
A Learning-Based Jam Session System that Imitates a Player's Personality Model 

Masatoshi Hamanaka12, Masataka Goto3) 2), Hideki Asoh2), and Nobuyuki Otsu2) 4) 

1) Research Fellow of the Japan Society for the Promotion of Science, 
2) National Institute of Advanced Industrial Science and Technology (AIST), 

3) "Information and Human Activity," PRESTO, JST, 4) University of Tokyo 
Mbox 0604, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan 

m.hamanaka@aist.go.jp 

Abstract 
This paper describes a jam session system that 
enables a human player to interplay with virtual 
players which can imitate the player personality 
models of various human players. Previous sys­
tems have parameters that allow some alteration 
in the way virtual players react, but these systems 
cannot imitate human personalities. Our system 
can obtain three kinds of player personality 
models from a MIDI recording of a session in 
which that player participated - a reaction model, 
a phrase model, and a groove model. The reaction 
model is the characteristic way that a player reacts 
to other players, and it can be statistically learned 
from the relationship between the MIDI data of 
music the player listens to and the MIDI data of 
music improvised by that player. The phrase 
model is a set of player's characteristic phrases; it 
can be acquired through musical segmentation of 
a MIDI session recording by using Voronoi dia­
grams on a piano-roll. The groove model is a 
model that generates onset time deviation; it can 
be acquired by using a hidden Markov model. 
Experimental results show that the personality 
models of any player participating in a guitar trio 
session can be derived from a MIDI recording of 
that session. 

1 Introduction 
Our goal is to create a jam session system in which virtual 
players react as if they were actual human players. We 
want to make it possible for a human player to interact, 
whenever they like, with a virtual player that can imitate 
whoever the human player wishes to perform, for example, 
with a familiar, professional, or deceased player, or even 
with themselves. What is most important in imitating 
players is to acquire the player's personality models of a 
target human player. 

Previous session systems have not been able to imitate a 
human player's personality. Some systems [Aono et al., 
1995] have been designed to follow the performance of a 
human soloist, but without considering the individual 
character of the virtual player. Although JASPER [Wake 

et al., 1994] has a set of rules that determine the system's 
reactions and VirJa Session [Goto et al., 1996] has pa­
rameters for altering how it reacts, these systems cannot 
develop player personality models of an actual human 
player. 

To realistically imitate a human player, a system must 
be able to acquire player personality models of that player. 
The imitating virtual player can then improvise according 
to the models. The Neuro-Musician [Nishijima and Kijima, 
1989; Nishijima and Watanabe, 1992] can learn the rela­
tionship between 30 sets of an 8-bar-length input pattern 
and an output pattern by using neural networks. However, 
it is only capable of dealing with the limited style of a jam 
session where a solo part must be changed in 8-bar rotation. 
In other words, a virtual player and a human player cannot 
both play a solo part in the same time. Moreover, the 
Neuro-Musician must prepare a training set of 
8-bar-length input-output data to enable neural network 
learning. In an actual jam session, a player does not always 
play an 8-bar solo to the 8-bar solo of the other players. 
Therefore, we cannot acquire the player models from a 
MIDI session recording by using the Neuro-Musician 
method. 

On the other hand, the Band-OUT-of-a-Box (BoB), 
which deals with a problem similar to ours [Thorn, 2001a; 
Thorn, 2001b], indicates that machine learning techniques 
provide a useful approach to acquire a player's models. 
However, BoB can only react to a human performance of 
an immediately previous four bars. It has a fixed rela­
tionship in which the human player is the leader and the 
virtual player is the follower. 

Our jam system allows us to acquire player personality 
models of a target human player from the MIDI recording 
of a session in which that player participated. The main 
advantage of our approach is that we do not have to di­
rectly evaluate the target player: all we need to build the 
models is session recording data. 

2 A Guitar Trio Session System 
Our system deals with constant-tempo 12-bar blues per­
formed by a guitar trio. Figure 1 shows a jam session 

MIDI stands for Musical Instrument Digital Interface. 
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model in which either a human or the computer can be 
selected to perform the part of each player. We can 
imagine sessions in which all players wi l l be human 
players just as we can imagine sessions in which all 
players are computer players. The three players take the 
solo part one after another without a fixed leader-follower 
relationship. 

We obtain three kinds of player personality model from a 
MIDI session recording - a reaction model, a phrase 
model, and a groove model. 

