A Weighted Polynomial Information Gain Kernel for Resolving Prepositional
Phrase Attachment Ambiguities with Support Vector Machines

Bram Vanschoenwinkel*

Bernard Manderick

Vrije Universiteit Brussel, Department of Computer Science, Computational Modeling Lab
Pleinlaan 2, 1050 Brussel, Belgium
{bvschoen® - bemard@arti}.vub.ac.be

Abstract

We introduce a new kemnel for Support Vector Ma-
chine learning in a natural language setting. As a
case study to incorporate domain knowledge into
a kernel, we consider the problem of resolving
Prepositional Phrase attachment ambiguities. The
new kernel is derived from a distance function
that proved to be succesful in memory-based learmn-
ing. We start with the Simple Overlap Metric from
which we derive a Simple Overlap Kernel and ex-
tend it with Information Gain Weighting. Finally,
we combine it with a polynomial kernel to increase
the dimensionality of the feature space. The clo-
sure properties of kemels guarantee that the result
is again a kernel. This kernel achieves high clas-
sification accuracy and is efficient in both time and
space usage. We compare our results with those ob-
tained by memory-based and other learning meth-
ods. They make clear that the proposed kernel
achieves a higher classification accuracy.

1 Introduction

An important issue in natural language analysis is the resolu-
tion of structural ambiguity. A sentence is said to be struc-
turally ambiguous when it can be assigned to more than one
syntactic structure [Zavrel et al. , 1997]. In Prepositional
Phrase (PP) attachment one wants to disambiguate between
cases where it is uncertain whether the PP attaches to the verb
or to the noun.

Example 1 Consider the following two sentences:
1. I bought the shirt with pockets.
2. 1 washed the shirt with soap.

In sentence 1, with modifies the noun shirt because with
pockets (PP) describes the shirt. In sentence 2 however, with
modifies the verb washed because with soap (PP) describes

how the shirt is washed [Ratnaparkhi, 1998].

This type of attachment ambiguity is easy for people to
resolve because they can use their world knowledge [Stetina

* Author funded by a doctoral grant of the institute for advance-
ment of scientific technological research in Flanders (1WT).

CASE-BASED REASONING

and Nagao, 1997]. A computer program usually cannot rely
on that kind of knowledge.

This problem has already been tackled using memory-
based learning like for example K-nearest neighbours. Here,
the training examples are first stored in memory and classi-
fication of a new example is done based on the closest ex-
ample stored in memory. Therefore, one needs a function
that expresses the distance or similarity between examples.
There already exist several dedicated distance functions to
solve all kind of natural language problems using memory-
based learning [Veenstra et al, 2000; Zavrel et al, 1997,
Daelemans et al, 2002].

We will use a Support Vector Machine (SVM) to tackle the
problem of PP attachment disambiguation. Central to SVM
leaming is the kernel function K : . X x X -> R where X
contains the examples and the kernel K calculates an inner
product in a second space, the feature space F. This product
expresses how similar examples are.

Our goal is to combine the power of SVMs with the dis-
tance functions that arc well-suited for the probem for which
they were designed. Deriving a distance from a kemel is
straightforward, see Section 2.1. However, deriving a kermnel
from a distance is not trivial since kemels must satisfy some
extra conditions, i.e. being a kemel is a much stronger con-
dition than being a distance. In this paper we will describe
a method that shows how such dedicated distance functions
can be used as a basis for designing kemels that sequentially
can be used in SVM learning.

We use the PP attachment problem as a case study to illus-
trate our approach. As a starting point we take the Overlap
Metric that has been succesfully used in memory-based learn-
ing for the same problem [Zavrel et al, 1997].

Section 2 will give a short overview of the theory of SVMs
together with some theorems and definitions that are needed
in Section 4. Based on [Zavrel et al, 1997], section 3 gives
an overview of metrics developed for memory-based learning
applied to the PP attachment problem. In Section 4 the new
kemels will be introduced. Finally Sections 5 and 6 give some
experimental results and a conclusion of this work.

2 Support Vector Machines

For simplicity, in our explanation we will consider the case
of binary classification only, i.e. we consider an input space
X with input vectors x and a target space D = {1, -1}. The

133



goal of the SVM is to assign every x to one of two classes
D = {1,-1}. The decision boundary that separates the in-
put vectors belonging to different classes is usually an arbi-
trary n — 1-dimensional manifold if the input space X is n-
dimensional.

