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Abstract 
We introduce a new kernel for Support Vector Ma­
chine learning in a natural language setting. As a 
case study to incorporate domain knowledge into 
a kernel, we consider the problem of resolving 
Prepositional Phrase attachment ambiguities. The 
new kernel is derived from a distance function 
that proved to be succesful in memory-based learn­
ing. We start with the Simple Overlap Metric from 
which we derive a Simple Overlap Kernel and ex­
tend it with Information Gain Weighting. Finally, 
we combine it with a polynomial kernel to increase 
the dimensionality of the feature space. The clo­
sure properties of kernels guarantee that the result 
is again a kernel. This kernel achieves high clas­
sification accuracy and is efficient in both time and 
space usage. We compare our results with those ob­
tained by memory-based and other learning meth­
ods. They make clear that the proposed kernel 
achieves a higher classification accuracy. 

1 Introduction 
An important issue in natural language analysis is the resolu­
tion of structural ambiguity. A sentence is said to be struc­
turally ambiguous when it can be assigned to more than one 
syntactic structure [Zavrel et al. , 1997]. In Prepositional 
Phrase (PP) attachment one wants to disambiguate between 
cases where it is uncertain whether the PP attaches to the verb 
or to the noun. 

Example 1 Consider the following two sentences: 
1. I bought the shirt with pockets. 
2. 1 washed the shirt with soap. 
In sentence 1, with modifies the noun shirt because with 

pockets (PP) describes the shirt. In sentence 2 however, with 
modifies the verb washed because with soap (PP) describes 
how the shirt is washed [Ratnaparkhi, 1998]. 

This type of attachment ambiguity is easy for people to 
resolve because they can use their world knowledge [Stetina 
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and Nagao, 1997]. A computer program usually cannot rely 
on that kind of knowledge. 

This problem has already been tackled using memory-
based learning like for example K-nearest neighbours. Here, 
the training examples are first stored in memory and classi­
fication of a new example is done based on the closest ex­
ample stored in memory. Therefore, one needs a function 
that expresses the distance or similarity between examples. 
There already exist several dedicated distance functions to 
solve all kind of natural language problems using memory-
based learning [Veenstra et al, 2000; Zavrel et al, 1997; 
Daelemans et al, 2002]. 

We will use a Support Vector Machine (SVM) to tackle the 
problem of PP attachment disambiguation. Central to SVM 
learning is the kernel function K : .X x X -> R where X 
contains the examples and the kernel K calculates an inner 
product in a second space, the feature space F. This product 
expresses how similar examples are. 

Our goal is to combine the power of SVMs with the dis­
tance functions that arc well-suited for the probem for which 
they were designed. Deriving a distance from a kernel is 
straightforward, see Section 2.1. However, deriving a kernel 
from a distance is not trivial since kernels must satisfy some 
extra conditions, i.e. being a kernel is a much stronger con­
dition than being a distance. In this paper we will describe 
a method that shows how such dedicated distance functions 
can be used as a basis for designing kernels that sequentially 
can be used in SVM learning. 

We use the PP attachment problem as a case study to illus­
trate our approach. As a starting point we take the Overlap 
Metric that has been succesfully used in memory-based learn­
ing for the same problem [Zavrel et al, 1997]. 

Section 2 will give a short overview of the theory of SVMs 
together with some theorems and definitions that are needed 
in Section 4. Based on [Zavrel et al, 1997], section 3 gives 
an overview of metrics developed for memory-based learning 
applied to the PP attachment problem. In Section 4 the new 
kernels will be introduced. Finally Sections 5 and 6 give some 
experimental results and a conclusion of this work. 

2 Support Vector Machines 
For simplicity, in our explanation we will consider the case 
of binary classification only, i.e. we consider an input space 
X with input vectors x and a target space D = {1 , - 1 } . The 
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If this sign is positive xnew, belongs to class 1, if negative to 
class - 1 , if zero xnew lies on the decision boundary. Note 
that we have now restricted the summation to the set SV of 
support vectors because the other a, are zero anyway. 

convex quadratic objective function with linear constraints. 
Moreover, most of the cti prove to be zero. By definition the 
vectors xi corresponding with non-zero a, are called the sup­
port vectors SV and this set consists of those data points that 
lie closest to the hyperplane and thus are the most difficult to 
classify. 

