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Abstract 
We introduce a logical formalism of irreflexivc 
causal production relations that possesses both a 
standard monotonic semantics, and a natural non­
monotonic semantics. The formalism is shown to 
provide a complete characterization for the causal 
reasoning behind causal theories from [McCain and 
Turner, 1997]. It is shown also that any causal re­
lation is reducible to its Horn sub-relation with re­
spect to the nonmonotonic semantics. We describe 
also a general correspondence between causal re­
lations and abductive systems, which shows, in ef­
fect, that causal relations allow to express abductive 
reasoning. The results of the study seem to sug­
gest causal production relations as a viable general 
framework for nonmonotonic reasoning. 

1 Introduction 
Causal theories have been introduced in [McCain and Turner, 
1997] as a nonmonotonic formalism that provides a natural 
solution for both the frame and ramification problem in rea­
soning about actions (see [Giunchiglia el al, 2001] for a de­
tailed exposition). A causal theory is a set of causal rules 
A->B that express a kind of a causal relation among proposi­
tions. The nonmonotonic semantics of such theories is deter­
mined by causally explained interpretations, namely the in­
terpretations that arc both closed with respect to the causal 
rules and such that every fact holding in them is caused. 

The above fonnalism has been defined semantically, and 
the main aim of our study consists in laying down its log­
ical foundations. As we will show, such foundations can 
be built in the framework of an inference system for causal 
rules that we will call causal production relations. The log­
ical origins of the latter are in input/output logics [Makinson 
and der Torre, 2000], but we will supply them with a nat­
ural nonmonotonic semantics allowing to represent signifi­
cant parts of nonmonotonic reasoning. Thus, the main result 
of the present study is that causal production relations com­
pletely characterize the inference rules for causal condition­
als that preserve the nonmonotonic semantics of causal theo­
ries. It will be shown also that any causal theory is reducible 
with respect to this semantics to a determinate causal the­
ory that contain only Horn causal rules with literals in heads. 

The importance of determinate theories lies in the fact that 
(modulo some mild finiteness restrictions) the explained in­
terpretations of such a theory are precisely the interpretations 
of its classical completion (see [McCain and Turner, 1997]). 
Consequently, the nonmonotonic consequences of such the­
ories are obtainable by the use of classical inference tools 
(such as the Causal Calculator, described in [Giunchiglia et 
al.,2001]). 

Finally, we will describe a relationship between causal re­
lations and abductive reasoning. As we will see, the latter 
will be representable via a special kind of causal relations 
called abductive causal relations. This will serve as yet an­
other justification for our general claim that causal produc-
tion relations could be used as a general-purpose formalism 
for nonmonotonic reasoning, a viable alternative to other non­
monotonic formalisms (such as default logic). 

2 Causal production relations 
We will assume that our language is an ordinary proposi-
tional language with the classical connectives and constants 
{A, V, ->, ->, t, f } . In addition, t= and Th will denote, respec­
tively, the classical entailment and the associated logical clo­
sure operator. 

A causal rule is a rule of the form A => B, where A and 
B arc classical propositions. Informally, such a rule says 
that, whenever A holds, B is caused. The following defini­
tion describes an inference system for causal rules that will be 
shown to be adequate (and complete) for causal theories. Ac­
tually, many of the postulates below (e.g., And and Or) have 
already been suggested in the literature (see, Lifschitz, 1997; 
Schwind, 1999]). 
Definition 2.1. A causal production relation (or simply a 
causal relation) is a relation => on the set of propositions sat­
isfying the following conditions: 
(Strengthening) If A I= B and B => C, then A => C; 
(Weakening) If A => B and B I= (7, then A => C; 
(And) If A => B and A =» C, then A=>B/\C\ 
(Or) If A => C and B => C, then AvB=>C; 
(Cut) If A => B and A A B => C, then A => C; 
(Truth) t => t; 
(Falsity) f=>f. 
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Though causal relations satisfy most of the rules for clas­
sical entailment, their distinctive feature is that they are ir-
reflexive, that is, they do not satisfy the postulate A=>A. Ac­
tually, such relations correspond to a strongest kind of input-
output logics from [Makinson and der Torre, 2000], basic 
input-output logics with reusable output, with the only dis­
tinction that causal relations satisfy also Falsity. The latter 
restricts the universe of discourse to consistent theories1. 

As a consequence of Cut, any causal relation will already 
be transitive, that is, it will satisfy 

However, transitivity is a weaker property than Cut, since 
it does not imply the latter (see [Makinson and der Torre, 
2000]). In addition, the material implications corresponding 
to the causal rules can be used as auxiliary assumptions in 
making derivations. This is a consequence of the following 
property that holds for causal relations: 

(AS) If A=> D and C/\(A-+B) => D, then C => D. 