One of the basic ideas behind SVMs is to have a mapping
& from the original input space X into a high-dimensional
feature space F that is a Hilbert space. i.e. a complete vector
space provided with an inner product. Separation of the trans-
formed feature vectors (x) in F is done linearly, i.e. by a
hyperplane. Cover’s theorem states that any consistent train-
ing set can be made linear separable provided the dimension
of F is high enough.

However, transforming the training set TS =
{x1,%2,...,X4,..., X5} C X into such a higher-dimensional
space incurs both computational and learning-theoretic
problems. The high dimensionality of F' makes it very
expensive both in terms of memory and time to represent the
feature vectors ®{x;) corresponding 1o the training vectors
x;. Moreover, separating the data in this way exposes the
learning system (o the risk of overfitting the data if the
separating hyperplane is not chosen properly.

SVMs sidestep both difficulties [Vapnik, 1998]. First,
overfitting is avoided by choosing the unique maximum mar-
gin hyperplane among all possible hyperplanes that can sep-
arate the data in F. This hyperplane maximizes the distance
to the closest data points.

Second, the maximum margin hyperplane in ¥ can be rep-
resented entirely in terms of training vectors x; € TS and a
kernel K.

Definition: A kernelis a function K : X x X — R so that
forallx andy in X, K(x,y) =< ®(x), P(y) > where P isa
(non-linear) mapping from the input space X into the Hilbert
space F provided with the inner product < ., . > [Cristianini
and Shawe-Taylor, 2000).

7b be more precise, once we have chosen a kernel K we
can represent the maximal margin hyperplane (or decision
boundary) by a linear equation in x

1di K(x,x)+b=10 (¢}
x, T8
where the training vectors x; and their class labels ¢; are
given. The decision boundury is determined completely once
we know the «; and b. They are obtained by optimizing a
convex quadratic objective function with linear constraints.
Moreover, most of the cti prove to be zero. By definition the
vectors x; corresponding with non-zero a, are called the sup-
port vectors SV and this set consists of those data points that
lie closest to the hyperplane and thus are the most difficult to
classify.
In order to classify a new point x,e,, One determines the
sign of
E aidi KX, Xnew) + b
x,ESV
If this sign is positive X,.w, belongs to class 1, if negative to
class -1, if zero X, lies on the decision boundary. Note

that we have now restricted the summation to the set SV of
support vectors because the other a, are zero anyway.

134

To conclude, SYM can sidestep the above two difficulties
because neither the feature space F' nor the map & from the
input space X into F are explicitly defined, they are replaced
by the kernel K that operates on vectors of the input space
X.

2.1 Some Properties of Kernels

The selection of an appropriate kernel K is the most impor-
tant design decision in SVMs since it implicitly defines the
feature space F' and the map &, A SVM will work correctly
even if we don't know the exact form of the features that are
used in F. Moreover, the kernel expresses prior knowledge
about the patterns being modelled, encoded as a similarity
measure between two vectors [Brown et al, 1999].

But not all maps over X x X are kernels. Since a kernel K
is related to an inner product, cfr. the definition above, it has
to satisfy some conditions that arise naturally from the defini-
tion of an inner product and are given by Mercer's theorem:
the map must be continuous and positive definite | Vapnik,
1998].

In this paper we will use following methods to construct
kernels iCristianini and Shawe-Taylor, 2000]:

M1 Making kernels from kernels: Based on the fact that ker-
nels satisfy a number of closure properties. In this case,
the Mercer conditions follow naturally from the closure
properties of kernels.

M2 Making kernels from features: Start from the features
of the input vectors and obtain a kernel by working out
their inner product. A feature is a component of the in-
put vector. In this case, the Mercer conditions follow
naturally from the definition of an inner product.

The set of kernels is closed under certain operations, this
allows us to0 make new kernels from existing ones (see M1),
We mention only the closure property used in the paper:

Closure properties of kernels: Let @ : X — R" be a map
and K, be a kernel over B” x R® then the following function
is a kernel K{x,y) = K;{®(x), 8(y)).