In order to classify a new point xnew, one determines the 
sign of 

7b be more precise, once we have chosen a kernel K we 
can represent the maximal margin hyperplane (or decision 
boundary) by a linear equation in x 

SVMs sidestep both difficulties [Vapnik, 1998]. First, 
overfitting is avoided by choosing the unique maximum mar­
gin hyperplane among all possible hyperplanes that can sep­
arate the data in F. This hyperplane maximizes the distance 
to the closest data points. 

goal of the SVM is to assign every x to one of two classes 
D = { 1 , - 1 } . The decision boundary that separates the in­
put vectors belonging to different classes is usually an arbi­
trary n — 1-dimensional manifold if the input space X is n-
dimensional. 

3 Metrics for Memory-based Learning 
In this section, we will focus on the distance functions [Zavrel 
et al, 1997; Cost and Salzberg, 1993] used for memory-based 
learning with symbolic values. First, we will have a look at 
the Simple Overlap Metric (SOM) and next we will discuss 
Information Gain Weighting (1GW). Memory-based learning 
is a class of machine learning techniques where training in­
stances are stored in memory first and classification of new 
instances later on is based on the distance (or similarity) be­
tween the new instance and the closest training instances that 
have already been stored in memory. A well-known example 
of memory-based learning is k-nearest neighbours classifica­
tion. We will not go into further detail, the literature offers 

even if we don't know the exact form of the features that are 
used in F. Moreover, the kernel expresses prior knowledge 
about the patterns being modelled, encoded as a similarity 
measure between two vectors [Brown et al, 1999]. 

But not all maps over X x X are kernels. Since a kernel K 
is related to an inner product, cfr. the definition above, it has 
to satisfy some conditions that arise naturally from the defini­
tion of an inner product and are given by Mercer's theorem: 
the map must be continuous and positive definite I Vapnik, 
1998]. 

In this paper we wil l use following methods to construct 
kernels iCristianini and Shawe-Taylor, 2000]: 

M1 Making kernels from kernels: Based on the fact that ker­
nels satisfy a number of closure properties. In this case, 
the Mercer conditions follow naturally from the closure 
properties of kernels. 

M2 Making kernels from features: Start from the features 
of the input vectors and obtain a kernel by working out 
their inner product. A feature is a component of the in­
put vector. In this case, the Mercer conditions follow 
naturally from the definition of an inner product. 

2.1 Some Properties of Kernels 
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weights Wi can be used to extend Equation 2 with weights 
(see Equation 6). The k-nearest neigbour algorithm equipped 
with this metric is called 1B1-1G [Zavrel et al, 1997] and the 
corresponding distance called dIG: 

Here d S O M (a,b) is the distance between the vectors a and 
b, represented by n features and S is the distance per feature. 
The k;-ncarest neighbour algorithm equipped with this metric 
is called IB1 [Aha et al, 1991]. The IB1 algorithm simply 
counts the number of (mis)matching feature values in both 
vectors. This is a reasonable choice if we have no information 
about the importance of the different features. But if we do 
have information about feature importance then we can add 
linguistic bias to weight the different features. 

3.2 Information Gain Weighting 
Information Gain Weighting (1GW) measures for every fea­
ture i separately how much information it contributes to our 
knowledge of the correct class label. The Information Gain 
(IG) of a feature i is measured by calculating the entropy be­
tween the cases with and without knowledge of the value of 
that feature: 

3.1 Simple Overlap Metric 
The most basic metric for vectors with symbolic values is the 
Simple Overlap Metric(SOM) [Zavrel et a/., 1997]: 

many books and articles that provide a comprehensive intro­
duction to memory-based learning, e.g. [Mitchell, 1997]. For 
our purpose, the important thing to remember is that we will 
be working with symbolic values like strings over an alphabet 
of characters. Instances are n-dimensional vectors a and b in 

A Kernel for Natura l Language settings 

We don't have to proof that the kernel k s o k satisfies the Mer­
cer conditions because this follows naturally from the defini­
tion of the inner product. We started from the features, de-

inner product between them, see M2 from Section 2.1. How­
ever, to show that the kernel really corresponds to the distance 
function given in Equations 3 and 4 we have to verify the dis­
tance formula for kernels given in Section 2.1: 
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4.2 Extending the SOK to n Dimensions 

We don't have to proof that the kernel KSOK is a valid 
kernel as this follows naturally from the definition of 
the inner product. However, we again have to show that 
it is a kernel that corresponds to the distance function 
dSOM from Equation 2. In the following we will show 

However, this does not impose any problems for the kernel 
we are aiming to develop. 

