objects to a user, a common way is to ask the
user to specify a relative preference weighting for each attribute. Without loss of
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generality, we can assume that the value in every attribute is the larger the better
(for attributes weight or price in the above example, their value v can be replaced by
m — v for a common celling value m of that attribute when computing the ranks).
Let the user-specified preference weighting on attributes d,, ---dy be wy, - - wy
respectively (Zfi , w; = 1), a simple scoring function f = Zfi , di x w; maps these
multidimensional objects into a linear space where all objects can be ranked. Other
problems such as values in different attributes maybe of different scale thus cannot
be directly combined can be addressed easily using some scaling functions, and of
course other scoring functions such as L,-norm distance function, their weighted
versions, or other more sophisticated functions can also be used. This is the basis for
what known as fop-k queries in the literature [7].

However, it is not practical for a recommendation system to give such a set of pre-
defined preference weightings, as, after all, this is a user choice and different users
should be given the freedom to give higher weights to some attributes and lower or
even zero weights to others. At the same time, the user may not have the knowledge,
time or even the desire to give weights to all attributes for an online application (note
that the number of attributes can be quite large for some applications). This leads
to the second type of queries known as skyline queries, where all points in X are
returned as long as they are not dominated by any other point in X. That is, x; € X
is a skyline point if and only if there does not exist x; € X such that x; performs
better than x; in all N dimensions [6]. All skyline points cannot be compared with
each other (without an appropriate preference function) [1, 21], because each skyline
point must have at least one dimension performs better than any other skyline points
when they are pair-wisely compared. A very useful property of the skyline query is
that it will return a superset of preferred objects in X for any valid linear preference
combination. Skyline query is a powerful tool to make recommendation to a user
without forcing them to give specific weights to each and every attribute—this is
often an impossible ask in practice. In the above example, it is easy to see that
laptop models 1, 2 and 5 are skyline points because they have the longest battery
time, lowest price and fastest CPU respectively in this data set. Models 3 (and 6)
are also skyline point because there are no models in the dataset of the same or
better warranty but cheaper (and the same or larger display size but lighter). Model
4, however, is not a skyline point as it is ‘dominated’ by model 5.

While the skyline query may sound like an ideal solution for making recom-
mendations without a preference function, it does not really work for many Web
applications as the number of skyline points returned by a typical Web application
can simply be too large for a user to comprehend. In the above example, five of the
six models will be returned by the skyline query. This problem, unfortunately, is not
uncommon for large data sets when there are many attributes. It is known that when
the dimensionality is very high, almost all points are skyline points [45]. Therefore, it
is necessary to further differentiate these skyline points.

Let us look at the above example again. Among the five models that cannot be
fully dominated by any other model, it does not make much sense for model 3 to
be returned to the user, as there are obvious better options in the dataset. The only
reason for it be to included in the skyline is that it has 13 months warranty while
all other models except a slightly more expensive model 6 have 12 months or less
warranty. While it is possible to give many kinds of domain knowledge to give some
significance indication to attributes or attribute values (e.g., length of warranty), the
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question we will answer in this paper is, without assuming any knowledge about how
much importance a user puts on attributes or attribute values, how can we remove
those points that meet the skyline definition but are unlikely to be of user’s interest?

A number of approaches for extracting ‘interesting’ skyline points in high dimen-
sional space have been proposed in the literature (e.g., [10, 22]). A reason that there
are too many skyline points is that the chance for a point to dominate another point
in a high dimensional space is low, as a dominating point needs to be “not worse
in all dimensions” while performs better in at least one dimension. One way is to
relax the condition of “not worse in all dimensions” to “not worse in k dimensions”
without changing the requirement for performing better in at least one dimension.
This notion of k-dominance is introduced in [10]. Obviously, k-dominant skyline
returns a subset of the skyline, and its size can be much smaller especially when k
is small (when k = N, this becomes the traditional skyline). In Table 1, as long as
warranty is not included in the consideration, model 3, a not-so-interesting object,
is k-dominated by model 1 (and several other objects). The notion of k-dominant
skyline is proven to be effective in extracting interesting skyline points. However,
the k-dominance relationship is not transitive, and sometimes less intuitive to the
user. Furthermore, they do not consider vertical relationship of each dimension (as
we will discuss it later). A concept called skyline frequency is proposed to extract
‘interesting’ skyline points considering subspaces [11]. It ranks all points according
to the number of subspaces that they will be regarded as skyline points and returns
the points at the top ranking. This approach is smart. It generalizes the idea of k-
dominance and makes it more systematic. On the other side, it does have two major
issues: (1) Some points that are intuitively superior may sometimes have the same
ranking (or lower ranking) as the inferior points, this makes the intuition behind
less obvious to the user. (2) There are 2V — 1 subspaces in an N dimensional space,
which is too expensive to compute in practice. For the second issue, an approximation
algorithm to solve it is proposed in [11], but it cannot answer dynamic queries which
are quite common for recommendation systems [34]. Also considering skyline in
subspaces, Zhang et al. [47] proposes an idea called §-subspace to identify a set of
interesting skyline points. A §-subspace is a subspace of the whole dataspace such
that its skyline contains less than § points. The union of the skyline points in all the
§-subspaces are called strong skyline points. This algorithm depends on § heavily. If
8 is too large, most of the skyline points will be removed, and vice versa. Setting §
is difficult for a normal user or without analyzing the dataset throughly. In addition,
the physical meaning of this approach is not intuitive, which further discourages it
from being used in practice.

Table 1 New laptops.
Model Display = Weight Memory  Harddisk CPU Battery =~ Warranty  Price

1D (inch) (kg) (GB) (GB) (GHz)  (hour) (month) %)

1 10 1.19 2 160 1.60 10.5 12 729
2 7 0.86 8 0 0.35 3.4 6 268
3 15 3.10 2 120 14 2.0 13 1,899
4 15 2.80 4 500 2.26 4.0 12 1,082
5 15 2.64 4 500 2.3 4.5 12 699
6 13.3 1.36 2 120 1.86 4.2 13 1,999
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There are a number of other approaches that attempt to rank skyline points based
on some kind of importance among the skyline points. Lin et al. [27] proposes a
skyline operator called top-k representative skyline query. In this operator, k skyline
points will be selected such that the number of points which can be dominated
by them will be maximized. Our problem is different from them. Firstly, they do
not have vertical comparison among dimensions. Secondly, superior points may
frequently dominate less number of points than those inferior points. Thirdly, their
aim is to rank the skyline points. Another related concept to our problem is k-
skyband [5, 15, 31, 34], which is a set of points that are dominated by at most k points.
Yet, k-skyband does not aim at minimizing the number of skyline points which is
different from our motivation.

