
Logical Filtering 

Eyal Amir and Stuart Russell 
Computer Science Division, University of California at Berkeley 

Berkeley, CA 94720-1776, USA 
{eyal,russell}@cs.berkeley.edu 

Abstract 
Filtering denotes any method whereby an agent up­
dates its belief state—its knowledge of the state of 
the world—from a sequence of actions and obser­
vations. In logical filtering, the belief state is a log­
ical formula describing possible world states and 
the agent has a (possibly nondeterministic) logi­
cal model of its environment and sensors. This 
paper presents efficient logical filtering algorithms 
that maintain a compact belief state representa­
tion indefinitely, for a broad range of environment 
classes including nondeterministic, partially ob­
servable STRIPS environments and environments 
in which actions permute the state space. Efficient 
filtering is also possible when the belief state is rep­
resented using prime implicates, or when it is ap­
proximated by a logically weaker formula. 

1 Introduction 
Any agent operating in a partially observable environment 
must perform computations that distinguish among the a pri­
ori possible current states of the world on the basis of past ob­
servations and actions. These computations may operate di­
rectly on a representation of the action observation sequence 
(e.g., [Winslett, 1990; Kautz et al, 1996]); they may reduce 
queries about the current state to queries about the initial state 
(e.g., [Reiter, 2001]); or, they may update the belief state (the 
agent's knowledge about the state of the world) after each ac­
tion and observation. This latter approach, called filtering or 
recursive state estimation in the control theory literature, is 
particularly useful with unbounded sequences of actions and 
observations. 

The main computational difficulties are 1) the time needed 
to update the belief state, and 2) the space required to repre­
sent it. These depend on the nature of the transition model, 
which describes how the environment evolves over time, the 
observation model, which describes the way in which the en­
vironment generates observations, and the family of repre­
sentations used to denote belief states. Early work, begin­
ning with Gauss, assumed stochastic models. For example, 
the Kalman filter [Kalman, 1960] is a ubiquitous device that 
maintains a multivariate Gaussian belief state over n vari­
ables, assuming linear-Gaussian transition and observation 

model. Crucially, the 0(/n3) update cost and the 0(n2) space 
requirement do not depend on the length of the observation 
sequence; hence, a Kalman filter can run indefinitely. In this 
paper, we are interested in developing analogous results in the 
context of logical representations. 

We adopt a simple logical language (Section 2) for describ­
ing the transition and observation models; the observations 
and the belief state itself are also logical formulae. The ini­
tial state may be only partially known; the transition model, 
which allows for actions by the agent itself, may be nondeter­
ministic; and the observation model may be nondeterministic 
and partial, in the sense that the agent may not be able to 
observe the actual state. 

Even when we restrict ourselves to propositional logic, it 
is clear that the general filtering problem is nontrivial (we 
prove it is computationally hard), because there are exponen­
tially many possible states. We identify several classes of 
models that allow efficient filtering with respect to the belief-
state representation size. Our primary method is based on 
decomposition theorems showing that 1) filtering distributes 
over disjunction in the belief state formula, and 2) filtering 
distributes over conjunction and negation if the actions are 
permutations of the state space. Such actions serve as one-to-
one mappings between states, for those states in which they 
can be applied. We obtain efficient, exact algorithms for DNF 
belief states and for NNF (Negation Normal Form - all nega­
tions are in front of atoms) and CNF belief states with per­
muting actions. In other cases, we obtain efficient algorithms 
for approximate filtering. 

In another class of dynamic systems, we can filter effi­
ciently if the belief state is represented in CNF that includes 
all its prime implicates. Finally, we show that STRIPS mod­
els (possibly with nondeterministic effects of actions) also ad­
mit efficient filtering. The STRIPS assumption, that every 
action has no conditional effects and that an effect's precon­
ditions are the preconditions for the action's execution, is key 
to this efficiency. 

With respect to maintaining a compact representation, we 
show that properties similar to those mentioned above allow 
us to filter A-CNF formulae (CNF with clauses of at most K 
literals, when k is fixed) such that the result is represented in 
K-CNF (for the same fixed k). Thus, the belief state is main­
tained in 0(nk) space indefinitely. In particular, we show 
mild conditions under which a compact belief state can be 

AUTOMATED REASONING 



maintained in nondeterministic STRIPS domains and in per­
mutation domains. Finally, we show that DNF belief states 
remain compact if the effects of actions are deterministic and 
guaranteed to hold. These results are the first analogues, in 
the logical arena, of the desirable properties possessed by 
Kalman filters for continuous variables. 