Remark. The notion of a causal production sanctioned by 
the above postulates is atemporal. For example, the rule 

cannot be understood as saying that P and q jointly 
cause -q (afterwards) in a temporal sense; instead, by Cut 
and Falsity it implies , which means, in effect, that 
p Aq cannot hold. Speaking generally, 'causally consistent' 
propositions cannot cause an effect incompatible with them. 
A representation of temporal and action domains in this for­
malism can be achieved, however, by adding explicit tempo­
ral arguments to propositions, just as in the classical logic 
(see [Giunchiglia et ai, 2001]). 

A constraint is a causal rule of the form Such 
constraints correspond to state constraints in action theories. 
Now, any causal rule implies the corresponding constraint: 

(Reduction) 

Note, however, that the reverse entailment does not hold. 
Actually, given the rest of the postulates, Reduction can re­
place the Cut postulate: 
Lemma 2.1. Cut is equivalent to Reduction. 

Another important fact about causal relations is the follow­
ing 'decomposition' of causal rules: 

Causal rules of the form are ' classically trivial', 
but they play an important explanatory role in non-reflexive 
causal reasoning. Namely, they say that, in any causally ex­
plained interpretation in which A holds, we can freely accept 
B, since it is self-explanatory in this context. Accordingly, 
such rules could be called conditional abducibles. We will 
discuss the role of abducibles later as part of the general cor­
respondence between causal and abductive reasoning2. 

1 In fact, it has been shown in [Bochman, 2002] that other, weaker 
input-output logics can also be given a semantics of the kind de­
scribed in what follows. 

2Note also that, under the general correspondence between 
causal inference and default logic (see [Turner, 1999]), such rules 
correspond to normal defaults in default logic. 

Now the above lemma says that any causal rule can be de­
composed into a (non-causal) constraint and a conditional ab-
ducible. This decomposition neatly delineates two kinds of 
information conveyed by causal rules. One is a logical infor­
mation that constraints the set of admissible models, while the 
other is an explanatory information describing what proposi­
tions are caused (explainable) in such models . 

For a finite set u of propositions, will denote their con­
junction. We will extend causal rules to rules having arbitrary 
sets of propositions as premises using the following 'com­
pactness' recipe: for any set u, 

For a given causal relation =», we will denote by C(u) the 
set of propositions caused by u, that is 

The operator C will play much the same role as the usual 
derivability operator for consequence relations. It satisfies the 
following familiar properties: 

_ 

3 Monotonic semantics of causal inference 
We will describe now a monotonic semantics for causal re­
lations. Actually, it will be just a slight modification of the 
semantics given in [Turner, 1999]. 

A fully formal semantic interpretation of causal relations 
could be given in terms of possible worlds frames of the form 
(i,W), where i is a propositional interpretation, while W 
is a set of propositional interpretations that contains i (see 
[Turner, 1999]). In order to make our descriptions more trans­
parent, however, we will identify such frames with pairs of 
theories of the form , where a is a world (maximal de­
ductively closed set), while u is a deductively closed set in­
cluded in a. Such pairs will be called bitheories. Clearly, 
any possible worlds frame (i, W) determines a certain bithe-
ory, and vice versa, so all our definitions will admit a purely 
semantic reformulation. 

By a causal semantics we will mean a set of bitheories. 
The corresponding notion of validity for causal rules is given 
in the next definition. 

• A => B is valid with respect to a causal semantics B if it 
holds in all bitheories from B. 

We will denote by =B the set of all causal rules that are 
valid in a causal semantics B. It can be easily verified that this 
set is closed with respect to the postulates for causal relations, 
and hence we have 

3Cf. a similar decomposition of causal rules in [Thielschcr, 
1997]. 
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the following theorem shows that this semantics determines 
precisely the source causal relation, including the causal rules 
with arbitrary sets of premises. In other words, the source 
causal relation is strongly complete for this semantics. 

Thus, any causal semantics determines a causal relation 
and vice versa, any causal relation is generated by some 
causal semantics. Hence we conclude with the following gen­
eral completeness result: 
Corollary 3.3. A relation on propositions is a causal relation 
iff it is generated by a causal semantics. 

3.1 Possible worlds semantics 
Causal relations can also be given a semantic interpretation in 
terms of standard possible worlds models. 

The following definition provides the notion of validity for 
causal rules in such models: 

Theorem 3.4. A relation is causal if and only if it is deter­
mined by a quasi-reflexive possible worlds model. 

4 The nonmonotonic semantics 
In addition to the monotonic semantics, a causal relation de­
termines also a natural nonmonotonic semantics. 

fact is causally explained. It is these worlds that determine 
the nonmonotonic semantics, defined below. 