To summarize, skyline queries can be an effective way to provide insights to the
dataset which cannot be ranked by any total order, but suffer from the problem of
returning too many results especially when the number of attributes is large. The
existing work that attempt to reduce the number of results to be returned (i.e.,
only to return those most ‘interesting’ skyline points), are limited by the fact that
skyline operator compares tuples horizontally. That is, two tuples are compared if
one dominates another in isolation, by pair-wise comparison of their attributes (or
a subset of their attributes). We believe that such a comparison should also be done
vertically, as those ‘interesting’ points are ‘interesting’ in the context of other tuples
in the dataset. Logically, interesting laptop models should not be those which simply
perform better than the weakest attribute of any other models (e.g., model 3 wins
mainly in warranty length). A potential candidate should have some attributes that it
has a value better than a reasonable number of models in those attributes. Based on
this idea, we claim that when we extract interesting points from a large dataset, we
should not only make horizontal pairwise comparisons like the concept of skyline.
We should further study how many points that a given point can dominate according
to a given dimension (i.e. vertical pairwise comparison). For example, suppose there
are n laptop models perform better than a model x in an attribute. If x wants to claim
it is one of the potential candidates to be better than others, then it is reasonable to
check if x has another attribute that it can perform better than all those n models.
In Table 1, model 3 cannot fulfil this criterion (for attributes such as battery life and
weight).

In this paper, we formalize this motivation and propose a novel concept called core
skyline. A core skyline contains a set of interesting points extracted from a skyline.
This work is different from the existing works as we further consider the vertical
relationships among points. Up to our knowledge, we are the first mover in this area.
The main idea in this work is a novel concept called dominate-back, that vertically
checks if a set of points perform better than a skyline point in one dimension can
be dominated back by that point in another dimension; if yes, then such a skyline
point in called a core skyline point. Details of this formulation will be described in
Section 2. After presenting some theoretical results about skyline query result set
size and dimensionality in Section 3 and a complexity analysis for a straightforward
solution to the core skyline problem in Section 4, we propose an indexing algorithm
in Section 5 called Linked Multiple B’-tree (LMB)! to help us identify core skyline

1“B’-tree” is pronounced as “B-pie-tree”
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results dynamically and progressively. An empirical performance study on our
approach is reported in Section 6. An overview about skyline query processing is
give in Section 7, before we conclude this paper in Section 8.

2 Problem definition

Let D ={d,,d,, ...,dn} be an N-dimensional space and X = {x, x»,...} be a set
of points in D. We use x;.d,, to denote the value of x; in d,,. There is a total order
relationship in each dimension such that a smaller value is more preferable. Let us
review two existing definitions [6]:

Definition 1 (Dominate, <) x; is said to dominate x; (x; < x;) iff these conditions
hold: (1) Vd,, € D, x;.d,y < xj.d\y; and (2) 3d,,, € D, x;.d, < Xj.dpy.

Definition 2 (Skyline, S) Let S € X. x; is a skyline point (x; € S) if and only if Vx; €
X, x; cannot dominate x;.

We now formally define core skyline and use Table 2A and B as a running exam-
ple. Table 2A contains a dataset with seven points and four dimensions. Table 2B

Table 2 Some sample D d, d ds ds
datasets.

A. Dataset 1 (Order by ID)
X1 1 7 3 5
X2 3 2 7 7
X3 5 4 2 3
X4 4 5 6 6
X5 7 1 1 1
X6 6 3 4 2
X7 2 6 5 4

Rank d 1 dz d3 d4

B. Dataset 1 (Order by ranking)
1 X1 X5 X5 X5
2 X7 X2 X3 X6
3 X2 X6 X1 X3
4 X4 X3 X6 X7
5 X3 X4 X7 X1
6 X6 X7 X4 X4
7 X5 X1 X7 X7

Insertion 1D Dimensions

order d; d> d3

C. Dataset 2
1 X1 7 10 8
2 X2 7 10 11
3 X3 16 10 17
4 X4 18 15 1
5 X5 12 10 20
6 X6 7 10 8
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ranks these points according to their values in each dimension. For example, x; is
ranked highest in d, because it has the smallest value in d,. Note that all points in
Table 2A and B are skyline points. Before we can define core skyline, we need to
define the following:

Definition 3 (Dominant set, M(x;,d,,)) Let M(x;, d,) C X. M(x;, d,,) contains
points that perform better than or equal to x; in d,,, i.e. x; € M(x;, dy) iff x;.d,, <
xi.dm.

Definition 4 (Dominate-back, <) Let M C X. A point x; is said to dominate-back
M (x; <p M) iff M = ¢ or 3d,, such that Vx; € M, x;.d, < x;.d,.

In Table 2A, M(x,d;) = ¢ because no point has a value less than x;.d;. Sim-
ilarly, M(xy, dy) = {x2, X3, X4, X5, X6, X7}, M(x1, d3) = {x3, x5} and M(xy, ds) = {x3,
X5, X¢, X7}. Given x;, if x; € S and x; <, M(x;, d;,), Vd,,, € D, then x; is a core skyline
point:

Definition 5 (Core skyline, C) Let C C S. A point x; is a core skyline point (x; € C)
iff x, e Sand Vd,, € D, x; <p M(x;, d,,;).

In Table 2A, C = {x;, x5}. All other points do not belong to core skyline. For
example, let us consider x4. In order for x4 to be a core skyline point, x4 must be
able to dominate-back M (x4, dy), M(x4, dy), M(x4, d3) and M (x4, ds). Now, let us
consider M(x4, d;) = {x1, X, x7}. In order for x4 <, M(x4,d;), there must exists a
dy, such that x4.d, < x,.d,, x4.d, < x,.d, and x4.d,, < x7.d,. Unfortunately, x4.d, >
Xz.dz (1e d2 fails), .X4.d3 > X].d3 (1e d3 fallS) and X4.d4 > X].d4 (1e d4 fallS) Since
x4 Ap M(x4,dy), x4 ¢ C. When the dimensionality, N, is very high, it will be very
difficult for a point to become a core skyline point because it is difficult for a
point to dominate-back all N dominant-sets. Hence, k-dominant core skyline is
proposed. k denotes the number of dominant-sets that a point has to dominate-back.
Formally:

Definition 6 (k-dominant core skyline, C¥) Let C¥ C S. A point x; is a k-dominant
core skyline point (x; € C¥) iff x; € S and 3D’ C D, |D'| =k, Vd,, € D', x; <
M(xiv dm)

Based on Definition 6, C* = {x;, x5}, C? = {x}, x3, x5, X7}, C?> = {x1, X2, X3, Xs,
X6, x7) and C! = {x,, X2, X3, X5, X6, X7}. Note that x, is a skyline point but is not a
k-dominant core skyline point. Also, CK € C¥ for k < k’. When there are many
points in a dataset, it will be very difficult for a point x; to dominate-back all points
in M(x;, d;,). As such, one may consider x; is important if it can dominate-back a
reasonable number of points in M(x;, d,,). As a result, a relation called p-dominate-
back is defined:

Definition 7 (p-dominate-back, <,,) Let M C X and 0 < p < 1. A point x; is said

to p-dominate-back M (x; <,, M)iff IM' € M, |M’| = p x |M| such that M’ = or
ad,, ij eM x;.d, < Xj.dn.
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Yet, we cannot have the concept of p-dominate-back in k-dominant core skyline
by simply replacing <, to <, because it is possible that some non-interesting points
might be able to p-dominate-back a large number of its dominant-sets while some
interesting points cannot (we omit this proof due to limited space). So we have a new
definition:

Definition 8 (k-dominant p-core skyline, C’;) Let Cﬁ C S. A point x; is a k-dominant
p-core skyline point (x; € C’;) ifand only if x; € Sand 3D’ € D, |D'| = k,Vd,, € D’
both these two conditions hold: (1) x; <,» M(x;, dwm); (2) Vxj € M(x;, dm), Xi <pp
M(Xj, dm)

In Definition 8, Condition (1) is trivial but will lead to the aforementioned pitfall.
So Condition (2) is imposed. x; can be a k-dominant p-core skyline point only if it
can p-dominate-back M(x;, d,,) for all x; € M(x;, d,,). Note that C’O‘ = Cg = Cg =
S. Since core skyline (C) and k-dominant core skyline (C*) are special cases of C’;

(C = CY and C* = CY}), we will focus on studying C%. The problems that we want to
solve are:

1. Given k and p, extract C’; dynamically and progressively.

2. Given 4, identify the smallest k" such that |Ck| <8 and 0 <k’ < N. If no k'
satisfies this condition, then k¥’ = N.

Problem 1 is easy to understand. For Problem 2, from a user’s point of view, it is
convenient because a user only needs to specify the maximum number of points that
she wants to obtain but does not need to understand the distribution of data.

3 Skyline size and dimensionality

It is well-known that when the dimensionality increases slightly, the size of skyline
increases dramatically. In this section, we try to quantify the relationship between
the probability of a point belonging to a skyline and the dimensionality of the
point.

Theorem 1 Given a point x;,where Vd,,, x;.d,, are independent and identically distrib-
uted,then the probability that a point x; can be a skyline point, P(x; € S), is:

n N N
P(xie S) =[] (1 -T] (p;j,dm + pijﬁdm)+]_[ pij,,,,,,) , 1)

J=1,j# m=1 m=1
where pil a4, and pfcj_ a, are the probabilities that x ;.d,, = x;.d,, and x;.d,, < x;.d,,.

Proof x; is a skyline point if no point can dominate it. Hence:

PxieS)= [] Pxj#x, 2)

j=1, i
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Let piﬁ 4, pj’% a4, and p;], d, be the probabilities that x;.d,, > x;.d,y, xj.d,, = x;.d,, and
Xj.dy < X;.dyy, respectively. Pi,,dm + Pi,.d, + pfc,»,dm =1.x; Ax; if Vd,, € D, x;.d,y, =

m

xj.dy, or 3d,,, x;.d,, < x;.d,. Here, P(x;.d,, = x;.d,,) and P3d,,,, x;.d,, < x;.d,,) are:

N
P(Vdy, Xidyy = xj.dy) = [ | PS4, 3)
m=1
N
P@dp, iy < o) = 1= [T (P20, + P, (4)
m=1
Hence, the result follows. O

Theorem 1 estimates the probability of x; € S. For a random point x, we can
obtain:

Theorem 2 For a random point x € X, its probability of being a skyline point,
P(x € S):

N N n—1
Pixe$) = (1 ~T1 s, +r2) +T1 szm> 7 ®)
m=1

m=1

where py and py are respectively the probabilities of x equals to another point and
less than another point in d,,,.

Proof In Theorem 2, p; and pj are:

n n
Do =D Pl Do =D Py (6)
=1 =1

where pf(/_, a, and Pfc,,dm follow the same definition in (1). Using the similar arguments
in Theorem 1, the result follows. O

Corollary 1 If values of all dimensions follow a same distribution, then P(x € S) is:

n—1

Pares) = (1= +p)"+ (") (7)

where p® and p® are the probabilities of x equals to another point and less than another
point, respectively.

Proof If all dimensions follow a same distribution, then in (5), p;, = p§,,, for 1 <
m< (N—-1). O

In Table 2A, all dimensions contain categorical values and fall within 1 to
7. Thus, py = py = py, = pg, = 1/7 and py = py = py = py, =3/7. When N =
2, Pxe §)=0.112. When N =4, P(x € S) =0.510. P(x € S) increases 4 times
when N doubled. If a dataset contains 100K points and all dimensions are con-
tinuous with some reasonable ranges, then p® — 0 and p® — 0.5. When N =2,
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P(x e S) ~ 1.3 x 1071”7 When N = 15, P(x € S) ~ 4.7 x 1072, Now, let us analysis
the property of dominate-back:

Theorem 3 Given a random point x and a dimension d,,, the probability that x <
M(x,d,,) is:

N

PG <y M(x,dp)) = 1= [T [1= ()17 | (®)
m'=1
m'#£m

where | X| is the cardinality of X.

Proof The probability that x cannot dominate-back M(x, d,,,) by using dimension d,
(dn # dy) is:

P(x Ap M(x, dp)ldy) =1 - (p})’, )
where pj, is the probability that x is less than another point in d, and § = [ X| — p;
is the expected size of M(x, d,,). O

With Theorem 3, we can compute the probability that a point belongs to C¥. Yet,
an analytical form will be very complex if each dimension has its own distribution. If
all dimensions has the same distribution, then:

Theorem 4 If all dimensions in a dataset have the same distribution, then P(x €

Cky is:
NN
PxeCH=)" (n)<p>"(1 -, (10)
n=k
p={1-[1-" " " x Pxes), (11)

where p* is the probability of x less than another point.

Proof 1f all dimensions have the same distribution, then in (8), P(x, d,;,) = P(x, d,),
vd,,, Vd,. Our problem then reduced to a binomial distribution problem. In addition,
x € Ck only if x € S, so we need the condition of P(x € ) in (11). |

In Table 2A, P(x € C*) = 0.0012, P(x € C?) = 0.0182, P(x € C?) = 0.107 and
P(x € C") =0.317 and P(x € C% = P(x € §) = 0.510. Finally, it is worth noting the
following property of C:

Property 1 1If k = N, then the k-dominant core skyline:

o | x| x.dy = mind,) (12)
xeX

where min d,,, is the minimum value in dimension d,,.

Proof If x;.dx = mindy, then x; can dominate-back M(x;, d,,) for all d,, by using d.
O
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According to Property 1, we can see that C¥ is never empty for any k < N. For
the properties of C’;, the analysis similar to this section can be made, except that we
need to use join probability and conditional probability. This is useful because it can
show that C* is not empty, which can hardly be seen from its definition. Also, some
existing methods for identifying useful skyline cannot guarantee this property.

