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Abstract

Degrees of information and of contradiction are in-
vestigated within a uniform propositional frame-
work, based on test actions. We consider that the
degree of information of a propositional formula
is based on the cost of actions needed to identify
the truth values of each atomic proposition, while
the degree of contradiction of a formula is based
on the cost of actions needed to make the formula
classically consistent. Our definitions are to a large
extent independent of the underlying propositional
logic; this flexibility is of prime importance since
there is no unique, fully accepted logic for reason-
ing under inconsistency.

1 Introduction

Information and contradiction are two fundamental aspects
of knowledge processing. Quantifying them is an important
issue when reasoning about beliefs (or preferences) stemming
from one or different sources. Here are some contexts where
quantifying information and contradiction is relevant:

* diagnosis and testing. In model-based diagnosis, some
initial assumptions that each component works correctly are
made; these assumptions may conflict with actual observa-
tions. Measuring the conflict of the resulting base may be a
good hint about how hard it will be to identify the faulty com-
ponents.

* preference elicitation. In the interactive process of elicitat-
ing the preference profile of an individual (user) about a set
of possible alternatives, it is not unfrequent that contradictory
preferences arise. In this situation, it is useful to quantify and
localize the contradictions as well as the information about
the user's preferences, so as to be in position to choose the
next questions to ask.

* belief merging. In this framework, degrees of information
and contradiction can be the basis on which one can decide
whether to take or not into account the data conveyed by an
agent. If the degree of contradiction of the data given by an
agent is high, it may be relevant to reject the information,
since there is a significant evidence that the source is not reli-
able; however, this must be balanced by the quantity of infor-
mation furnished by the agent, especially when she also gives
some important and uncontroversial pieces of information.

» group decision making. Contradictions arise frequently
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when trying to reach a compromise among several agents who
have possibly conflictual preferences about a common deci-
sion (like voting, resource sharing, public goods buying). In
this context, not only it is relevant to compute a global degree
of conflict (among the set of agents) but also degrees of con-
flicts associated with small groups of agents (coalitions) so as
to localize as precisely as possible where the conflicts are.

Now, what do "degree of information" and "degree of con-
tradiction" mean? There is no consensus about it. The main
features shared by existing definitions (and there are not nu-
merous, cf. Section 7) is that (1) such degrees are numerical
values, and (2) they vary depending on the representation lan-
guage. Thus, one may consider a as fully informative in the
case where a is the single atomic proposition of the language
but surely not fully informative when the vocabulary also con-
tains b (provided that a and b are independent propositions).

In this paper, our point of view is that it is inadequate
to quantify the information/contradiction conveyed by some
data without considering at the same time a set of available
actions and a goal to be reached. Accordingly, our degrees
of information and contradiction are defined in an "active"
way. Acting so as to reduce inconsistency or to gain infor-
mation often relies on performing knowledge-gathering ac-
tions (also called tests). We consider that the degree of in-
formation of an information base is based on the number (or
the cost) of actions needed to identify the truth value of each
atomic proposition (the lower the cost the more informative
the base); and that the degree of contradiction of an infor-
mation base is based on the number (or the cost) of actions
needed to render the base classically consistent. Thus, both
degrees are dependent on the language but also on the given
set of tests and the way plans costs are computed.

The rest of this paper is organized as follows. After some
formal preliminaries in Section 2, we present our framework
in Section 3. In order to show the generality of our frame-
work, we instantiate it to three different propositional log-
ics: classical logic (Section 4), the paraconsistent logic LP,,
(Section 5) and a syntax-based approach to inconsistency
handling (Section 6). Related work is given in Section 7, and
some conclusions in Section 8.

2 Formal preliminaries and notations

We consider a propositional language Lps based on a finite
set of propositional symbols PS and a set of connectives that
may vary depending on the logic used. Well-formed formulas
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are denoted by ¢, ¥, etc. The available information is repre-
sented by a formula  of Lpg (called information base).

Since we wish to keep a reasonable level of generality, we
do not want to commit right now to a particular propositional
logic. Indeed, flexibility is a major feature of our framework,
and it is essential at least for two reasons. On the one hand,
classical logic is inadeguate to handle contradiction: ex falso
quodiiber sequitur (a single, local contradiction is sufficient
to poliute the whole information base). On the other hand,
there is no unique, fully accepted, logic for reasoning under
inconsistency. This is reflected by the various approaches that
can be found in the literature under different names like belief
revision, merging, paraconsistent logics, ete.