• A causal theory wil l be called definite if it is determinate 
and locally finite. 

Clearly, any finite causal theory will be locally finite, 
though not vice versa. Similarly, any finite determinate the­
ory will be definite. As can be easily verified, a determinate 

4Thus, any constraint A => f will be a Horn rule in this sense. 

The above theorem shows, in effect, that the logic of 
causal relations is adequate for the nonmonotonic reasoning 
in causal theories. 

Definition 4.2. Two causal theories will be called (non-
monotonically) equivalent if they determine the same set of 
causally explained worlds. 

As a first part of our general result, the next theorem shows 
that the postulates of causal inference preserve the above non­
monotonic semantics. 

Propositions that hold in all causally explained worlds are 
considered as the nonmonotonic consequences determined by 
the causal relation. This semantics is indeed nonmonotonic, 
since the set of such consequences changes nonmonotonically 
with changes in the underlying set of causal rules. 

Now we wil l establish a correspondence between the above 
semantics and the nonmonotonic semantics of causal theories 
from [McCain and Turner, 1997]. 

Definition 4.3. • A causal theory is determinate if it con­
tains only Horn rules. A causal relation will be called 
determinate if it is generated by a determinate causal 
theory. 
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causal theory is definite if and only if, for any literal /, there 
is no more than a finite number of rules with the head /. Con­
sequently, our definition of definite theories turns out to be 
equivalent to that given in [McCain and Turner, 1997]. 

By a determinate subrelation of a causal relation => we 
will mean the least causal relation generated by the set of all 
Horn rules from =». Then we have 

Theorem 4.2. Any causal relation is nonmonotonically 
equivalent to its determinate subrelation. 

By Theorem 4.1 we can conclude now that any causal the­
ory is equivalent to some determinate theory. 
Example. The causal theory 

Then the following result can be proved: 

Unfortunately, the above algorithm is not modular. More­
over, it does not preserve local finiteness: there are locally 
finite causal theories such that their determinate counterparts 
are not locally finite. Still, in many simple cases it gives a 
convenient recipe for transforming an arbitrary causal theory 
into an equivalent determinate theory. 

Now we arc going to show the second part of our main 
result, namely that causal relations constitute a maximal logic 
suitable for reasoning in causal theories. To begin with, we 
introduce 

Corollary 4.4. Causally equivalent theories are nonmono­
tonically equivalent. 

The reverse implication in the above corollary does not 
hold, and a deep reason for this is that the causal equivalence 

A general correspondence between abductive frameworks 
and input-output logics has been established in [Bochman, 
2002], based on the identification between the above notion 

Strongly equivalent theories are 'equivalent forever', that 
is, they are interchangeable in any larger causal theory with­
out changing the nonmonotonic semantics. Consequently, 
strong equivalence can be seen as an equivalence with respect 
to the monotonic logic of causal theories. And the next result 
shows that this logic is precisely the logic of causal relations. 

Theorem 4.5. Two causal theories are strongly equivalent if 
and only if they are causally equivalent. 

The above result (and its proof) has the same pattern as 
the corresponding results about strong equivalence of logic 
programs and default theories (see [Lifsehitz et al., 2001; 
Turner, 2001]). 

The above result implies, in effect, that causal relations are 
maximal inference relations that are adequate for reasoning 
with causal theories: any postulate that is not valid for causal 
relations can be 'falsified' by finding a suitable extension of 
two causal theories that would determine different causally 
explained interpretations, and hence would produce different 
nonmonotonic conclusions. 

5 Causation versus abduction 
Causal inference has numerous connections with other non­
monotonic formalisms. Thus, [Turner, 1999] describes the re­
lations with circumscription, autoepistemic and default logic. 
In this section we wil l describe a correspondence between 
causal inference and abductive reasoning. In addition to spe­
cific results, this wil l give us a broader perspective on the 
representation capabilities of causal relations. 

is a monotonic (logical) notion, and hence, unlike the non­
monotonic equivalence, it is preserved under addition of new 
causal rules. For example, though any causal theory is equiv­
alent to a determinate one, they may give different results if 
we add some causal rules to them. 
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of explainability and input-output derivability. By this corre­
spondence, abducibles are representable by 'reflexive' propo­
sitions satisfying input-output rules A=> A, while abductive 
frameworks themselves correspond exactly to input-output 
logics satisfying an additional postulate of Abduction (see 
below). By these results, input-output logics allow to give 
a syntax-independent representation of abductive reasoning. 

5.1 The abductive subrelat ion 
We wil l begin with the following definitions: 

Causal inference in abductive causal relations is always 
mediated by abducibles. Consequently, propositions caused 
by worlds are caused, in effect, by the abducibles that hold in 
these worlds: 

The abductive subrelation of a causal relation preserves 
many properties of the latter. For example, both have the 
same constraints and abducibles. 