Ours is by no means the first work on filtering in a logical 
context. Early on, it was pointed out that filtering is easy 
for deterministic systems with a known initial state [Fikes et 
al. , 1972; Lin and Reiter, 1997]. Filtering in nondeterministic 
domains is more difficult. In particular, the related problem of 
temporal projection is coNP-hard when the initial state is not 
fully known, or when actions have nondeterministic effects 
[Liberatore, 1997] (see also Section 3.3). 

Traditionally, computational approaches for filtering take 
one of three approaches: 1) enumerate the world states possi­
ble in every belief state and update each of those states sep­
arately, together generating the updated belief state [Ferraris 
and Giunchiglia, 2000; Cimatti and Roveri, 2000], 2) list the 
sequence of actions and observations and prove queries on 
the updated belief state [Reiter, 2001; Sandewall, 1994], or 
3) approximate the belief state representation [Son and Baral, 
2001; Williams and Nayak, 1996]. 

The first two approaches cannot be used when there are too 
many possible worlds (e.g., when the domain includes more 
than a few dozens of fluents and there are more than 240 pos­
sible states) or when the sequence of actions is long (e.g., 
more than 100 actions). Examples include robot localization, 
tracking of objects and their relationships, and data mining. 
The third approach gives rise to many mistakes that are some­
times dangerous, and requires an approximation that fits the 
given problem (if one exists). Many domains of 100 fluents 
or less are still computationally infeasible for it. 

2 Logical Filtering 
In this section we define logical filtering using a transition 
model and action semantics that are compatible with the stan­
dard semantics belief update operator of [Winslett, 1990]. 
(To avoid confusion, this is different from another operator 
presented in the same publication, PMA, that applies a non-
monotonic approach to formalize minimal change.) This op­
erator is simple and allows us to examine computational prop­
erties easily. It can represent any logical transition system, 
and specifications in other action languages can be compiled 
into it IWinslett, 1990; Doherty et a/., 1998]. 

AUTOMATED REASONING 

We call Step 2 progression with a and Step 3 filtering with o. 

For example, consider a robot that is in charge of cleaning 
a room. It can execute an action a = fetch(broom, closet) 
which has the single effect rule "a causes has(broom) A 

When there is no confusion, we write R for RD. 
If action a has an effect of FALSE in s, then it cannot execute. 

In partially observable domains, we update our knowledge 
as a result of executing an action and collecting observations 
in the resulting state. The following definition of filtering as­
sumes that a is a set of world states. We use our transition 
operator R to define the resulting belief state from each ac­
tion. An observation o is a formula in our language. 

propositions that are true in this world state), A is the set of 
actions in the system and R l (s, a, s') means that state s' is a 
possible result of action a in state s. 

A logical nondeterministic domain description D is a fi­
nite set of statements of the following kinds: value proposi­
tions of the form 'Init ially F" describe the initial state and 
effect rules of the form "a causes F if G" describe the effects 
of actions, for F and G being state formulae (propositional 
combinations of fluent names). We say that F is the head and 
G is the tail of those rules. 



AUTOMATED REASONING 77 

the assertion that no precondition of a holds. This has a sim­
ilar effect to adding frame axioms to a set of effect axioms in 

3 Filtering Logical Formulae 
Approaches to filtering actions and observations that at any 
stage enumerate the states in a belief state do not scale to 
large domains. An alternative approach is to perform logical 
progression in a form similar to the one described by [Lin and 
Reiter, 1997; Mcllraith, 1998]. The difference is that now we 
wish to do so (efficiently) in the context of nondeterministic 
actions and observations. 

In this section we present a straightforward algorithm that 
filters belief state formulae directly, but does so in worst-case 
exponential time. This algorithm serves as a starting point 
for Section 4, where we propose efficient algorithms. We 
also present distribution properties of filtering over the log-

3.2 Dis t r ibut ion Properties and Permutat ion 

Definition 3.3 (Permuting Actions). Action a is permuting, 
if for every state s' there is at most one s such that R(s, a, s'). 

Domains that include only permuting actions are called 
permutation domain. 



78 AUTOMATED REASONING 

3.3 L imi tat ions for Compact Representation 
It may be argued that filtering may require only polynomial 
space, if we limit ourselves to initial belief states that are rep­
resented compactly and to actions whose effects and precon­
ditions are represented compactly. In Theorem 3.5 we show 
the contrary. That is, for every general-purpose representa­
tion of belief states there is a dynamic system, an initial be­
lief state, and a sequence of actions after which our belief 
state representation is exponential in the representation of the 
initial belief state. 