Lpg is required to possess the following ingredients:

i. A consequence relution =1 on Lpg % Lpg.

2. An acceptance function Ay, C Lpg x Lpg: Ap(E, )
means that given the information base X, « is accepted
as a true information (we say that £ accepts ¢). By de-
fault, acceptance is defined by: A (X, @) ifl (T &=L ¢
and & £ —p). We say that ¥ is informative about @ iff
exactly one of A1 (E, ) or A.,(Z, =) holds, and that
3 is fully informative iff for any ¢ € Lpg, X is infor-
mative about .

3. A contradiction indicator ', C Lpg X Lpy: if
CL(%,) holds, then we say that % is contradictory
about . By default, we define Cp(X, ) iff (¥ =1 ¢
and ¥ =1 —). T is said to be contradiction-free iff for
every p € Lpg, we do not have Cp (X, o).

4. A weak revision operator » : Lpg X Lpg — Lpg!
T % ¢ represents the new information base obtained once
taking account of the observation  into the informa-
tion base L. For the sake of generality, we are not
very demanding about x. The only requirement is that
L x ¢ = v, which expresses that our tests are assumed
reitable {each test outrome must be true in the actual
world)'. In the following we will simply refer to those
operators as revision operators (omitting the weak). It
would be interesting 10 explore in more details what hap-
pens when one puts more requirements on * (this is left
for further research).

3 Degree of ignorance and degree of
contradiction

In this section, we give general detinitions of degrees of con-
tradiction and ignorance, i.e., of lack of information, which
are to a large extent independent of the logic chosen to repre-
sent information. These definitions will be spectfied further
in Sections 4 o 6 where the logic will be fixed.

Definition 3.1 (test contexts) A test context Cg,.. (wrl
Lpg) is a pair {T,c) where I' is a finite set of tests and ¢
is a cvost function from T to N*. The outcome fo any test
t, € T is one of p, ~p, where ¢ € Lpg. We say that t,
is the test about @, and we assume w.lo.g. that at most one
test t, of T is about ¢ for each ¢ € Lps. A context is stan-
dard (f Vt, € T, we have c(t,) = 1 {every test has a unit

'While this condition corresponds to the “success™ postulate in
the AGM framework 1Alchourrén ef af.. 1985}, we do not ask our
operators to be AGM oncs, especially because the AGM framework
is not suited to characterize the revision of an inconsistent formula.
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cost). A context is universal iff for every ¢ € Lpg, there is a
testt, € T. A context is atomic iff the testable formulas are
exactly the atomic propesitions (L, € T iff T € PS).

Definition 3.2 (test plans, trajectories) Given u test context
Ce g b test plan 7 is a finite binary tree; each of its non-
terminal nodes is labelled with a test action t,,; the left and
right arcs leaving every non-terminal node labelled with 1,
are respectively labelled with the outcomes ¢ and ~p. An
(outcome) trajectory (o, . . ., 0,,) with respect to 7 is the se-
guence of test outcomes on a branch of . The cost of a trajec-
tory {01, - - ., 0n} with respect to w is defined as T, c(t,,),
where each L, is the test labelling the node of m reached by
Jollowing the path (o1, ..., 0,_1) from the root of 7.

Definition 3.3 (disambiguation, purification) Ler 7= be a
test plan and T the initial information base.

o The application of © on L is the tree apply{n, L), iso-
morphic to 7, whose nodes are labelled with informa-
tion bases defined inductively as follows:

= the root € of apply(n, T) is labelled with £(¢) = X;

~ let i be a node of apply(n, L), labelled with the in-
Jormation base 3.(n), whose corresponding node in
7 is non-terminal and labelled with {,; then n has
two children in apply(m, L), labelled respectively
with E(n) x ¢ and L(n) » .

o 7 disambiguales  given 3 iff for every terminal node n
of apply(=,T), L(n) is informative about p (i.¢., either
Ap(E,9) or AL(Z, ~yp)). 7 (fully) disambiguates X iff
it disambiguates all formulus of Cpg, i.e., iff for any ter-
minal node n af apply(w, L), X(n) is fully informative.

e 7 purifies @ given X iff for every terminal node n of
apply(n, £), £(n) is not contradictory about p {i.c., not
Cr{Z(n),¢)). = (fully) purifies ¥ iff it eliminates all
contradictions in ¥, i.e., iff for any terminal node n of
apply(x, £). L(n) is contradiction-free.