Another interesting property is that we can derive a dis-
tance d from a kernel K as follows:

Distance derived from a kernel: let K be a
kemmel over X x X, then d defined as d(x,y) =
VK (x,x) — 2K(x,y) + K(y,y) is a distance on X and
consequentially (X, d) is a metric space.

3 Metrics for Memory-based Learning

In this section, we will focus on the distance functions [Zavrel
etal, 1997; Cost and Salzberg, 1993] used for memory-based
learning with symbolic values. First, we will have a look at
the Simple Overlap Metric (SOM) and next we will discuss
Information Gain Weighting (1GW). Memory-based learning
is a class of machine learning techniques where training in-
stances are stored in memory first and classification of new
instances later on is based on the distance (or similarity) be-
tween the new instance and the closest training instances that
have already been stored in memory. A well-known example
of memory-based learning is k-nearest neighbours classifica-
tion. We will not go into further detail, the literature offers

CASE-BASED REASONING



many books and articles that provide a comprehensive intro-
duction to memory-based learning, e.g. [Mitchell, 1997]. For
our purpose, the important thing to remember is that we will
be working with symbolic values like strings over an alphabet
of characters. Instances are n-dimensional vectors a and b in
some universe £2*. The components of the vectors in {1 are
strings, ie. a;,b; € I, with Z* the sct of all strings over
some alphabet £. Notice that for n = 1, " becomes {2 and
the elements of {} are strings in £*. In order for the inner
products defined below to be meaningful, the set of strings €
has to be finile. As a result the set of vecfors 1™ is also finite
as required.

3.1 Simple Overlap Metric

The most basic metric for vectors with symbolic values is the
Simple Overlap Metric(SOM) [Zavrel et a/., 19971]:

=3 "daib) @)

=1

dsop X x N = R 1 dsom {a,b)
with
6(ai, b} =1 -4, (b;} 3)
and
d:0xQo {1,0}:8,,(6,)=1if a;=b,, else ) (4

Here dsoum (a,b) is the distance between the vectors a and
b, represented by n features and S is the distance per feature.
The k;-ncarest neighbour algorithm equipped with this metric
is called IB1 [Aha et al, 1991]. The IB1 algorithm simply
counts the number of (mis)matching feature values in both
vectors. This is a reasonable choice if we have no information
about the importance of the different features. But if we do
have information about feature importance then we can add
linguistic bias to weight the different features.

3.2 Information Gain Weighting

Information Gain Weighting (1GW) measures for every fea-
ture i separately how much information it contributes to our
knowledge of the correct class label. The Information Gain
(1G) of a feature i is measured by calculating the entropy be-
tween the cases with and without knowledge of the value of
that feature:

Xev, Pv) x H(Clv)
8i{i)
si(i) = Z P{w)loga P(v)
vel,

Where C is the sct of class labels, 15 is the set of values
for feature i, H{C) = - 3 ceC P{c)logy P(c) is the entropy
of the class labels and 8i(%) is the split info. The resulting
weights W; can be used to extend Equation 2 with weights
(see Equation 6). The k-nearest neigbour algorithm equipped
with this metric is called 1B1-1G [Zavrel et al, 1997] and the
corresponding distance called ds:

= H(C) - (5)

dig: " xN" > ®+ tdig(a,b) = Zw;é(a;,b,) (6)
i=l
with & like in Eqs. 3 and 4.

CASE-BASED REASONING

4 A Kernel for Natural Language settings

In this section, we will describe the kemnel that we have con-
structed from the IGW metric dys from the previous sec-
tion. A kemel will be a function K : 1" x " o ®
and the mappmg to the feature space F° will be of the form
@ : 0" —+ R We will begin with the simple, one-
dimensional, unweighted case (Section 4.]1). Next, we will
extend it to n dimensions (Section 4.2) and add 1GW {Sec-
tion 4.3) and finally in Section 4.4 the Polynomial Inforta-
tion Gain (P1G) kemel will be introduced.