4 A simple solution

In this section, we outline a simple but intuitive solution to solve our problem and
analyze its time complexity and its space complexity so as to motivate why we need
to propose a new solution to solve this problem. Intuitively, since C’I‘] is a subset of
skyline, it is natural to extract skyline from a dataset first. Let 7 be the time for
identifying skyline. According to Definition 8, for each point x; € S and each d,,,
we need to identify whether x; can p-dominate-back M(x;, d,;) (Condition 1) and
whether it can p-dominate-back M(xj, d,,) for all x; € M(x;, d,,) (Condition 2). As
a result, the first thing we need to do is to identify M(x;, d,,) for all x; € X. Given
a dimension d,, and a point x;, the time requires to identify M(x;, d,,) is O(| X)).
Since we have N number of dimensions and |S| number of points, the total time
requires is O(N|S|| X]). To check whether x; can fulfill Condition 1 is straightforward;
however, verifying Condition 2 is very time consuming because we need to check
whether x; <,, M(xj,d,,),Vx; € M(x;,d,). One of the possible ways to efficiently
verifying Condition 2 is to sort M(x;, d;), Vx;, Vd,, first. We give a simple example
to explain this. Let x; € M(x;,d,,) and x; € M(x;, d,,). Suppose x;.d,, < Xj.dp,. If
Xi App M(xj, d,,), then it must be true that x; A,, M(x;, d,,) because x; € M(xj, d,)
as x;.dy, < x;.dy,. Hence, if we have sorted M(x;, d,,), we can check whether x; <,
M(x;j, dy),V¥x;j € M(x;, d,,) efficiently. The time requires is just O(p|X|) for each
d,, (without sorting, the time can be O(p|X|?)). Since we have N dimensions and
|S| number of x;, the total time is O(pN|S||X|). The time requires for sorting all
points and dimensions is O(N|S|| X|log|X]|) by using some efficient sorting algo-
rithms such as quick sort. By combining all of them (note: 0 < p < 1), the time re-
quires is T+ O(N|S|| X| + N|S||X|log|X| + pN|S||X|) = T + O(N|S|| X|log|X]).
When N is large, |S| >~ | X|. The computational time is somehow too high for real
applications.

For the space consumption, let n be the size of d,,. It is not difficult to show that
the above framework requires n x | X||N||S| space in memory if we need to identify
C’;, dynamically. As a result, an efficient algorithm for extracting C’;) is desirable.

5 Linked multiple B’-tree

In this section, we describe how to extract Cf, efficiently by using a novel tree
structure called LMB. Each tree is like a BT-Tree that handles one dimension, but
the mechanism of handling collision (same key) is different. Therefore, this type of
tree is called B’-tree in this paper. All B’-trees are linked together based on the values
of the objects. Note that we do not need to identify the skyline points before we
extract C’;. This is important as most skyline points may not belong to C’; when p
and k are of reasonable values. We can then minimize the computational cost.
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Figure 1 General structure of the Linked Multiple B’-tree (LMB).

Figure 1 shows the structure of LMB by using the dataset in Table 2C . There
are three B’-tree, Ty, T, and T3, linked together. T, T, and T3 are responsible for
indexing the data in d,, d; and d3, respectively. Each node in a B’-tree contains some
entries, a previous pointer and a next pointer (Figure 2). The next pointer points
to a succeeding sibling node (if any) and the previous pointer points to a preceding
sibling node (if any). Each entry in a node contains a key and two pointers. The
left pointer either points to a record or points to a node. The right pointer either
points to an entry in another B’-tree that refers to the same point or points to null. In
the real implementation, each node is a page in disk so a node should have more
entries rather than three. The nodes that are shaded are called overflow nodes.
Overflow nodes are not regarded as leave nodes. So the heights of T, T, and T3
are respectively two, one and two. In a B’-tree, records are stored at leave nodes
and overflow nodes. Each overflow node contains points sharing the same key. For
example, T contains one overflow node (key 7) with three entries. This indicates
there are three points having the value 7 in d;.

Points in an overflow node are ordered according to their values in some other
dimensions. For example, given two points x; and x;, where x;.d,, = x,.d,,, there are
two possibilities for their values in the other dimensions: (1) Vd, € D, x;.d, = x;.d,
(i.e. x; and x; are identical), and (2) 3d, € D, x;.d, # x;.d,. For Case (1), x; and x;
will be ordered in an overflow node according to their reverse order of insertion. E.g.
x1 and x¢ in Table 2C are identical, so their orders in T, T, and T are all x4 — x;
(x¢ is on the left of x;) as x is inserted after x;. For Case (2), B’-tree will continue to
compare the values of x; and x; in the immediate next dimension, until their values
are different. E.g. in d», x1.dy = x5.dy = x3.dy = x5.dy = x6.dy = 10. To order these
points in 75, we compare their values in the immediate next dimension of d,, which is
ds. Inds, x1.d3 = 8, x,.ds = 11, x3.d3 = 17, x5.d3 = 20, x¢.d3 = 8. So their ordering in
T is (x1, xg) = X2 — x3 — Xs5. To order x; and x¢ in 7>, we compare their values in
the immediately next dimension, which is d,. Since x; and x¢ are identical, we order

Figure 2 A node in a B’-tree. an entry
a key

previous pointer—'— 77| 16 | |~|—next pointer
-

left pointer right pointer
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them according to the reverse order of their insertion, which is x¢ — x;. Eventually,
the ordering is x¢ — x; — X — X3 —> Xs.

Algorithm 1: insert (x;,7,,)

input : A pointx; and a B’-tree 7,

1 V< xi.dy;

2 if 3v in T, then

3 if overflow node for the key v does not exist then

4 node < a new overflow node;

5 identify entry where entry.key = v and entry is in leave node;
6

7

8

9

insert x; into node where x; = entry.left,
entry.left <— node;  entry.right <~ null;

else

| node < first overflow node of v;

10 end

11 insert (xj,dpy,node);

12 else

13 | insertx; into T, just like a traditional B -tree;

14 end

Algorithm 2: insert (x;,d,,,node)

input : A point, x;, a dimension, d,,, an overflow node, node

1 i+ 1;

2 repeat

3 xj ¢ the point at entry i in node;

4 if m # N then m' < m+1; else m’ < 1;

5 if x;.d,y < x;.d,, then insert x; before x;; return;

6 else if x;.d,; = x;.d,y then

7 fori< 1toN—1do

8 if m' # N then m' < m' +1; else m' + 1;

9 if x;.d,y <x;.d,y then insertx; before x;; return;
10 else if x;.d,; > x;.d,, then insertx; after x;; return;
11 end
12 insert x; before x;; return;

13 end

14 i i+1;

15 if entry i is empty then insert x; in entry i; return;
16 else if i > number of entries in node then

17 | i< 1; node < node.next,

18 end

19 until node is null,

20 node < a new overflow node;

21 insert x; in the first entry of node;

22 attach node to the last overflow node;

5.1 Implementation
Algorithm 1 outlines the insertion process. Suppose we now insert a new point, x;,

into T,,. First, we check whether there is any point having the same value as x; in
d,, (line 2). If not, the insertion process will be the same as a B*-tree [37] (line 13).

@ Springer



46 World Wide Web (2012) 15:33-60

Otherwise, we check whether an overflow node exists (line 3). If not, we will create a
new overflow node (line 4), identify the entry at leave node where its key is x;.d,, (line
5), insert x; (x;.d, = x;.d,,) into the overflow node (line 6) and attach the overflow
node to the correct position in T}, (line 7). x; will be inserted into the overflow node
by calling the function insert (line 11).