The system has two modes, a learning mode and a ses­
sion mode. In the learning mode (discussed in Sections 3,4, 
and 5), the system acquires player personality models in 
non-real time. These models are stored in a database and 
different personality models can be assigned to the two 
virtual players before session play (Figure 2). In the ses­
sion mode (discussed in Section 6), a human player can 
interact with the virtual players in real time. 

3 Learn ing a react ion model 
A reaction model is the characteristic way that a player 
reacts to other players. Acquiring an actual player's indi­
vidual reaction model is necessary to create a virtual 
player that reacts as that actual human player does. As 
shown in Figure 3, each virtual player listens to the per­
formances of all the players (including its own) and uses 
the reaction model to determine what its next reaction 
(output performance) wi l l be. The main issue in deriving 

the reaction model is to learn the relationship between the 
input and the output of the target player in MIDI re­
cordings. This can be formulated as a problem of obtaining 
a mapping from the input to the target player's output. 
However the direct MIDI-level learning of this mapping is 
too difficult because the same MIDI-level sequence rarely 
occurs more than once and the mapping itself is too sparse. 
We therefore have introduced two intermediate subjective 
spaces: an impression space and an intention space (Figure 
4). 

3.1 Impress ion space 
The impression space represents the subjective impression 
derived from the MIDI input. By applying principal 
components analysis (PCA) to the results of subjective 
evaluations of various MID I performances, we determined 
three coordinate axes for the impression space. PCA is a 
statistical method for reducing the number of dimensions 
while capturing the major variances within a large data set. 
While listening to a performance, a subject subjectively 
evaluated it by using ten impression words to rank the 
performance's impression on a scale of one to seven. The 
three selected axes of the impression space represent 
qualities that can be described as appealing, energetic, and 
heavy. To obtain a vector in this space, an impression 
vector corresponding to the MIDI input, we use canonical 
correlation analysis (CCA). This analysis maximizes the 
correlation between various low-level features of the 
MID I input (such as pitch, note counts, tensions, and pitch 
bend) and the corresponding subjective evaluation. Since 
an impression vector is obtained from an individual 
player's performance, we have at every moment three 
impression vectors (Figure 4). 

The impression space is necessary for learning the re­
lationship between various input performances and the 
corresponding output performances. If we represent the 
input performances as short MIDI segments without using 
the impression space, the same M ID I segments wi l l not be 
repeated in different sessions. The impression space en­
ables the abstracting of subjective impressions from input 
M ID I data and those impressions can be repeated. Even if 
two segments of the input M ID I data differ, they can be 
represented as a similar vector in the impression space as 
long as they give the same impression. 
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Figure 4: Player architecture. 
Figure 5 shows the transition of the rated values for the 

impression word "appealing" The black line represents 
the value calculated by the system and the gray line 
represents the value as evaluated by a human listener. For 
92 percent of the performance, the calculated and subjec­
tively evaluated values do not differ by more than 1. 

3.2 I n t e n t i o n space 
The intention space represents the intention of the player 
improvising the output. A vector in this space, an intention 
vector, determines the feeling of the next output. It is used 
to select short M ID I phrases from a phrase database, and 
connecting the selected phrases generates the output MIDI 
performance. 

Without the intention space, learning the relationship 
between impression vectors and output M ID I data is dif­
ficult because in actual MID I recordings various outputs 
can occur when the input data gives the same impression. 
The intention space makes it easier to learn the player's 
reaction model. 

The intention space is constructed by using 
multidimensional scaling (MDS) [Kruskal and Wish, 
1978] such that intention vectors are distributed with 
proximities proportional to subjective similarities of 
short phrases corresponding to those vectors. Based on 
MDS results, we determined the three dimensions of this 
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we determined the three dimensions of this space. Be­
cause the number of the short phrases is limited, those 
phrases are sparsely placed in the intention space. When 
generating the output, the system selects the output phrase 
close to the determined intention vector: an appropriate 
phrase can be selected even if the phrase database does not 
have a phrase that is exactly placed on the intention vector. 

3.3 A c q u i r i n g a r e a c t i o n m o d e l 
We can regard the mapping from the impression space to 
the intention space as the reaction model. To derive this 
mapping function statistically, we obtain various training 
sets from the target session recordings. These sets are pairs 
of impression vectors obtained from the three players 
during a sequence of the past twelve bars and the corre­
sponding next intention vector. For this learning we use 
Gaussian radial basis function (RBF) networks [Chen et 
al., 1991]. The RBF networks have one hidden layer with 
nonlinear inputs, and each node in the hidden layer com­
putes the distance between the input vector and the center 
of the corresponding radial basis function. 