For example, consider a — fetch(broom, closet) from 
above, and assume that we add a second effect rule "a 
causes FALSE if -in{broom, closet)". Thus, a is not exe­
cutable unless its first rule's precondition holds. Then, the ac­
tion is a one-to-one mapping between states, when this map­
ping is defined (it is not defined when a state maps to no re­
sulting state). If this second rule is not added, then the action 
is not one-to-one because it maps two different states (in the 
first we already have the broom and in the second the broom 
is in the closet) to the same state. 

In the same spirit, an action pickUp(A, D) that picks up 
block A from the top of block B is one-to-one when it is pos­
sible because we can find a single previous state for every 
resulting state. The same holds for putDown(A,C). Other 
natural examples include turning a row in a Rubik's cube, 
flipping a light switch, and buying a gallon of gas. In con­
trast, turning on the light, setting a Rubik's cube to a partic­
ular configuration, and filling up the gas tank are not permu­
tation actions. Notice that we allow different actions to map 
different states to the same state (e.g., accelerating by 5MPH 
when driving 40MPH results in the same state as when decel­
erating by 5MPH when driving 50MPH). 

Theorem 3.5. There is dynamic system D with n fluents, be­
lief state 0, and action sequence a\,..., an such that, for all 

The conditions on action a in the last theorem hold, e.g., for 
actions whose every defining rule has a precondition that is a 
single clause (e.g., a literal). It also holds for actions which 
are defined by at most two rules, and actions that affect all the 
literals that appear in their preconditions. 

4 Efficient and Indefinitely Compact Filtering 
In this section we present the main contribution of this paper, 
namely, a polynomial-time algorithm that computes logical 
filtering exactly for a significant class of transition systems. 
For some special cases we present simpler algorithms that 
are even more efficient. For systems that do not fall within 
this class our algorithm gives an approximation to the filter­
ing. Also, we show that we can keep the representation of 
the filtered belief state compact indefinitely for a class of dy­
namic systems. This class includes nondeterministic STRIPS 
systems and some systems whose actions are permuting. 

The proof of this theorem reduces the problem of repre­
senting the belief state after performing an action to that of 
representing a Craig Interpolant. It uses the following. 



AUTOMATED REASONING 79 



80 AUTOMATED REASONING 

Similarly, for in(broom, closet), one of our tests in step 1 
of NNF-ProgressStep finds that 

4.2 D N F and C N F Belief States 

Thus, when a is a deterministic action (every rule's effect 
is a conjunction of literals) with a single effect rule that is 
always guaranteed to succeed, then the number of disjuncts 
in the formula does not grow as the filtering progresses. 

For CNF formulae we can find a more significant class of 
actions that allow us to maintain compact representation. We 
show that under some conditions every fc-CNF formula is fil­
tered into a fc-CNF formula (fixed fc). This implies that the 

4.3 Prime-Implicate Belief States 
It turns out that a form of distribution over conjunction holds 
for all actions if the belief state is represented as the conjunc­
tion of all of its prime implicates (formulae we call prime im­
plicate belief states (Pl-CNF)). In this form we can distribute 
the computation to the conjuncts and conjoin the result of fil­
tering small subgroups of them separately. More precisely, 

for z a number that depends on the representation of the pre­
conditions of a and on the number of rules defining a. 

belief state representation is no larger than (2n)k which is 
manageable for small fixed K's. 

The main observation that we use is that a clause of A: liter­
als may give rise to a larger clause after filtering, only if one 
of the following holds: (a) the filtering of TRUE includes a 
clause of more than fc literals; or (b) the filtering of a literal 
includes a clause of 2 or more literals that is not subsumed by 
Filter[a](TRUE). The first case can occur when we do not 
know whether the action succeeded or not, and which rules 
applied if it did. In that case, we know that after the action 
one of the effects holds or no precondition holds (this yields a 
formula which may include many disjunctions). The second 
case can occur when the precondition of a rule includes a con­
junction of literals. When we filter a single literal we may get 
a disjunction in the result (of the form the effect holds, or the 
rest of the precondition does not). When we filter a clause, 
this may cause the filtering to include a larger clause. 

The following theorem describes sufficient conditions for 
filtering a A:-CNF formula into A:-CNF, thus keeping the rep­
resentation compact (fc is fixed). 



Figure 3: Filtering a PI-CNF formula with STRIPS actions. 

We tested our STRIPS-filter algorithm in partially observ­
able blocks-world domains. The implementation in LISP in­
cludes a random action-sequence and observation-sequence 
generator, and both the generator and filtering algorithm re­
ceive a description of the domain, actions and observations 
specified in PDDL (a plan-problem specification language). 

We ran the algorithm with blocks-world domains of in­
creasing sizes (3 to 20 blocks), yielding domains that range 
from tens to over a thousand of propositional features. We 
collected the time taken per filtering step for each of the exe­
cutions and the space taken overall at every iteration, starting 
with zero knowledge. The results are shown in Figure 4. 