Algorithm 2 outlines the process of inserting x; into an overflow node. We iterate
each point x; in an overflow node to see which position should we insert x;. Let d,,; be
the immediate next dimension of d,, (line 4). If x;.d,,y < x;.d, (line 5), then x; will be
inserted before x; (line 6). We can do this because all existing points in an overflow
node must already be ordered properly based on d,,; when they are inserted by calling
this function previously. If x;.d,, = x;.d,s (line 6), then we will compare the values
of x; and x; in their immediate next dimension continuously until they are different
(line 7-11). If Vd,,y, x;.dpy = xj.d,y (i.e. x; and x; are identical), then x; will be inserted
before x; (line 12) because we have to order the identical points in their reverse order
of insertion. Line 14-18 is used to iterate all points in an overflow node. Finally, if
Vx;, Xi.dy > Xj.dpy, then x; be inserted into the last entry of an overflow node (line
15). If the entries are full, then x; will be inserted into a new overflow node(line
20-22). For each entry, its right pointer will point to an entry in the immediate next
B’-tree that points to the same record. This process is trivial and can be performed in
any stage during the insertion process. For deletion, its steps are similar to a B*-tree,
except that when an overflow node contains only one entry, then this entry will be
propagated back to its parent node and the overflow node will be deleted. As this
process is trivial, we do not present a detailed algorithm due to the limited space in
this paper.

5.2 Extracting C% points
Once an LMB has indexed all points, we can extract Cﬁ dynamically and progres-
sively according to a reference point, r (e.g. r is the origin). Given a point x; and a
dimension d,,, suppose all points in M(x;, d,,) are ordered according to d,, (d, # d)
in an descending order. Let x* be the point at position [p x |M(x;, d,)|] in M(x;, d,y,).
If x;.d, < x*.d,, then x; obviously must be able to p-dominate-back M(x;, d,,) by
using d,,. Hence, Condition (1) of Definition 8 can be verified quickly if x* can be
identified efficiently. Now, assume there is a point x; € M(x;, dy,). In order for x;
p-dominate-back M(x;, d,,) using d,,, x;.d, must be less than or equal to xjf.dn where
x’]f is the point at position [p x |[M(x}, d,)|] (remember M(x;, d,,) is sorted based on
dy). Hence, to verify Condition (2) of Definition 8 quickly, what we need to do is to
check whether 3d,,, x;.d, < min ,-xj.dn where x7% is the point at position [p x [M(x;,
dy)|1. Once we can verify Condition (1) and Condition (2) of Definition 8 quickly,
we can extract Cf, efficiently. Hence, the major issue we need to deal with is how to
identify x* and x7 with respect to d,, quickly. We extract C’[‘, based on this idea.
Algorithm 3 outlines the steps for extracting Cf). Lines 1-5 initialize some para-
meters. In line 2, if there are more than one point closest to the reference point
r in d,,, then x will be initialized to the one which is the first occurrence in an
overflow node. With LMB, we can identify x”* very quickly. This process is similar
to a Bf-tree. B,,, (line 3) is a BTree. It helps us to determine whether a point can
p-dominant-back a dominant-set. If x; can p-dominate-back M(x;, d,,,) by using d,,,
then x; will be stored in B,,;,. We may not always need to store x; permanently in
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B, We want to keep B,,,,, as small as possible so as to reduce memory consumption
and computational time. We explain this step by step below. Let v = |x"™.d,, — 1.,
We can identify x.d, quickly by using LMB without accessing the record directly.
Whenever B,,, is empty or v is less than the last value in B,,, (i.e. the largest value
in By,,), then v will be inserted into B, (line 10 and 11). Let i be the it point closest
to the reference point r. Whenever |B,,,| < [p x i], then the last value in B,,,, will
be removed (line 16-18). By doing so, we can keep the size of B,,, always not exceed
[px|MxX™, d,)|]. We can do so because we extract x” one by one according to
the ascending distance to r (line 21). Furthermore, note that the last value in B,
is in fact min{x*.d,, x’]f.d,,} with respect to d,,. If x”* < min{x*.d,,, x’]f.dn}, it implies x™
satisfies Conditions 1 and 2 of Definition 8. So x™ will be added into H (line 12-15).
In line 12, the condition fix € H, x < x™ guarantees x must be a skyline. The rest of
Algorithm 3 should be self-explained. Finally, H (line 6) is a hash table. It stores
how many dominant-sets that a point can p-dominant-back. The function update
(line 24 and 26) is used to update the information stored in H so as to extract C’I‘,.
It is outlined in Algorithm 4. In Algorithm 4, V' (e.g. line 2) is a set that stores the
“p-dominate-back result” of x. If x can p-dominate-back a specified dominant-set,
then 1 will be added into V; otherwise, 0 will be added (line 4). If the number of 1 in
V is greater than or equals to k (k is a user-defined parameter to extract C’;), then x
will be added into C’; (line 5-8). Note that x is added into C’; progressively so we can
return results to users immediately and progressively.

Algorithm 3: extract (p,k,r)

input : two user defined threshold, p and k, and a reference point,
output: k-dominant p-core skyline, Cf,

1 form <« 1to N do
2 x™ «— the point closest to r in d,,; // e.g. r is the origin
3 By <+ 0,n=1,2,....N;// B, is a BTree
4 end
5 Cf, «~—0; H<+0;
6 for i« 1to|X|do
7 for m < 1 to N do
8 added « false;
9 forn< 1toN,n # mdo
10 if By = 0 or [xX".dy — ryy.dy| < Byn.last then
11 insert |x".d,, — ry.dy| into Byy;
12 if added = false and #x € H,x < X" then
13 C;‘, — C;‘,U update (H,k,xX™");
14 added = true;
15 end
16 if [p X i] > |Byy| then
17 | remove last element from B,;,,;;
18 end
19 end
20 end
21 x™ <— the point closest to x”* (besides itself) in d,,;;
22 end
23 i+ i+1;
24 end

25 return Cf,;
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5.3 Extensions

Algorithm 3 tries to solve Problem 1 which is raised in Section 2. For Problem 2,
we can solve it by: (1) Remove line 4 to line 8 in Algorithm 4; (2) The appropriate
k' could be obtained easily by checking the number of v = 1 in each V in H after
Algorithm 3 is completed. For example, when N =3 (i.e. |V| = 3), suppose after
completing Algorithm 3, there are five V having three v = 1, seven V having two
v=1and ten V having one v = 1. Then, |C}| =5, |C5| = 12, |C}| =22. If § =20
(maximum number of core skyline points returned is 20), then k' = 2.