Clearly enough, it can be the case that there is no plan to
purify or disambiguate a formula; especially, there is no plan
for purifying the constant | (false) in any of the three logics
considered in the following.

In our framework, degrees of ignorunce and contradiction
are defined in a uniform way: the degree of ignorance (resp.
of contradiction) of 2 measures the minimal effort necessary
to disambiguate (resp. to purify) .

Definition 3.4 (degree of contradiction, of ignorance)
Let us define the cost ¢(n) of a test plan 7 as the maximum of
the costs of its trajectories. Then

o The degree of contradiction of X is defined by
de(E) = min({c(x) | 7 purifies 3}).
When no plan purifies ¥, we let de:(Z) = 4 0o
e The degree of ignorance of 2 is defined by

di(Z) = min{{c(n) | © disambiguates L}).
When no plan disambiguates ¥, we let dy{Z) = +oo.

Clearly, both degrees depend on the test context; by default,
we consider the standard atomic context.

In the previous definition, we actually define pessimistic
degrees of contradiction and ignorance {because the cost of
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a plan is defined as the maximum cost among its trajecto-
ries); this principle, consisting in assuming the worst out-
come, is known in decision theory as Wald criterion. Other
criteria could be used instead, such as the optimistic crite-
rion obtained by replacing max by min. More interesting,
the criterion obtained by first using max and then min for
tie-breaking, or the leximax criterion, allow for a better dis-
crimination than the pure pessimistic criterion. The choice
of a criterion is fairly independent from the other issues dis-
cussed in this paper, which gives our framework a good level
of flexibility and generality. Due to space limitations, how-
ever, we consider only the pessimistic criterion in the rest of
the paper.

The definitions below concern the cost of being informa-
tive about a formula ¢ (resp. of getting rid of contradictions
about ) given an initial information base X,

Definition 3.5 (disambiguation cost, purification cost)
« The disambiguation cost of ¢ given I. denoted by
Cp(Z, ), is the minimum cost of a test plan applied
o ¥ and disambiguating .

& The purification cost af v given £, denvied by Cp(L, p),
is the minimum cost of u test plan applied to 3. and pu-

rifving .

The disumbiguation cost of  given X can be seen as the
price one is ready to pay for being informed about 2. The pu-
rification cost of ¢ given ¥ is a bit less intuitive: in a database
context, for instance, it represents the cost that the database
holder is ready to pay to ensure that the database does not
contain any contradictory information about a given formula.

Proposition 3.1 The degrees defined ubove are reluted as
SJollows:
o () > de(Z):

o Op{E ) = Cu{X, ~p): e d;(¥) > Cp(X, LP}\:

4 Case study 1: classical logic

In this section, we fix £pg to classical propositional legic

CL. which means that we fix the following:

o The language of CL is built up from the connectives A, V,
=, — and the constants T, L;

e Interpretations are mappings from PS8 to {T,F} and the
consequence relation is defined as usual by X |y @ iff
Modep(Z) © Modep(w), where Moder(X) denotes
the set of classical models of X.

Clearly enough, Acp (T, ¢) holds iff £ oy p and £ is
consistent; and Cer (X, p) holds iff 2 is inconsistent. Fi-
nally, let £ x ¢ = £ Ao (i.e., the revision operator is simple
expansion),

Example 4.1 Figure I reports a test plan of minimal cost that
Sully disambiguates ¥ = (avb)A{a — ¢} (wrt. the standard
atomic test context),

Accordingly, the degree of ignorance of £ is 2 given the
standtard atomic context; as Figure | also shows, such a de-
gree can be strictly lower than the number of literals built up
from PS that are not accepted by £ (here, the information
given by the test cutcomes within the test plan are crucial).
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Figure 1: Degree of ignorance of (e V b) A (a - ¢)

Proposition 4.1 Given any test context;

Cp(Z, ) = Viff T is consistent and (£ = @ or £ |= ~);
if ¥ is inconsistent, then Cp(E, ) = +o0;

Un(%, eV ) < Cp(E,¢) + Cpl(L,¢)

Co(E,eny) < Cpl(E,v) + Co(X, )

d,f {2) ‘_: EIE P8 C,{; ()_:, .’1‘).