4.1 A Simple Overlap Kernel (SOK) in one
dimension

If we only want to consider veciors in a one-dimensional
space then we have (o take a closer look at Equations 3 and 4.
To derive a kernel from this distance function we will use M2
from Section 2.1. Consider the inner product space R? of
functions f : £ — R, the inner product of two functions f
and g is defined as;

< fig>=)_ f(2).9(z) M

el

Next, let ¢gor : 52 = R with
1
a) = —4 B
dsok(a) 7% (8)

be a fcature mapping to the feature space F'. The function

84 is defined as §,(z) = 1 when £ = a and U otherwise

(see Equation 4). Starting from the features and the above de-

fined feature mapping we will now work out the inner prod-

uct to come to the corresponding kernel ksope : 1 x Q@ = R:
ksor(ab) =< ¢sor(a),dsox(b) >

—<‘/—m!55>

3 Lren 9a(@)-05(2)
= %'i:(b)

We don't have to proof that the kernel k.« satisfies the Mer-
cer conditions because this follows naturally from the defini-
tion of the inner product. We started from the features, de-
fined a mapping ¢sox on the features and we worked out the
inner product between them, see M2 from Section 2.1. How-
ever, to show that the kernel really corresponds to the distance
function given in Equations 3 and 4 we have to verify the dis-
tance formula for kernels given in Section 2.1:

8(a,b) =+/ksox{a,a) - 2ksox(a,b) + ksox (b, D)

_ \/%(ga(a) — 26, (b) + 8 (D))

3(2 -~ 26.4(b))
=1—8,(b)

The last step is justified by the fact that 1 — §,(b) is either 0
or | [Ramon, 2002].

135



42 Extending the SOK to n Dimensions

In this section we consider vectors a,b € {17, the distance
between these vectors is measured by the distance dso
from Equation 2. Now consider the inner product space R*
(the space of functions J : i* — R) comparable to the one
in Equation 7, with the following inner product:

< fg>= Y f(x).g(x) ©®

xeqn
We begin by defining a mapping $sox : 1" — R

Psox(a) = %Ja

We will again use M2 from Section 2.1 to derive a ker-

nel for dsoa. We work out the imner product between

the feature vectors ®gox(a) and Bsox(b) to come w

the corresponding kernel Kgox aQr x " = R
Ksox(a,b) =< ®gox(a), Psox(b) >

= 3 Lxcon 0a(X) du(x)
= % I(b)

=3 2icy Bai(b))
Here the function &, is defined as 8a(x) = 3.1, 84, (z:)
with &,,{z;) like in Equations 4 and 8. Notice
that this corresponds to the inner product between the
vectors & = (@sox(a1},...és0K(es)) and b =
(Psor(h1), .-, dsor (ba)}. So. alternatively we can write
Ksox A Q"= R

n
Ksox(a,b) =Y _ ksox (i, bi) (10)

i=1
We don't have to proof that the kernel KSOK is a valid
kernel as this follows naturally from the definition of
the inner product. However, we again have to show that
it is a kernel that corresponds to the distance function
dsom from Equation 2. In the following we will show
that the kernel Kgop in fact corresponds o the square
root of dgopr, we will call this distance function d,:

d.(a,b) = \/Ksox (a,a) — 2K 5y (a,b) + Koy i (b, b)

= /(=8 (1)) + ...+ (1 — 8, (0a))
= /5 5anb)
= y/dsom(a, b}

However, this does not ]mpose any probiems for the kernel
we are aiming to develop.

4.3 Adding Information Gain to the SOK

Next, we will introduce IGW into the kernel. We will con-
struct a kemnel based on the distance function d;g from Equa-
tion 6. We have to define new mappings ¢ and & to cope with
the weights:

B16: 0" = R : $16(a) = =

ﬁﬁ. (1)

136

1l = Rﬂ : ai) = E‘—
¢1G ¢IG( ) ‘\/§
We will start again by working out the inner prod-
uct for the 1-dimensional case ksg 2x0 = R

krelai b)) =< ¢igla:), dralbs) >
=< Thba;, by, >

2

=% Y acnda, ()0, (2)

= 95, (bs)
The function k;g is guaranteed to be a valid kernel, this
follows naturally from the definition of the inner product
(see M2 from Section 2.1). In the same way as for Kgox
we can show that K corresponds to the inner product
between the vectors a8 = (¢ral(a1), .., ¢relas)) and
b = ($1a{b1), ..., $1c: (ba)), yielding the following result for
the kemnel K : " x Q" - R

da, (12)

113
K{G(ﬂ.,b) = Z ka(ﬂ‘h bt)
i—=1

Also, in the same way as we did before we can show for ;¢
that it corresponds to a distance function §;5 : S x 2 =+ R
with 8rg(a;, b)) = wid{a;, b;) with § as defined in Equu-
tion 3. Furthermore, in the same way as we did for Kgox in
Section 4.2 we can show that the kernel K ;¢ corresponds to
the square root of the distance function d;¢ from Equation 6.