Furthermore, we can extend our algorithm to answer some complex queries easily.
We give some examples here to illustrate how this can be done. If we want to return
C’[‘, for a particular range of k, then we simply change line 6 of Algorithm 4 to the
appropriate range. For example, if we want to return C’; when k = 2 but exclude
those points in C’I‘, when k = 4, then we change line 6 to: “If 2 < k' < 4 and x is not
yet returned then”. To deal with constraint skyline queries [33], we only need to pay
attention to line 2 and line 33 of Algorithm 3. If the x,, returned is not within the
constrained region, then we can immediately ignore that dimension d,, and do no
need to conduct any further computation.

Algorithm 4: update (H,k,x,v)

input : A hashtable, H, a parameter, k, a point, x, a value, v € {0,1}
output: A k-dominant p-core skyline point, x, or 0
if H does not contain element with key x then
| put (x,V)into H; // x is the key and V (a set) is the element
end
add v into V; // V is the element with key x
k'« number of v in V equals 1;
if ¥’ > k and x is not yet returned then
| returnx;
end
return 0;

R=IE-CHEN B N I SRS S

For the time complexity of extracting CZ in Algorithm 3, identifying x* (line 12)
and X (line 18) is simple and efficient (O(1) for each case). We can immediately
tell whether x,, can p-dominate-back M(x,,, d,,) by using d,, and whether x,, can
p-dominate-back M, (x,,, d,,) by using d,. Since we have N dimensions, we need
to compare N — 1 dimensions in the worst case. Let O(T) be the time complexity to
determine whether a point can be dominated by the points in H (line 10 of Algorithm
3). Eventually, the time complexity for identifying C’]‘) will be O(| X|- N? + | X]| - T).
The time complexity is in the order of N2, however, this in practice is not very high as
N is the dimensionality, which is unlikely to be hundreds or thousands.The operation
time is therefore more or less feasible in real application. This is also being confirmed
by our experiments. Details will be given in Section 6.

For the space complexity, let § be the size of a value (e.g. 4 byte for an integer).
For CZ, each dimension stores the values of the other dimensions that it has
been dominated. In the worst case (which is extremely unlikely to happen for a
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reasonable p), we need to store the whole dataset for each dimension. Thus, the
space complexity for the worst case is: O(8 - n - N?).

6 Experiment

All experiments are conducted using an Intel XEON 2.5GHz CPU in Microsoft
Windows Server 2003 R2 Enterprise x64 Edition. All programs are written in Java.
We use a page size of 4KB for each node of LMB. Following [10, 33], we generate
several independent, correlated and anti-correlated datasets. In order to evaluate the
quality of C’;, we use two real life datasets.

6.1 Effect of cardinality

We set | X| (number of points) = {100000, 150000, 200000, 250000, 300000}, N = 15,
k =15 and p = 1. Figure 3a shows the CPU time versus cardinality in different
datasets. In the figure, there are three lines. They denote the results against indepen-
dent dataset, correlated dataset and anti-correlated dataset. With LM B, we only need
to spend less than 3 s to identify Cf, from a dataset with 15 dimensions and 100,000
points and spend around 11 s to identify Cf, from a dataset with 15 dimensions and
300,000 points. In general, the CPU time increases linearly when the dimensionality
increases linearly. For a reference, BBS [34] (the most efficient algorithm to identify
skyline) takes more than 1,000 s to identify skyline from an independent dataset with
15 dimensions and 100,000 points and takes more than 2,200 s to identify skyline
from an anti-correlated dataset with the same setting. Figure 3b shows the size of
C’; versus cardinality. For the independent dataset, |C§| increases linearly. For the
correlated dataset, |C’;| almost constant (less than 5). For the anti-correlated dataset,
|C’l‘,| increases slowly when |X| > 250K. For the same |X]|, the size of C’I‘) in an

independent dataset is always larger than the size of C’;, in an anti-correlated dataset.
Figure 3c shows the memory consumption versus cardinality. The trend of is highly
related to the size of Cf) because we always need to keep a fix amount of information
(Bmn and H in Algorithm 3) in the main memory. For each B’-Tree, B,,, is more or
less constant (| B,,,| is usually around p x |M(x;, d,,)|, Vr) but | H| is highly related

to the number of skyline points in the dataset.

6.2 Effect of dimensionality

We set N (dimensionality) = {15, 20, 25, 30, 35}, | X| = 100,000, p =1 and k = 1.
Figure 4a, b and c respectively show the CPU time, the size of C’; and the max.
memory consumption in different datasets. We can identify k-dominant p-core
skyline points within 15 s for all datasets even when k = 35. The computational time
roughly increases linearly. When the dimensionality increases, |C’1‘,| does not vary
much in the anti-correlated and the correlated datasets. Note that more than 95%
of points are skyline points when | X| = 100,000 and N = 35 in the anti-correlated
dataset. For the independent datasets, |C’[§| increases linearly. Nevertheless, more
than 90% of points are skyline points when N = 35, but the number of core skyline
points is just less than 400. We can reduce the number of skyline points dramatically.
For the memory consumption, when we compare Figures 3¢ and 4c, Figure 3c is more
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flat because when the dimensionality increases, we need to store more p-dominate-
back information (i.e. B, in Algorithm 3) for each B’-Tree.

6.3 Effect of k

We set k (number of dominant-sets a point has to p-dominate-back) = {15, 12,9, 6,
3}, | X| = 100,000 N = 15 and p = 1. Figure 5a, b and c respectively show the CPU
time, the size of C’I‘7 and the maximum memory consumption against k in different
datasets. For the CPU time, all lines are roughly constant (or having a slightly
decreasing trend) regardless of the choice of k. Technically, when k is small, we
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have less comparisons before we can decide whether a point should be returned.
In practice, it seems that the computational time differences between a small k£ and
a large k is negligible. For the size of C¥, the rate of increase of the anti-correlated
dataset is much faster than the independent dataset. For the memory consumption,
it is constant.

6.4 Effect of p

We set p = {1, 0.999, 0.998, 0.997, 0.996}, | X| = 100,000, N = 15 and k = 1. Figure 6
shows the results. It is quite obvious that p has a significant impact on C’; (especially
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the anti-correlated dataset). In Figure 6a, the time requires to identify C’; from an
anti-correlated dataset increases exponentially. Fortunately, having a small p in our
problem is unreasonable as our objective is to extract a small set of interesting skyline
points. When the value of p decreases, the size of C’; increases dramatically. This is
shown in Figure 6b. When p = 1, |C’;| is less than 100 in the anti-correlated dataset;
when p = 0.996, |C’[‘,| is around 900. For the memory consumption (Figure 6c), the
memory needed for correlated dataset and independent dataset do not vary much.
However, the anti-correlated dataset does require a large amount of memory when
p decreases.
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6.5 Quality of result

We evaluate the quality of C’]‘) using two real life datasets. One is called NBA
dataset and the other one is called MovieLens. The NBA dataset has 11,301 records.
It includes all NBA players from 1979 to 2007. Each record denotes the average
performance of a player in a year. The MovieLens dataset has 3,952 movies. The
schema for NBA dataset is: minutes played, points obtained, offensive rebound
obtained, defensive rebound obtained, total rebound obtained, assistant made, steal
made, block made, three points made, free throw made and field goal made. The
schema for MovieLens dataset is: Female rating, Male rating, Female under, Male
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Table 3 Players extracted by C’;.