The RBF networks have good generalization ability and 
can learn whichever nonlinear mapping function we are 
dealing with. 

4 L e a r n i n g a ph rase mode l 
A phrase model is a set of player's characteristic phrases. 
To create a virtual player that performs using phrases as an 
actual human player does, acquiring the actual player's 
individual phrase model is necessary. This can be done 
through musical segmentation of a MIDI session recording 
(Figure 6). 

Two kinds of grouping appear in polyphony, one in the 
direction of pitch interval and the other in the direction of 
time. Grouping in the pitch interval direction divides po­
lyphony into multiple homophony (Figure 7a). In the time 
direction, notes are grouped from time gap to time gap 
(Figure 7b). 

To segment a MIDI session recording into phrases, we 
need to automatically divide the polyphony notes into 
groups. The generative theory of tonal music (GTTM) 
[Lerdahl and Jackendoff, 1983] includes a grouping con­
cept, and thus can be used to derive a set of rules for the 
division of notes into groups. We think that GTTM is the 
most promising theory of music in terms of computer 
implementation; however, no strict order exists for ap­
plying the rules of GTTM. This may lead to ambiguities in 
terms of analysis results. The implementation of GTTM as 
a computer system has been attempted [Ida et al., 2001], 
but the resulting system was only capable of dealing with a 
limited polyphony made up of two monophonies. 

In this paper, we propose a method of grouping based on 
applying the Voronoi diagram. We have developed a 
method of grouping rather than naively implementing 
GTTM so that a result obtained using our method is equi-
final to one obtained with the GTTM approach. We 

a: Grouping in pilch interval direction. 

b: Grouping in time direction. 

Figure 7: Examples of grouping. 

compare the results of grouping by our method with the 
results of grouping by a human according to the GTTM. 

4.1 Genera t i ve Theo ry o f Tona l Mus ic 
The generative theory of tonal music is composed of four 
modules, each of which is assigned to a separate part of 
the structural description of a listener's understanding of 
music. The four GTTM modules are the grouping 
structure, the metrical structure, the time-span reduction, 
and the prolongational reduction. 

The grouping structure is intended to formalize the 
intuition that tonal music is organized into groups, which 
are in turn composed of subgroups. There are two kinds 
of rules for GTTM grouping: grouping well-formedness 
rules and grouping preference rules. Grouping 
well-formedness rules are necessary conditions for the 
assignment of a grouping structure and restrictions on the 
generated structures. When more than one structure may 
satisfy the grouping well-formedness rules, grouping 
preference rules only suggest the superiority of one 
structure over another; they do not represent a determi­
nistic procedure. This can lead to the problem of ambi­
guity mentioned above. 

4.2 Use of V o r o n o i d iagrams fo r g roup ing 
To overcome the ambiguity problem, we propose a 
method of grouping based on the use of Voronoi dia­
grams. The GTTM result is a binary tree that indicates the 
hierarchical structure of a piece of music. In our method, 
Voronoi diagrams on a piano-roll represent the hierar­
chical structure of a piece of music. 

We can form the Voronoi diagram for a given set of 
points in a plane as a connected set of segments of 
half-plane boundaries, where each of the half-planes is 
formed by partitioning the plane into two half-planes, one 
on either side of the bisector of the line between each 
adjacent pair/?, and Pj,. 
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V o r o n o i d iag ram fo r two notes 
Our method uses the piano-roll format as a score, and thus 
notes are expressed as horizontal line segments on a pi­
ano-roll. To construct a Voronoi diagram on the score, we 
need to consider the Voronoi diagram for multiple hori­
zontal line segments, which wi l l be constructed of linear 
segments and quadratic segments. 

When two notes sound at the same time or no note 
sounds, the corresponding part of the Voronoi diagram is a 
linear segment (Figures. 9a and 9c). When a single note 
sounds, the Voronoi diagram becomes a quadratic segment 
(Figure 9b). 

Vo rono i d iag ram fo r more than two notes 
To construct a Voronoi diagram for more than two notes, 
we construct the Voronoi diagrams for all note pairs and 
delete the irrelevant segments. For example, to construct a 
Voronoi diagram for notes a, b, and c, we construct three 
Voronoi diagrams (Figure 10). The boundaries in the three 
diagrams then intersect at a point that is equidistant from 
each note. The Voronoi diagram for notes a and b is di­
vided into two half-lines at the intersection. We then delete 
the half-line that is closer to c than to a or b. 