Degrees of conflict and purification are not relevant when

Lpg is classical logic, just because inconsistency is an ex-
tremely rough notion in classical Jogic. Indeed, we have:

do(E) = { 0 if 3 is consistent

+oo  if Eis inconsistent
and Cp(3, ) = de(X) forall .

Example 4.2 Let n, b be two (independent) atomic proposi-
tions we focus on. Starting from an information base rep-
resented by T (no contradiction, no information), stepwise
expansions progressively lead to a base ¥ having a single
model over {a, b} like (@« = T,b = T). In this situation, the
degrees of ignorance and of contradiction {given the standard
atomic context) are minimal (no contradiction, full informa-
tion). But each additional expansion that does not lead 10
an equivalent information buse leads to an inconsistent one;
Jor instance, the resulting base ¥ x ~a has a maximal degree
of contradiction. This is counterintuitive since it seems that
a A b A —a is both more informative and less contradictory
than a A b A —a A b, This is not reflected by our degrees
when classical logic is considered.

o i{{e})=1,dc({a})=10
o di({aAnb}) =0.do{lanb}) =0

» df({ﬁ/\ bA ﬁl’},}) = o0, dc({ﬂ}/\b{\ _'ﬂ}) = 400
o di{{aAbA-uA-b) = oo, de({eAbA-aA-b}) = +oo

This example also shows that mere expansion is not a very
satisfying revision operator. Indeed, since it does not enable
to purify any inconsistent base (whatever the test context),
expansion does not enable as well to disambiguate any incon-
sistent base. Furthermore, it may lead to degrees of contra-
diction (or purification costs) that are not intuitively correct.
Thus, on the example, we have d;({a A b A ~a}) = +oc0,
while given the standard atomic context, two tesls are suffi-
cient to determine the actual world (over {a,b}). The rea-
son of this discrepancy between what is expected and what is
achieved is that expanding an inconsistent information base
always leads to an inconsistent base, while it would be neces-
sary to restore consistency2 for achieving purification and dis-
ambiguation in classical logic. Note that using AGM revision
instead of expansion would not help a lot since AGM opera-
tors do not behave well when applied to inconsistent bases.

A way to do it consists in forgerting information [Lang and Mar-
quis, 2002} (possibly everything) in {a A b A =a}.
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5 Case study 2: the paraconsistent logic LPm

Paraconsistent logics have been introduced to avoid exfalso
quodlibet sequitur of classical logic, hence handling incon-
sistent bases in a much more satisfying way. While many
paraconsistent logics have been defined so far and could be
used in our framework, we focus here on the LP,, logic as
defined in [Priest, 1991]. This choice is mainly motivated by
the fact that this logic is simple enough and has an inference
relation that coincides with classical entailment whenever the
information base is classically consistent (this feature is not
shared by many paraconsistent logics).

» The language of LF,, is built up from the connectives A,
WV, -, — and the constants T, L.

s An interpretation w for LFP, maps each propositional
atom to one of the three “truth values” F,B, T, the third
truth value B meaning intuitively “both true and false™.
3F5 is the set of all interpretations for LP,,,. “Truth val-
ues” are ordered as follows: F <, B <, T.

- w{M=Tw(l)=F

- w{~a)=B iff w(e)=8
wi—a)=T iff w{e)=F

- wla A f) = ming, (wla),w{3))

- w{o Vv fA) = maxg, (wia),w(F))

~ ol — B) — T fwia} =F
( ﬁ)_{w(ﬂ)

otherwise

e The set of models of a formula ¢ is Modpp(p) = {w €
3% fw(yp) € {T,B}}. Define w! = {x € PS|w(z) =
B}. Then min{Modyp(p)) = {w € Mod,p(p) | ' €
Modpp(p) st. w' C w!}. The consequence relation
is defined by ¥ |=pp, ¢ iff min(Mod,p(X)} C
ﬁJOde(gO).

o The definitions of A p, (X, ) and Cp, (¥, ) are those
by default; Cpp, (X, @) holds only if ¥ has no classical
model.