k p Players

11 1 Alvin Robertson 1985, Dennis Rodman 1991, Hakeem Olajuwon 1989, John Stockton
1990, Latrell Sprewell 1993, Michael Jordan 1986, Moses Malone 1979, Ray Allen
2005 (8 records, 8 players)

5 1 Allen Iverson 2002, Alvin Robertson 1985, Antoine Walker (2000, 2001), Charles
Barkley 1988, Dennis Rodman 1991, Gary Payton 1999, George Mccloud 1995,
Gilbert Arenas 2005, Hakeem Olajuwon (1988, 1989, 1992), Isiah Thomas 1984,
Jason Richardson 2007, John Stockton (1988, 1990, 1991), Karl Malone 1989, Kevin
Garnett (2002, 2003), Kevin Willis 1991, Kobe Bryant 2005, Latrell Sprewell 1993,
Magic Johnson 1986, Mark Eaton 1984, Michael Jordan (1986, 1987, 1988, 1989),
Michealray Richardson 1979, Moses Malone (1979, 1981, 1982), Predrag
Stojakovic 2003, Ray Allen 2005, Shaquille O’neal 1999 (36 records, 25 players)

11 094  Adrian Dantley 1980, Allen Iverson (2002, 2007), Alvin Robertson (1985, 1986),
Anthony Mason 1995, Antoine Walker 2001, Dennis Rodman 1991, Dennis Scott
1995, Gary Payton 1999, George Mccloud 1995, Gilbert Arenas 2005, Hakeem
Olajuwon (1988, 1989), Jason Richardson 2007, John Stockton (1987, 1988,
1990, 1991), Kevin Garnett (2002, 2003, 2004), Kobe Bryant 2005, Latrell Sprewell
1993, Magic Johnson (1981, 1982), Michael Finley 1999, Michael Jordan (1986,
1987, 1988), Michealray Richardson 1979, Mitch Richmond 1995, Mookie
Blaylock (1993, 1995), Moses Malone (1979, 1981,1982), Predrag Stojakovic 2003,
Ray Allen 2005, Reggie Miller 1996, Shaquille O’neal 1999, Steve Nash (2006, 2007),
Tim Hardaway 1991 (44 records, 29 players)

under, Female 19-25, Male 19-25, Female 26-35, Male 26-35, Female 36-45, Male
36-45, Female 46-50, Male 46-50, Female 5155, Male 51-55, Female 56 or above,
Male 56 or above and Overall rating. Due to the limited space, we only report
some of the most interesting findings. Readers can download all results online.> We
implement the k-dominant skyline algorithm. Chan et al. [10] for comparison. This
algorithm is proved to be very effective in extracting interesting points from a large
set of skyline points. We do not compare this algorithm in the previous experiments
because we are neither an extension of it nor targeting to obtain the same result.

Table 3 shows the players extracted by C’;. All players are sorted by their first
names. We report C}', C7 and C}l,s. We choose them because: (1) C}' is the most
tight constraint; (2) C; implies a player should p-dominate-back around half of
dimensions in the dataset. This make sense in the basketball situation; (3) The
number of skyline points returned by Cj,, in this dataset is similar to the number
of skyline points returned by Cj. We can compare the results returned by Cj,, and
C3.

lOne frequently asked question is that “why X is not included? I think he plays
equally well with Y!” Yet, this type of question is subjective. Furthermore, one
cannot deny the fact that the players in Table 3 are all famous. In addition, there
are more than 1,000 skyline points in the dataset. Some skyline points belong to
some not-so-famous players. If we randomly extract some skyline points from the
dataset, it is very likely to extract the not-so-famous players. When we compare
Cjo, and C7, although most names are similar, some names appear in C; but not

2www.databasebasketball.com and www.grouplens.org
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Table 4 Players extracted by k-dominant skyline [10].

K Players

9 Alton Lister 1986, Charles Barkley (1985, 1986, 1987, 1988), Charles Oakley 1986, David
Robinson (1990, 1992, 1993, 1994, 1995), Dennis Rodman (1991, 1993), Dikembe
Mutombo (1995, 1999), Dirk Nowitzki 2002, Dwight Howard 2007, Elvin Hayes 1979,
Gary Payton 1999, Hakeem Olajuwon (1988, 1989, 1992, 1993, 1994), James Donaldson
1986, Julius Erving 1980, Karl Malone (1989, 1990, 1991, 1992, 1993), Kevin Garnett
(1999, 2000, 2001, 2002, 2003, 2004, 2006), Larry Bird (1983,1986), Mark West 1989,
Michael Jordan (1986, 1987, 1988, 1989), Moses Malone (1979, 1980, 1981, 1982), Patrick
Ewing (1989, 1990), Samuel Dalembert 2006, Shaquille O’neal (1992, 1993, 1999), Shawn
Marion 2002, Tim Duncan (2001, 2002) (58 records, 24 players)

in G} g5, such as Charles Barkley (another great NBA players). If we change Cj o5
to Cj g, then Charles Barkley re-appears again. This shows that both k and p
are useful in extraction. Finally, when £ = 1 and p = 1, there are 132 records (67
players) extracted. When we apply [10], it extracts one record, Moses Malone, when
6 < K < 7 (according to [10], it is meaningless to set K < N/2,so we do not test these
cases), extracts 17 records when K = 8, extracts 58 records when K =9, extracts
279 records when K = 10. The number of records increases exponentially when K
increases linearly. We cannot have much control over the number of records to
be extracted. However, in C’; we can set different value of p so that we can have
more control about the number of records to be extracted. E.g. when k =11 and
p = 0.99, we can extract 19 records in C’[‘,. In addition, Table 4 shows the records
extracted by K-dominant skyline when K = 9. The records extracted by K-dominant
skyline approach are not similar to ours. It extracts fewer players but more records.
For example, Allen Iverson and Kobe Bryant, two very great NBA players, do
not appear in K-dominant skyline when K < 10. This is because both players are
shooters and do not perform very outstanding in rebound and block. It is very
difficult for them to K-dominate other players for whatever K. This is why they
cannot be extracted in K-dominant skyline. However, for our proposed work, we
consider vertical relationships rather than only horizontal relationships.

7 Related work

The skyline computation originates from the maximal vector problem in computa-
tional geometry, proposed by Kung et al. [23]. The algorithms developed [4, 28, 33]
usually suits for a small dataset with computation done in main memory. One variant
of maximal vector problem, which is related to but different from the notion of thick
skyline, is the maximal layers problem [32]which aims at identifying different layers
of maximal objects.