4.3 M a k i n g g r o u p s 
Hierarchical groups of notes were constructed by con­
verging adjacent notes iteratively. Here, we introduce the 
following principle for making groups; the smallest Vo­
ronoi cell is first merged to an adjacent group. 

We have implemented our grouping method (Figure 
1 la) and have compared the results with correct data ob­
tained by a human (Figure 11b). We evaluated grouping 
performance in terms of a correctness rate defined as 

The number of notes grouped correctly 
Correctness rate = -— — (5) 

The number of notes 
When wc ran the program, we calculated that the cor­
rectness rate was 78.5 percent. The tune used as MIDI data 
in this experiment was the Turkish March. 

a. Result obtained using our method. 

b. Result obtained using GTTM. 

Figure 11: Results obtained using our method and GTTM. 

5 Learn ing a groove model 
A groove model is a model generating the deviation of on 
set times. Acquiring an actual player's individual groove 
model is necessary to create a virtual player that performs 
with musical expression as that human player does. A 
human player, even when repeating a given phrase on a 
MIDl-equipped instrument, rarely produces exactly the 
same sequence of onset notes because the onset times 
deviate according to performer's actions and expressions. 
We can model the process generating that deviation by 
using a probabilistic model. 

5 .1 Formula t ion of the hidden M a r k o v models 
Let a sequence of intended (normalized) onset times be 0 
and a sequence of performed onset times (with deviation) 
be y. Then, a model for generating the deviation of onset 
times can be expressed by a conditional probabil ity 
P (y \0) (Figure 12). Using this conditional probability and 
the prior probability P (0) can be formulated as a hidden 
Markov model (HMM), which is a probabilistic model that 
generates a transition sequence of hidden states as a 
Markov chain. Each hidden state in the state transition 
sequence then generates an observation value according to 
an observation probability. 

Mode l i ng o f pe r fo rmance 
Target in modeling 
We modeled the onset time of a musical note (i.e. the start 
time of the note) and introduced a new model of distribu­
tion of onset times. While the duration- time-based model 
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formance consisting of a sequence of quarter notes can be 
modeled by concatenating the quarter-note-length HMMs. 
This quarter-note modeling has the advantages of reducing 
calculation time and facilitating the preparation of the 
large data sets used for training the model. 
Unit of quantization 
We introduce two different discrete temporal indices, k 
and i. The unit of k is a quantization unit to describe per­
formed onset time and is 1/480 of a quarter note, which is 
often used in commercial sequencing software. The i unit 
is a quantization unit to describe the intended onset time 
and is one-twelfth of a quarter note. It can describe both 
eighth triplets and sixteenth notes. 

Quar te r -no te h idden M a r k o v model 
Figure 13 shows the HMM used in our study. We model a 
sequence of onset times within a quarter note (beat) by 
using the H M M . A l l the hidden states of the H M M cor­
respond to possible positions of intended onset times, and 
an observed value that comes from a hidden state corre­
sponds to a performed onset time with deviation. Onset 
times in a beat are quantized into 12 positions for hidden 
states and into 480 positions for observation values. That 
is, each component of the H M M is interpreted as follows. 
Hidden state /: intended onset time. (i= 1, ..., 12) 
Observation k: performed onset time. (k= 1, ..., 480) 
Transition probability aij: probability that intended onset 
time j follows intended onset time i. 
Observation probability b,(k)\ probability that performed 
onset time is k and intended onset time is i. 
A state-transition sequence begins with a dummy state 
"Start" and ends with a state "End" (Figure 14). 

used in [Otsuki et al., 2002] is limited, our on-
set-time-based model is suitable for treating polyphonic 
performances, such as those including two-hand piano 
voicing and guitar arpeggio. 
Unit in modeling 
We use a quarter note (beat) as the unit of each H M M : the 
temporal length corresponding to each H M M is a quarter 
note. The reason we use the quarter-note unit is to dis­
tinguish between eighth triplets and sixteenth notes within 
the scope of quarter notes. The three notes of eighth trip­
lets are located on three equi-divided positions in a quarter 
note, while the four sixteenth notes are located on four 
equi-divided positions in a quarter note. An actual per-
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Figure 14: Simple example of state sequences. 