AUTOMATED REASONING 81 



5 Conclusions 
In this paper we presented the task of logical fi ltering and 
gave it a computational treatment. The results we obtained 
here have implications for monitoring and controll ing dy­
namic systems. In many cases we present a closed-form com­
putation of the fi ltering and in others show how to approxi­
mate this computation. In some cases we can guarantee that 
the size of the representation of the filtered formula can be 
bounded and kept small. In those cases, logical fi ltering can 
be used to control processes that run over very long periods 
of time. Examples of such systems are abundant and include 
robot motion control, natural language processing, and agents 
that explore partially observed worlds. 

We made use of several assumptions in this paper in differ­
ent contexts and wi th different consequences. We presented 
permutation domains and the certainty of existence of an ef­
fect (D A a I= ->G) as characteristics of the domain that make 
fi ltering easier. We showed that the commonly used assump­
tion that every action has a relatively small number of rules 
(at most polynomial in n ) , and that effects, preconditions and 
terms in the belief state typically use a small vocabulary, all 

have a drastic effect on the computational effort needed for 
fi ltering and on the size of the resulting belief state. 

The need to track the state of the world is a basic one, and 
many works have appealed to it impl ic i t ly in the past. How­
ever, the computational treatment of such tracking has been 
avoided so far, partially due to the absence of a developed 
theory of nondeterministic domains, and partially due to neg­
ative results about the general cases of this task. Nonethe­
less, this problem and methods for its solution have received 
much attention in control theory. The results we obtained here 
promise to find their application in this domain and may be 
combined wi th stochastic filtering techniques. 

Acknowledgments 
This research was supported by ONR M U R I Fund N00014-
01-1-0890, ONR M U R I Fund N00014-00-1-0637, and NSF 
grant ECS-9873474. The first author thanks Xuanlong 
Nguyen for a stimulating discussion on Theorem 3.4. 

References 
[Boppana and Sipscr, 1990] R. Boppana and M. Sipscr. The com­

plexity of finite functions. In Jan van Leeuwcn, editor, Handbook 
of Theoretical Computer Science, pages 757-804. Elsevier, 1990. 

[Cimatti and Roveri, 2000] A. Cimatti and M. Roveri. Conformant 
planning via symbolic model checking. JAIR, 13:305-338, 2000. 

[Doherty et al, 1998] P. Doherty, W. Lukaszewicz, and 
E. Madalinska-Bugaj. The PMA and rclativizing change 
for action update. In Proc. KR '98, pages 258-269, 1998. 

[Ferraris and Giunchiglia, 2000] P. Ferraris and E. Giunchiglia. 
Planning as satisfiability in nondeterministic domains. In Proc. 
AAA! '00, pages 748-753, 2000. 

[Fikes et al, 1972] R. Fikes, P. Hart, and N. Nilsson. Learning and 
executing generalized robot plans. All, 3:251-288, 1972. 

[Kalman, 1960] R. E. Kalman. A new approach to linear filtering 
and prediction problems. Trans, of ASM E J. of Basic Engineer-
ing, 82(Ser. D):35-45, 1960. 

[Kautz et a/., 1996] H. Kautz, D. McAllester, and B. Selman. En­
coding plans in propositional logic. In Proc. KR '96, 1996. 

[Liberatore, 1997] P. Liberatore. The complexity of the language 
A. ET AI, 1:13-38, 1997. 

[Lin and Reiter, 1997] F. Lin and R. Reiter. 
database. AIJ,92:131-167, 1997. 

[McHraith, 1998] S. McHraith. Explanatory diagnosis: Conjectur­
ing actions to explain observations. In Proc. KR '98, pages 167— 
177, 1998. 

[Reiter, 2001] R. Reiter. Knowledge In Action. MIT Press, 2001. 
[Sandewall, 1994] E. Sandewall. Features and Fluents. Oxford, 

1994. 

[Simon and del Val, 2001] L. Simon and A. del Val. Efficient 
consequence-finding. In IJCAI '01, pages 359-365, 2001. 

[Son and Baral, 2001] T. C. Son and C. Baral. Formalizing sensing 
actions: A transition function based approach. AIJ, 125, 2001. 

[Williams and Nayak, 1996] B. Williams and P. Nayak. A model-
based approach to reactive self-configuring systems. In Proc, 
AAA1 '96, pages 971 978, 1996. 

[Winslett, 1990] M. Winslett. Updating Logical Databases. Cam­
bridge U. Press, 1990. 

How to progress a 

82 AUTOMATED REASONING 