Now, what about the revision operator? Actually, the issue
of revision in paraconsistent logic has never been considered
50 lar. Expansion is not satisfactory as a revision operator for
L P, because it enables neither the purification task nor the
disambiguation one when X has no classical model w (i.e.,
such that w(z} # B for each = € P5), whatever the test con-
text. Among the many possible choices, we have considered
the following revision operator, defined model-theoretically
(for the sake of brevity, we characterize only its restriction to
the case the revision formula ¢ is a literal {).

Let force(w, 1) be the interpretation of 375 defined by (for
every literal [ = x or -z}

Jorce(w,z2)(z) =T

Yy € PS,y # z, foree(w, 1) (y) = w(y)
force(w, ~r)(z) =F

Yy € PS,y £z, force(w,z)(y) = w(y)

Then the revision operator is defined by:

{w |z & | w{l) = T} if this set is non-

Modp p(Exl) = { empty, otherwise

{forece(w, !} |w = L and w(l) = B}.

Example 5.1 Stepping back to Example 4.2, we can check
that LB, leads to more intuitive values for the degrees of ig-
norance and contradiction of the bases we considered. Given
the standard atomic test context, we now have:

e ;{({TH =2,dc({Th =0
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aA=uA(bAc)vd)

an({bAae)vd) —a A {{haclvd)
d —d

ah -b

afAbArad afbhA—=rad ar=bAcad u A hA e d

Figure 2: Degrees of ignorance and contradiction in L 1%,

e di({e}) =1, de:{{a}) =0

. d;( a/\b}) =0, d(,-({a/\b}) =0
. d;(Ea/\b/\—'a}] =1, de:({arbAu})=1
s dif{anbAa-an b)) =2 de({eAbA-an-b}) =2

Thus, starting from T, expansion (i.e. the logical strength-
ening of an information base) leads to more information up
to a point where full information is reached, then progres-
sively to more contradiction and less information, up 1o an
information base with full contradiction and no infarmation.

Example 5.2 Let us now consider the base &2 = {a A wa A
((bAe) v d)}). Figure 2 reports a plan of minimal cost (given
the standard atomic context) which disambiguates Y. (the sub-
tree rooied below the —a outcome is similar to the one of a
and is not represented). Here, the degree of ignorance of 1
is 4 and the degree of contradiction of T is 1 (after testing a
there is no contradiction any more ).

Contrariwise to expansion, this reviston opetator is ade-
quate to our objective:

Proposition 5.1 Every information base that hus u model
i F? . . . . .
3% has a finite degree of ignorance and a finite degree of
contradiction given any atomic or universal test coniext,

6 Case study 3: "syntax-based" information
bases

Many approaches to reasoning under inconsistency make use
of the selection of maximal consistent subsets of a belief base,
This principle comes down to [Rescher and Manor, 1970] and
is known under different names such as the possible-world
approach [Ginsberg and Smith, 1988), assumption-based the-
ories [Poole, 1988], supernormal default theories [Brewka,
1989), syntax-hased approaches [Nebel, 1991] etc. We retain
the last name and call the logic SBL?.

The language of SBL is defined as the set of all pairs
Y = (o, A), where A = {§y,...,6,}: o, 4y, ..., §, are
propositional formulas from the language of CL. o represent
the set of hard facts and 4;,..., &, the defaults. Formulas of
the form (o, B are called simple formulas and, slightly abus-
ing notations, are abbreviated into « ~ thus the language of
SBL can be seen as an extenston of that of classical logic. A

*Saying that the approach is “syntax-based” actually means that
{w1,...,pn} should not be identified with w1 A ... Ay, or in
other words, that the comma is viewed as a {non truth-functional}
connective.
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maximal scenario of T is a subset A’ of A such that & A A’
is consistent and there is no A” O A’ such that o A A" is
consistent. We denote by M 5(X) the set of all maximal sce-
narios of £,

The semantics of §BL is defined by a preference rela-
tion over classical interpretations. Let ¥ = {(w,A). If
w € 2P5 we define Sat{w,X) {i | v Fen &)
For w,w' € Modop(), we say that w >y ' iff
Sat{w,¥) D Sat(u’, ). Now, Modgp (L) = {w|w =L
o and there is no o’ =¢p @ suchthatw’ >5 w}. Conse-
quence in SBL is defined by s IESBL T f MOngL(E) c
Modgp{¥') — especially, if ¢ is a simple formula, then
¥ kgL @ iff @ is a skeptical consequence of I in the sense
of default logic.