4.4 A Polynomial Information Gain Kernel

In this section, we will increase the dimensionality of the fea-
ture space F by making use of a polynomial kernel K.
We will start this section by giving an example [Cristianini
and Shawe-Taylor, 2000]:

Example 2 (Polynomial kernel): Consider a two di-
mensional inpur space X, with vectors X,y € X:

<%y >? = (2?:1 Iiys‘)
2,2
= EE:‘J)L(L:)(@%)(WW)

= Kpoty(xa y)
which is equivalent to an inner product between feature vec-
tors of the form

®pory(x) = (21,23, 22122)

We call the kernel Kpoyy @ polynomial kernel because it maps
the vectors from the input space X 1o the feature space F of
all monomials of degree 2.

Next, we will derive the Polynomial Information Gain
(PIG) kemel Kpje, making use of M1 from Section 2.1.
We will do this based on the closure property mentioned in
Section 2.1. Consider the feature mapping ® s from Equa-
tion 11, the kernel K p1g will be defined by a combination of
this feature mapping and the polynomial kernel Ko, from
the above example.

Kpic(a,b) = Kpoy (®16(a), B1c(b)) (13)

CASE-BASED REASONING



with .
‘1’;(; S P ?Rn
as defined in Equation 11 and

Kooty * BT xR 9 R

From the closure properties of kernels, it follows naturally
that Kpic indeed is a valid kernel which calculates the in-
ner product of two Vectors transformed by a feature mapping
dpra: " - R

The mapping @p;g maps vectors a € 1" to the space
R with m > n. The features of the vectors in R
are combinations (inner products) of the following form:
< ¢16la:), prcla,) > and 2 < ¢iglai), pria;) > In
this way we aim to capture more relevant information that
might be present in such combinations. Notice that the inner
product here above is the one defined in Equation 7.

5 Experimental Results

In the following section, we will give some experimental re-
sults we obtained with the kemels Kjq and Kpre. First
we will describe the PP attachment disambiguation problem
in more detail, followed by the experimental set up (Sec-
tion 5.2). Finally, we will present the results and compare
them to other methods that have been applied on the same
data sct (Section 5.3).

5.1 PP attachment disambiguation problem

If it is uncertain in a sentence whether the preposition attaches
to the verb or to the noun then we have a prepositional phrase
(PP) attachment problem. For example, in sentence 1 of Ex-
ample 1, with modifies the noun shirt because with pockets
(PP) describes the shirt. In contrast, in sentence 2, with mod-
ifies the verb washed because with soap (PP) describes how
the shirt is washed [Ratnaparkhi, 1998].

Example 3 For the purpose of PP attachment disambigua-
tion, sentences § and 2 from Example [ will be reduced to
vectors a and b € §¥* as follows:

1. a = (bought, shirt, with, pockets)
2. b = (washed, shirt, with, soup)

those words that are of
attachment  problem, ie.

In fact, we only keep
any importance to the PP
(V(erb),N(oun),P(reposition),N(oun)).

In the case where sentences are reduced to quadruples as
illustrated in Example 3, the human performance is approx-
imately 88.2% [Ratnaparkhi et al, 1994]. This performance
rate gives us an acceptable upper limit for the maximum
performance of a computer because it seems unreasonable
to expect an algorithm to perform much better than a hu-
man. As we will show in our experimental results the kernel
Kic achieves a classification accuracy up to 82,9%, see Sec-
tion 5.3. However, in [Zavrel et al. , 1997] the 1B1-1G attains
a maximum classification accuracy of 84.1%, this is a good
indication of the classification accuracy that should be possi-
ble to obtain with a kernel based on the distance defined in
Equation 6.