4.3 Add ing In format ion Gain to the SOK 

4.4 A Polynomial In format ion Gain Kernel 
In this section, we will increase the dimensionality of the fea­
ture space F by making use of a polynomial kernel Kpoly. 
We will start this section by giving an example [Cristianini 
and Shawe-Taylor, 2000]: 
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From the closure properties of kernels, it fol lows naturally 
that KPIG indeed is a valid kernel which calculates the in­
ner product of two vectors transformed by a feature mapping 

5 Experimental Results 

5.1 PP attachment disambiguation problem 
If it is uncertain in a sentence whether the preposition attaches 
to the verb or to the noun then we have a prepositional phrase 
(PP) attachment problem. For example, in sentence 1 of Ex­
ample 1, w i th modifies the noun sh i r t because w i th pockets 
(PP) describes the shir t . In contrast, in sentence 2, w i th mod­
ifies the verb washed because w i t h soap (PP) describes how 
the shirt is washed [Ratnaparkhi, 1998]. 

In fact, we only keep those words that are of 
any importance to the PP attachment problem, i.e. 
(V(erb),N(oun),P(reposition),N(oun)). 

In the case where sentences are reduced to quadruples as 
illustrated in Example 3, the human performance is approx­
imately 88.2% [Ratnaparkhi et al, 1994]. This performance 
rate gives us an acceptable upper l imi t for the maximum 
performance of a computer because it seems unreasonable 
to expect an algorithm to perform much better than a hu­
man. As we w i l l show in our experimental results the kernel 
KIG achieves a classification accuracy up to 82,9%, see Sec­
tion 5.3. However, in [Zavrel et al. , 1997] the 1B1-1G attains 
a maximum classification accuracy of 84 .1%, this is a good 
indication of the classification accuracy that should be possi­
ble to obtain wi th a kernel based on the distance defined in 
Equation 6. 

The fact that the kernel KIG performs worse than IB1- IG, 
although it is equipped wi th the very same distance metric, 
may seem somehow surprising. We believe this is because 
SVMs perform linear separation in the feature space F. The 
decision boundary of IB1- IG on the other hand is non-linear. 
Due to the linearity of the decision boundary of the S V M , 
some points get misclassified. The number of misclassifica-
tions is controlled by the parameter C. Choosing a larger 

5.3 Results 

5.2 Experimental Setup 
The experiments have been done wi th L I B S V M , a C/C++ and 
Java library for SVMs [Chih-Chung and Chi-Jen, 2002]. The 
machine we have used is a Pentium I I I wi th 256MB R A M 
memory, running Windows XP. We choose to implement the 
kernels KIG and KPIG in Java. 
The type of S V M learning we have used is C-SVM [Chih-
Chung and Chi-Jen, 2002]. The parameter C controls the 
model complexity versus the model accuracy and has to be 
chosen based on the complexity of the problem. 

The experiments in this section are conducted on a simpli­
fied version of the ful l PP attachment problem (see Example 
3). The data consists of four-tuples of words, extracted f rom 
the Wall Street Journal Treebank [Marcus et al., 1993] by a 
group at I B M [Ratnaparkhi et al. , 1994]1. 

The data set contains 20801 training patterns, 3097 test 
patterns and an independant validation set of 4093 patterns 
for parameter optimization. A l l of the models described be-
low were trained on all training examples and the results are 
given for the 3097 test patterns. For the benchmark compari­
son wi th other models f rom the literature, we use only results 
for which all parameters have been optimized on the valida­
tion set. For more details concerning the data set we refer 
to [Zavrel et al. , 1997]. 



value for C forces the SVM to avoid classification errors. 
However, choosing a value for C that is too high will result 
in overfitting. Increasing the dimensionality of F makes lin­
ear separation easier (Cover's theorem). This can be seen by 
comparing the classification accuracies between the kernels 
KIG and KPIG- The results also show that our kernel KPIG 

outperforms all other methods in the comparison. 

6 Conclusion 

In this paper, we have proposed a method for designing ker­
nels for SVM learning in natural language settings. As a start­
ing point we took distance functions that have been used in 
memory-based learning. The resulting kernel KPIG achieves 
high classification accuracy compared to other methods that 
have been applied on the same data set. In our approach we 
started from the vectors of the input space, defined a map­
ping on those vectors and worked out their inner product in 
the feature space. Al l necesary kernel conditions follow nat­
urally from the definition of the inner product. We used the 
distance formula for kernels to show that the kernels are ac­
tually based on the distance functions from Section 3. The 
experimental results of the kernel KPIG show that increasing 
the dimensionality in the feature space yields better results. 
We increased the dimensionality of the feature space by mak­
ing combinations of the features ,„ through a polynomial 
kernel. In this way, we do not only take into account the sim­
ilarity between corresponding features of vectors, but we also 
take into account the similarity between non-corresponding 
features of the vectors. In fact this comes down to taking into 
account, to a greater extend, the context in wich a word oc­
curs. 