Borzsonyi et al. [6] first introduce the skyline operator over large databases and
propose efficient external memory algorithms for processing skyline queries. The
BNL (block-nested-loop) algorithm scans the dataset while employing a bounded
buffer for tracking the points that cannot be dominated by other points in the
buffer. A point is reported as a result if it cannot be dominated by any other
point in the dataset. On the other hand, the DC (divide-and-conquer) algorithm
recursively partitions the dataset until each partition is small enough to fit in memory.
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After the local skyline in each partition is computed, they are merged to form the
global skyline. The method based on [3, 23] partitions the database into memory-
fit partitions. The partial skyline objects in each partition is computed by using a
main-memory-based algorithm [16, 33], and the final skyline is obtained by merging
the partial results. In [40], the authors proposed two progressive skyline computing
methods. The first employs a bitmap to map each object and then identifies skyline
through bitmap operations. Though the bit-wise operation is fast, the huge length
of the bitmap is a major performance concern. The second method introduces a
specialized B-tree which is built for each combination list of dimensions that a
user might be interested in. Data in each list is divided into batches. The algorithm
processes each batch with the ascending index value to find skylines.

The BNL algorithm was later improved to SFS (sort-filter-skyline) [14] and LESS
(linear elimination sort for skyline) [19] in order to optimize the average-case running
time. The algorithm may require a large number of passes until the complete skyline
is computed. The sort filter skyline (SFS) [14] is an improvement of BNL, which
first sorts the dataset topologically with the help of a monotone function (e.g., sum
of coordinates, assuming they have been normalized). Sorting guarantees that each
object cannot be dominated by ones that follow it in the order. As a result, each
object that is pushed into the buffer window can immediately be reported as part of
the skyline.

The number of passes over the data is then equal to the size of the skyline over the
size of the memory buffer. An optimized version of SFS, called linear elimination sort
for skyline (LESS), is proposed in [19]. LESS uses a small buffer, called elimination-
filter window in the initial pass of the external sort routine of SFS, which keeps a
small set of objects used to prune others dominated by them early. Further, LESS
combines the last pass of the external sort in SFS with the first filter-scan of SFS (i.e.,
first pass of the BNL component of SFS).

In SFS and LESS, all objects should be scanned at least once after sorting. Sort
and limit skyline algorithm (SaLSa) [2] strives to avoid scanning the complete set of
sorted objects. First, the authors suggest an optimal sorting function, which orders the
points according to their minimum coordinate value among all dimensions. Second,
during the filter-scan process, this method checks whether all points in the remaining
dataset are dominated by a so-called stop object that can be determined in O(1) time
from the data accessed so far. However, the performance of this method is drastically
affected by the data distribution and increasing dimensionality; in high-dimensional
problems, the pruning power of the stop object is limited. All sort-based techniques
(SFS, LESS, SaLSa) suffer from the large number of computations required during
the filter-scan step, as every read point should be compared with the skyline points
in the buffer.

The above algorithms are generic and applicable for non-indexed data. On the
other hand, Kossmann et al. [22] and Papadias et al. [34] exploited data indexes to
accelerate skyline computation. Kossmann et al. [22] present an online algorithm,
NN, based on the nearest neighbor search. It gives a big picture of the skyline very
quickly in all situations. However, it has raw performance when large amount of
skyline needs to be computed. The current most efficient method is BBS (branch and
bound skyline), proposed by Papadias et al. [33, 34], which is a progressive algorithm
to find skyline with optimal times of node accesses. The state-of-the-art algorithm is
shown to be I/O optimal for computing skylines on datasets indexed by R-trees. The
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ZSearch algorithm [24] uses a new variant of B*-tree, called ZBtree, for maintaining
the set of candidate skyline tuples in Z-order, which is compatible with the domain
correlation. Therefore, index-based approaches have certain limitations that make
them useful only for special cases.

As discussed before, Pei et al. [36] and Yuan et al. [45] studied the efficient
computation of skylines for every subspace; Tao et al. [41] proposed a technique
for retrieving the skyline for a given subspace; They also proposed a sampling
scheme that allowed getting an early impression of the skyline for subsequent
query refinement. Chaudhuri et al. [12] and Godfrey [18] developed techniques
for estimating the skyline cardinality; Godfrey [26] and Sarkas et al. [39] studied
continuous maintenance of the skyline over a data stream; Morse et al. [29] examine
continuous time-interval skyline queries.

Some studies [8, 9, 12, 30, 42, 43] went beyond skyline evaluation for totally
ordered numerical domains and consider partially ordered domains involving cat-
egorical or nominal dimensions. Most of them adopt a partial-to-total domain map-
ping mechanism and then apply existing total order methods, which however suffer
from the complex and large size of partially ordered domains [9]. Finally, a lattice
skyline (LS) algorithm, introduced in [30], uses a lattice structure to answer skyline
queries with dimensions drawn from low-cardinality domains. This method becomes
inefficient if the number or size of the domains is large and is not applicable if more
than one high-cardinality domain is present. In [46], their focus is on totally ordered
domains of high cardinality. They discuss how their methods can be adapted for
partially ordered domains. All the above works concerned only the pure dominant
relationship and outputted those points which are not dominated by others.

Note that in addition to the original meaning in [6], “dominated” here can be
a variant, i.e., k-dominant [10], which found interesting skyline points in high-
dimensional space. To tackle the curse of dimensionality, several proposals extended
or adapted the definition of skyline in order to consider dimensional subspaces in
the dominance relationships between objects [10, 11, 27, 41, 45]. In addition, a top-k
query that considers dominance relationships was proposed in [44]. Moreover, efforts
have been devoted to dynamic skyline search [13, 38], probabilistic skyline compu-
tation [35] and skyline computation over uncertain data [20, 25]. Different from the
previous work, Fung et al. [17] further considered not only horizontal comparison
but also vertical relationship among dimension, which focus on extracting interesting
skyline points in high dimensional space.

8 Conclusion

For Web applications with a large number of data objects described using a rich set
of attributes, it is a highly challenging task to make high quality recommendations
efficiently. While the concept of skyline query has been proposed to address the
problem of the lack of a preference function that can combine multiple attributes
to support linear object ranking, this type of query can return too many results when
the number of attributes is large, a common case for many Web applications. After
an analysis of deficiencies of existing approaches that attempt to reduce the size of
skyline-based recommendations, we proposed a novel concept called k-dominant
p-core skyline for extracting interesting points from a skyline. This concept is the
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first to consider the relationship among objects vertically, to reflect the intuition
that for an object to be recommended it should perform better in some dimensions
than a large portion of the objects that perform better than the object in other
dimensions. We use parameter k to denote the number of dimensions that a point
has to dominate-back and p to denote the fraction of points in a given dimension
that a point has to dominate-back. We gave a theoretical analysis in this paper
to establish the foundation of our idea. This idea can be quite computationally
demanding to implement as conceptually core skyline points are extracted from
the skyline points and the cost to compute the skyline can be very high due
to its large size. To make our proposal practical, we designed a new indexing
structure called Linked Multiple B>-Trees (LMB) that can generate k-dominate
p-core skyline results directly and progressively without the need to generate the
entire skyline set first. Our main contributions in this paper include (1) a proposal
for a new way of making recommendation based on the skyline concept but to
make the result set much smaller and meaningful; and (2) a method to implement
the proposal to achieve better execution performance than the traditional skyline
solutions.
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