CASE-BASED REASONING

5.2 Experimental Setup

The experiments have been done with LIBSVM, a C/C++ and
Java library for SVMs [Chih-Chung and Chi-Jen, 2002]. The
machine we have used is a Pentium Ill with 256MB RAM
memory, running Windows XP. We choose to implement the
kernels K, and Kpg in Java.

The type of SVM learning we have used is C-SVM [Chih-
Chung and Chi-Jen, 2002]. The parameter C controls the
model complexity versus the model accuracy and has to be
chosen based on the complexity of the problem.

The experiments in this section are conducted on a simpli-
fied version of the full PP attachment problem (see Example
3). The data consists of four-tuples of words, extracted from
the Wall Street Journal Treebank [Marcus et al., 1993] by a
group at IBM [Ratnaparkhi et al. , 1994]1.

The data set contains 20801 training patterns, 3097 test
patterns and an independant validation set of 4093 patterns
for parameter optimization. All of the models described be-
low were trained on all training examples and the results are
given for the 3097 test patterns. For the benchmark compari-
son with other models from the literature, we use only results
for which all parameters have been optimized on the valida-
tion set. For more details concerning the data set we refer
to [Zavrel et al. , 1997].

5.3 Results

The table below gives the results obtaincd with the kernels
Kig and Kprg and compares them to other methods taken
{rom the literature:

Method Percent correct
Kic 82.9%
Kpig 84.8%
1B] 83.7%
1B1-1G 84.1%
c4.5 79.7%
Maximum Entropy 1. 7%
Transformations 81.9%
Back-off model 84.1%
Late Closure 59.0%
Most Likely foreach P | 72.0%

The results for Kjg and K'prq were obtained after opti-
mization of the parameter C on the validation set. For K;go
this optimal value was C = 0.8 and for K pyq this optimal
value was € = 0.55. The scores of IB1, IB1-1G, C4.5, Lale
Closure and Most Likely for each P are taken from [Zavre]
et al., 1997], the scores from Maximum Entropy are tuken
from |Ratnaparkhi et af., 1994] and the scores of Transfor-
mations are taken from {Collins and Brocks, 1995).

The fact that the kernel K,z performs worse than IB1-1G,
although it is equipped with the very same distance metric,
may seem somehow surprising. We believe this is because
SVMs perform linear separation in the feature space F. The
decision boundary of IB1-1G on the other hand is non-linear.
Due to the linearity of the decision boundary of the SVM,
some points get misclassified. The number of misclassifica-
tions is controlled by the parameter C. Choosing a larger

"This data set is freely available by ftp from
fip:/ftp.cis.upenn.edu/pub/adwait/PPattachData/.

137



value for C forces the SVM to avoid classification errors.
However, choosing a value for C that is too high will result
in overfitting. Increasing the dimensionality of F makes lin-
ear separation easier (Cover's theorem). This can be seen by
comparing the classification accuracies between the kernels
Kic and Kpic- The results also show that our kernel Kpg
outperforms all other methods in the comparison.

6 Conclusion

In this paper, we have proposed a method for designing ker-
nels for SVM learning in natural language settings. As a start-
ing point we took distance functions that have been used in
memory-based learning. The resulting kernel Kpc achieves
high classification accuracy compared to other methods that
have been applied on the same data set. In our approach we
started from the vectors of the input space, defined a map-
ping on those vectors and worked out their inner product in
the feature space. All necesary kernel conditions follow nat-
urally from the definition of the inner product. We used the
distance formula for kernels to show that the kernels are ac-
tually based on the distance functions from Section 3. The
experimental results of the kernel Kpic show that increasing
the dimensionality in the feature space yields better results.
We increased the dimensionality of the feature space by mak-
ing combinations of the features @ g4 through a polynomial
kernel. In this way, we do not only take into account the sim-
ilarity between corresponding features of vectors, but we also
take into account the similarity between non-corresponding
features of the vectors. In fact this comes down to taking into
account, to a greater extend, the context in wich a word oc-
curs.