5.2 Learning model parameters 
The HMM parameters aij and b,(k) were derived from a 
MIDI session recording by using the Baum-Welch algo­
rithm. Figure 15 shows a b,(k) distribution obtained from a 
human performance in a MIDI session recording. 

6 Session mode 
Using the personality models acquired in the learning 
mode, each virtual player improvises while reacting to the 
human player and the other virtual player. The processing 
flow of each virtual player can be summarized as follows: 
1. The low-level features of the MIDI performances of all 
the players are calculated at every 1/48 bar. 
2. At every 1/12 bar, the three impression vectors are 
obtained from the low-level features. 
3. At the beginning of every bar, the intention vector is 
determined by feeding the reaction model the past im­
pression vectors. 
4. The output performance is generated by connecting 
short phrases selected from a phrase-model database. Each 
phrase is selected, according to the determined intention 
vector, by considering its fitness for the chord progression. 
A virtual player can start a solo performance at any bar. 
5. The deviation of the onset times is generated according 
to the groove model. 
Note that the reaction model can predict the next intention 
vector from the impression vectors gathered during the 
past twelve bars in real time: a virtual player thus does not 
fall behind the other players. 

7 Exper imenta l Results 
We have implemented the proposed system on a personal 
computer (with a Pentium IV 2.8GHz processor); Figure 

16 shows a screen snapshot of the system output. As 
shown, there are three columns (called player panels), 
each corresponding to a different player. The toggle switch 
on the top of each panel indicates whether the panel is for a 
virtual player or a human player, and each panel contains 
two boxes representing three-dimensional spaces: the 
upper box is the impression space and the lower box is the 
intention space. The sphere in each box indicates the 
current value of the impression or intention vector. 

In our experiments, after recording a session perform­
ance of three human guitarists playing MIDI guitars, we 
first made the system learn the reaction model, the phrase 
model and the groove model of each. We used a metro­
nome sound to maintain the tempo (120 MM) when re­
cording, and the total length of this recording session was 
144 bars. We then let five human guitarists individually 
use the system in session mode. The system indeed en­
abled each human guitarist to interact with two virtual 
guitarists, each with a different reaction model. 

To find out how well a virtual player could imitate a 
human player, we asked a human player to perform with 
virtual player A imitating him and with virtual player B 
imitating a different player. The human player and the 
virtual player imitating him tended to take a solo at almost 
the same time and to perform phrases that felt similar. 
Figure 17 shows the transition of intention vectors of three 
players during 48 bars where the intention vectors of the 
virtual player A and the human player are particularly 
similar. Examining all the values of the intention vectors 
during the session, we compared the distances between the 
intention vectors of the virtual players and the human 
player. Over 144 bars the average distance between the 
intention vectors of the human player and the virtual 
player imitating him was significantly smaller than that 
between the intention vectors of the human player and the 
virtual player imitating a different player. We think that 
this means the virtual player's RBF networks actually 
predicted the human player's intention. 

We also tested whether a virtual player could imitate the 
target human player by applying the Turing test format. As 
subjects, we used three guitarists (A, B, and C) who had 
played in the same band for more than a year and so un-

Figure 16: Screen snapshot of system output. 
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derstood each other's musical personalities. We prepared a 
reaction model, a phrase model, and a groove model for 
each of these subjects. We then used different personality 
models to prepare 27 (= 3 players A 3 models) kinds of 
virtual player. The subjects evaluated each virtual player 
with regard to whose models it was based upon. Subjects 
were told in advance that the player was a virtual player 
imitating either player A, B, or C. We found that a virtual 
player having the three personality models acquired from 
the same human player was correctly identified as such. 
We calculated that the success rate was 100 percent. The 
subjects could thus distinguish when the virtual player was 
based on the personality models from one human player or 
from multiple players. 

Furthermore, five guitarists who performed with the 
system remarked that each virtual player performed 
characteristically. In particular, a human player who par­
ticipated in a jam session with a virtual player that was 
imitating him remarked that he was uncomfortable playing 
with that virtual player because he felt that he was being 
mimicked. These results show that our system successfully 
derived and applied personality models from MIDI session 
recordings. 

8 Conclusion 
We have described a jam session system in which a human 
player and virtual players interact with each other. The 
system is based on the learning of three types of person­
ality model - the reaction, the phrase, and the groove 
models. Our experimental results show that our system can 
imitate the musical personalities of human players. We 
plan to extend the system so that it can be applied to other 
musical instruments, such as piano and drums. 
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