We used the resolvement of PP attachment ambiguities as a 
case-study to validate our findings, but it is our belief that the 
kernel KPIG can be used for a wide range of natural language 
problems. In the future we will apply our kernels in more 
complex natural language settings and compare the results to 
other methods that have been applied on the same problems. 
At the moment we are already running experiments on lan-
guage independent named-entity recognition [Sang, 2002]. 
The first results look promising, but it is too early to draw 
any significant conclusions. We wil l also try to further ex­
tend the kernels proposed in this paper to achieve even higher 
accuracies. Moreover, there are still many distance functions 
reported in the literature that have not yet been investigated to 
see whether they are applicable in SVM learning, we intend 
to investigate such distance functions and if possible derive a 
kernel from them. 

References 

[Aha et al., 1991] D. Aha, D. Kibler, and M. Albert. Instance 
based learning algorithms. Machine Learning, 6:37 - 66, 
1991. 

[Brown et al., 1999] Michael P.S. Brown, William Noble 
Grundy, David Lin, Nello Cristianini, Charles Sugnet, 
Manuel Ares, and David Haussler. Support vector machine 
classification of microarray gene expression data, 1999. 

[Chih-Chung and Chi-Jen, 2002] Chang Chih-Chung and 
Lin Chi-Jen. Libsvm: a library for support vector ma­
chines, 2002. 

[Collins and Brooks, 1995] M.J Collins and J. Brooks. 
Prepositional phrase attachment through a backed-off 
model. In Proceedings of the Third Workshop on Very 
Large Corpora, Cambridge, 1995. 

[Cost and Salzberg, 1993] Scott Cost and Steven Salzberg. 
A weighted nearest neighbour algorithm for learning with 
symbolic features. Machine Learning, 10:57-78, 1993. 

[Cristianini and Shawe-Taylor, 2000] Nello Cristianini and 
John Shawe-Taylor. An Introduction to Support Vec­
tor Machines and other Kernel-based Learning Methods. 
Cambridge University Press, 2000. 

[Daelemans et al., 2002] Walter Daelemans, Jakub Zavrel, 
Ko van der Sloot, and Antal van den Bosch. Timbl: 
Tilburg memory-based learner, version 4.3. Technical re­
port, Tilburg University and University of Antwerp, 2002. 

[Marcus et al, 1993] M. Marcus, Santorini B, and M.A. 
Marcinkiewicz. Building a large annotated corpus of en-
glish: The penn treebank. Computational Linguistics, 
19(2):313- 330, 1993. 

[Mitchell, 1997] Tom Mitchell. Machine Learning. The 
McGraw-Hill Companies, Inc., 1997. 

[Ramon, 2002] Jan Ramon. Clustering and instance based 
learning in first order logic. PhD thesis, K.U. Leuven, 
Belgium, 2002. 

[Ratnaparkhi et al., 1994] Adwait Ratnaparkhi, J. Reynar, 
and S. Roukos. A maximum entropy model for prepo­
sitional phrase attachment. In Proceedings of the ARPA 
Workshop on Human Language Technology, Plainsboro, 
NJ, 1994. 

[Ratnaparkhi, 1998] Adwait Ratnaparkhi. Maximum En­
tropy Models for Natural Language Ambiguity Resolution. 
PhD thesis, University of Pennsylvania, Philadelphia, PA, 
1998. 

[Sang, 2002] Erik F. Tjong Kim Sang. Introduction to the 
conll-2002 shared task: Language-independent named en­
tity recognition. In Proceedings of CoNLL-2002, Taipei, 
Taiwan, pages 155 - 158, 2002. 

[Stetina and Nagao, 1997] Jiri Stetina and Makoto Nagao. 
Corpus based pp attachment ambiguity resolution with a 
semantic dictionary., 1997. Kyoto University, Yoshida 
Honmachi, Kyoto 606, Japan. 

[Vapnik, 1998] Vladimir Vapnik. The Nature of Statistical 
Learning Theory. Springer-Verlag, New York, 1998. 

[Veenstra et al., 2000] Jorn Veenstra, Antal van den Bosch, 
Sabine Buchholz, Walter Daelemans, and Jakub Zavrel. 
Memory-based word senese disambiguation. Computers 
and the Humanities, 34:1 -2:171 - 177, 2000. 

[Zavrel et al, 1997] Jakub Zavrel, Walter Daelemans, and 
Jorn Veenstra. Resolving pp attachment ambiguities with 
memory-based learning. In Proceedings CoNNL, Madrid, 
pages 136 - 144. Computational Linguistics, Tilburg Uni­
versity, 1997. 

138 CASE-BASED REASONING 