We used the resolvement of PP attachment ambiguities as a
case-study to validate our findings, but it is our belief that the
kernel Kpic can be used for a wide range of natural language
problems. In the future we will apply our kernels in more
complex natural language settings and compare the results to
other methods that have been applied on the same problems.
At the moment we are already running experiments on /lan-
guage independent named-entity recognition [Sang, 2002].
The first results look promising, but it is too early to draw
any significant conclusions. We will also try to further ex-
tend the kernels proposed in this paper to achieve even higher
accuracies. Moreover, there are still many distance functions
reported in the literature that have not yet been investigated to
see whether they are applicable in SVM learning, we intend
to investigate such distance functions and if possible derive a
kernel from them.

References

[Aha et al., 1991] D. Aha, D. Kibler, and M. Albert. Instance
based learning algorithms. Machine Learning, 6:37 - 66,
1991.

[Brown et al, 1999] Michael P.S. Brown, William Noble
Grundy, David Lin, Nello Cristianini, Charles Sugnet,
Manuel Ares, and David Haussler. Support vector machine
classification of microarray gene expression data, 1999.

138

[Chih-Chung and Chi-Jen, 2002] Chang Chih-Chung and
Lin Chi-den. Libsvm: a library for support vector ma-
chines, 2002.

[Collins and Brooks, 1995] M.J Collins and J. Brooks.
Prepositional phrase attachment through a backed-off
model. In Proceedings of the Third Workshop on Very
Large Corpora, Cambridge, 1995.

[Cost and Salzberg, 1993] Scott Cost and Steven Salzberg.
A weighted nearest neighbour algorithm for learning with
symbolic features. Machine Learning, 10:57-78, 1993.

[Cristianini and Shawe-Taylor, 2000] Nello Cristianini and
John Shawe-Taylor. An Introduction to Support Vec-
tor Machines and other Kernel-based Learning Methods.
Cambridge University Press, 2000.

[Daelemans et al., 2002] Walter Daelemans, Jakub Zavrel,
Ko van der Sloot, and Antal van den Bosch. Timbl:
Tilburg memory-based learner, version 4.3. Technical re-
port, Tilburg University and University of Antwerp, 2002.

[Marcus et al, 1993] M. Marcus, Santorini B, and M.A.
Marcinkiewicz. Building a large annotated corpus of en-
glish: The penn treebank. Computational Linguistics,
19(2):313-330, 1993.

[Mitchell, 1997] Tom Mitchell. Machine Learning. The
McGraw-Hill Companies, Inc., 1997.

[Ramon, 2002] Jan Ramon. Clustering and instance based
learning in first order logic. PhD thesis, K.U. Leuven,
Belgium, 2002.

[Ratnaparkhi et al., 1994] Adwait Ratnaparkhi, J. Reynar,
and S. Roukos. A maximum entropy model for prepo-
sitional phrase attachment. In Proceedings of the ARPA
Workshop on Human Language Technology, Plainsboro,
NJ, 1994.

[Ratnaparkhi, 1998] Adwait Ratnaparkhi. @ Maximum En-
tropy Models for Natural Language Ambiguity Resolution.
PhD thesis, University of Pennsylvania, Philadelphia, PA,
1998.

[Sang, 2002] Erik F. Tjong Kim Sang. Introduction to the
conll-2002 shared task: Language-independent named en-
tity recognition. In Proceedings of CoNLL-2002, Taipei,
Taiwan, pages 155 - 158, 2002.

[Stetina and Nagao, 1997] Jiri Stetina and Makoto Nagao.
Corpus based pp attachment ambiguity resolution with a
semantic dictionary., 1997. Kyoto University, Yoshida
Honmachi, Kyoto 606, Japan.

[Vapnik, 1998] Vladimir Vapnik. The Nature of Statistical
Learning Theory. Springer-Verlag, New York, 1998.

[Veenstra et al., 2000] Jorn Veenstra, Antal van den Bosch,
Sabine Buchholz, Walter Daelemans, and Jakub Zavrel.
Memory-based word senese disambiguation. Computers
and the Humanities, 34:1-2:171 - 177, 2000.

[Zavrel et al, 1997] Jakub Zavrel, Walter Daelemans, and
Jorn Veenstra. Resolving pp attachment ambiguities with
memory-based learning. In Proceedings CoNNL, Madrid,
pages 136 - 144. Computational Linguistics, Tilburg Uni-
versity, 1997.

CASE-BASED REASONING