Let 2 be a simple formula. Acceptance is defined by the
default formulation. Equivalently, Aspr{{x, A}, @) holds iff
{t, A} |FepL w and o is consistent. Contradiction refers
(o maximal scenarios: Cggyr (X, ) iff MS(E) = @ or there
exists A/, A € MS(E) suchthat a A A’ |=¢, v and a A
A" p=¢ry, ~p. Lastly, {c, A) xp is defined as (@ Ap, A}, ie
the hard facts are expanded with the revision formula.

Example 6.1 T = {§, {a,—a Ab,a — ¢,—c,c — a}). Here
is a purification plan of minimal cost for ¥ with respect to
the stundard atomic context. We siart by testing a; ¥ % ~a =
{—a, A) is contradiction-free because it has a single maximal
scenario {~a A be — ¢,m¢c,c — a}; Dxa = (g A) is
not contradiction-free because it has two maximal scenarios
{a,a — c,c — a} and {a,~c,c — a}; then testing c leads
to L« (a Ac)und E % (a A —c), both being contradiction-
Jree. Hence, given the standard atomic comtext, de(%) =
2 and d;(E£) = 3 (since disambiguating b will reguire one
additional test).

Proposition 6.1
s Y is contradiction-free iff M S(X) is a singleton.
o T = {eov, A) is fully informative iff MS(T) is a singleton
{A'} and Modern{a A Q') is a singleton.

Despite it mainly amounts to expansion of the hard facts,
if the hard constraint ¢ of X is true for sure in the actual
world (i.e., it is consistent and consistency cannot be ques-
tioned by expansion with test outcomes), then X has a finite
degree of contradiction and a finite degree of ignorance given
any atomic or universal context.

7 Related work

To the best of our knowledge, only few proposals for a notion
of degree of information can be found in the literature, and
things are even worse to what concerns the notion of degree
of contradiction. All existing approaches are stuck to specific
propositional logics with the corresponding consequence re-
lations, which address only some aspects of the paraconsis-
tency issue, if any (as evoked previously, there is no undebat-
able paraconsistent inference relation).

Shannon's information theory [Shannon, 1948] provides
the most famous approach on which notions of quantity of
information can be defined, but it relies on the assumption
that the available information is given under the form of a
probability distribution; furthermore, it cannot directly ad-
dress inconsistent data. Interestingly, our definition of degree
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of information is general enough to recover classical entropy,
applied to classical Iogic4.

Lozinskii f 1994a] gives a set of properties that a measure
of quantity of information should satisfy. Our degree of ig-
norance is fully compatible with Lozinskii's requirements in
several cases. The degree of information defined by Lozin-
skii corresponds to the notion in Shannon's theory, assuming
a uniform distribution over the set of propositional interpre-
tations®. It is thus required that the input information base
T has a classical model. [Lozinskii, 1994b] extends |Lozin-
skii, 1994a] by considering as well some inconsistent logi-
cal systems, through a more general notion of model. It is
specifically focused on so-called quasi-models of the infor-
mation set 3, which are the models of the maximal (w.r.l,
C) consistent subsets of X, This is sufficient to avoid the
notion of degree of information (o trivialize when applied to
an inconsistent £ (unless it is a singleton). However, no no-
tion of degree of contradiction is specifically introduced in
Lozinskii's approach. He claims that “an inconsistent infor-
mation base always contains less semantic information than
any of its maximal consistent subsets™. In our point of view,
this may lead to counterintuitive results. For instance, given
PS8 - {a,b,c}. according to Lozinskii, {a} contains more
information than {a A —a Ab A c}. That is not always the case
in our framework: it depends on the context under consider-
ation. Thus, while the degree of contradiction of the furmer
is lower than the degree of contradiction of the latter, the de-
gree of information of the latter is greater than the one of the
former (w.r.t. the standard atomic Lest context).

Wong and Besnard 12001] criticize the syntax-sensitivity of
Lozinskii's approach. In particular, the presence of tavtole-
gies in £ may unexpectedly change the quantity of informa-
tion. As they note this can be easily repaired by considering
the models of £ over the set of variables on which X depends
[Lang and Marquis, 1998), instead of the set of variables oc-
curring in £. Wong and Besnard also adhere to Lozinskii's
definition of degree of information; what changes is the un-
derlying notion of quasi-model, since the paraconsistent logic
they considered is quasi-classical logic [Besnard and Hunler,
1995; Hunter, 2000).

[Knight, 2003] reports some other postulates for a mea-
sure of quantity of information. Our measure d; does not
satisfy all of them, even in simple cases (for space reasons,
we cannot detail it here). This contrasts with the two mea-
sures introduced by Knight, which generalize in an elegant
way Shannon's entropy-based measure to the case the infor-
mation base is an inconsistent set of formulas. However, both
measures trivialize when the information set is an inconsis-
tent singleton.

The only two approaches we are aware of, which con-
sider (non-trivial) degrees of inconsistency defined for clas-

4Let pry: be the probability distribution stating that all models of
2 over S arc equiprobable (and the other ones impossible), i.e., for
any w & I, prelw) = Wﬂ_ The entropy of pry is defined
as H(prs) = 3y —pre(w}logapra(w) = log:|Modey (X))
Therefore, the integer upper part of H{prg) is nothing but the min-
imal number of tests that have to be performed to identify the actual
world given the standard universal test context.

*Such 4 degree was already known by Kemeny [1953) and Hin-
tikka [1970].

BELIEF REVISION AND UPDATE



sical formulas (i.e., without additional information, like a
preference preorder), are [Knight, 2002} and {Hunter, 2002].
Knight finds a set £ of classical formulas maximally o-
consistent whenever o s the greatest number for which a
probability meusure P exists, satisfying P(e) > o flor ev-
ery ¢ C 2. Accordingly, his measure makes sense when
the logic § 3L is considered, but trivializes whenever £ is a
singleton. Hunter appeals to quasi-classical Jogic as a frame-
work for dealing with inconsistent information. Considering
the minimal quasi-classical models of the information base X
(roughly, the “most classical” ones), Hunter defines the de-
gree of coherence of ¥ as the ratio between the amount of
contradiction (conflict) and the amount of information (opin-
ion) of the formula. Such a degree of coherence does not
always give what is expected. Consider for instance the
two information sets & = {e A cc,avV{EAacAnd)} and
= {en e {eAb)V(cnd)}. [Hunter, 2002] shows
that Coherence(.) > Coherence{3) ). We feel it counterintu-
itive since the two bases shares the same contradiction ¢ A—e,
which is not related to the other formulas of both bases®.
Finally, Hunter {2003} defines a degree of significance of
the contradictions, which makes sense when some informa-
tion about the importance of potential conflicts is available.

8 Conclusion

The main contribution of the paper is a uniform action-based
framework for quantifying both degrees of information and of
contradiction. The framework is parameterized by a proposi-
tional logic (together with the corresponding notions of con-
sequence, acceptance, contradiction and a revision operator),
a test context and an aggregation criterion for computing plan
costs. These parameters enable a great flexibility.

There are many interesting notions that can be easily de-
fined in our framework but that we cannot mention here for
space reasons. Let us note that through the notion of purifi-
cation plan, our approach for quantifying contradiction also
allows to localize conflicts. Note also that notions ofjoint de-
grees and conditional degrees of information / contradiction
can be easily defined. Another simple extension would con-
sist in taking advantage of additional knowledge about the
sources of information and the origin of conflicts (e.g., in a
diagnosis setting, it can be the case that the failure of a com-
ponent physically causes the failure of other components).

Many other extensions of our approach can be envisioned.
For instance, coping with preferences over the goal variables
(determining whether a holds is more important than deter-
mining whether b holds). Another possible extension con-
cerns the case where ontic actions arc available and the objec-
tive is to let the actual world as unchanged as possible (i.e.,
we can execute invasive actions but we prefer not to do it).
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°Tf we instantiate our framework with L #,, logic (under standard
atomic context), we get de:(X) = de(X) = 1, di{(E) = 5, and
dr(X'} = 4, showing that there is the same amount of centradiction
in the two bases and that there is less information in I than in X',
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