Recall that in causally explained interpretations any propo­
sition is caused by other propositions, the latter are also 
caused by accepted propositions, and so on. Clearly, if our 
'causal resources' are limited, such a causal chain should stop 
somewhere. More exactly, it should reach abducible (self-
explanatory) propositions. This indicates that in many cases 
the nonmonotonic semantics associated with a causal theory 
should be determined by the corresponding abductive subre­
lation. Below we wil l make this claim precise. 

Definition 5.2. A causal relation will be called weakly ab­
ductive if it is nonmonotonically equivalent to its abductive 
subrelation. 

The next definition wil l give us an important sufficient con­
dition for weak abductivity. 

The above definition describes a variant of a standard 
notion of well-foundedness with respect to the (transitive) 
causal order. It should be clear that any causal relation in 

a finite language should be well-founded. Moreover, let us 
say that a causal relation is finitary if it is generated by some 
finite set of causal rules. Then we have 
Lemma 5.2. Any finitary causal relation is well-founded. 

Finally, the next result shows that all such causal relations 
wil l be weakly abductive. 
Theorem 5.3. Any well-founded causal relation is weakly 
abductive. 

It turns out that well-foundedness is not the only condi­
tion that is sufficient for weak abductivity. Thus, adequately 
acyclic causal theories (see [McCain and Turner, 1998] for 
a definition) are not in general well-founded, but they also 
satisfy this property. 

Theorem 5.4. Any adequately acyclic causal relation is 
weakly abductive. 

The above results show that in many cases of interest, the 
nonmonotonic semantics of causal theories can also be com­
puted using abduction. Still, as a general conclusion, we can 
say that causal inference constitutes a proper generalization 
of abductive reasoning beyond the situations where facts are 
explainable by reference to a fixed set of self-explanatory ab­
ducibles. 

6 Conclusions and perspectives 
Summing up the main results, we can argue that causal rela­
tions constitute a powerful formalism for nonmonotonic rea­
soning, especially suitable for representing action domains. It 
has been shown, in particular, that it gives an exact descrip­
tion of the logic underlying causal theories. We have seen 
also that it allows to give a syntax-independent representa­
tion of abductive reasoning. If we add to this also the natural 
correspondences with other nonmonotonic formalisms, such 
as default logic and circumscription (see [Turner, 1999]), we 
can safely conclude that causal inference covers a significant 
part of nonmonotonic reasoning. 

Viewed from this perspective, there is still much to be done 
in order to realize the opportunities created by the formalism. 
There are two kinds of problems that need to resolved in this 
respect. 

The nonmonotonic semantics for causal theories is based 
on the principle of universal causation which is obviously 
very strong. The principle implies, for example, that if we 
have no causal rules for a certain proposition, it should be 
false in all explainable interpretations. As a result, adding 
a new propositional atom to the language makes any causal 
theory inconsistent, since we have no causal rules for it. This 
makes causal theories extremely sensitive to the underlying 
language in which they are formulated. One way out has 
been suggested in [Lifschitz, 1997]; it amounts to restricting 
the principle of universal causation to a particular subset of 
explainable propositions. This approach, however, is purely 
syntactical and hence retains language dependence. 

More subtle, yet perceptible difficulties arise also in rep­
resenting indeterminate situations in causal theories. Thus, 
since any causal theory is reducible to a determinate theory, 
causal rules with disjunctive heads are ignored in the non­
monotonic semantics; more exactly, they are informative only 



to the extent that they imply corresponding non-causal con­
straints or Horn rules. This does not mean, however, that 
we cannot represent indeterminate information in causal the­
ories. Actually, one of the main contributions of [McCain 
and Turner, 1997] consisted in showing how we can do this 
quite naturally in common cases (see also [Lin, 1996]). Still, 
there is yet no systematic understanding whether and how an 
indeterminate information can be represented by Horn causal 
rules. 

A more general problem concerns the role and place of 
causal inference in general nonmonotonic reasoning. Though 
the former covers many areas of nonmonotonic reasoning, 
it does not cover them all. Thus, it does not seem suitable 
for solving the qualification problem in representing actions. 
Speaking generally, causal reasoning appears to be indepen­
dent of the kind of nonmonotonicity described by preferential 
inference from [Kraus et ai, 1990]. This naturally suggests 
that the two kinds of nonmonotonic reasoning with condition­
als could be combined into a single formalism, a grand uni­
form theory of nonmonotonic reasoning. Actually, this idea 
is not new; it has been explored more than ten years ago in 
[GefTner, 1992]. It remains to be seen whether current stud­
ies of causal reasoning can contribute to viability of such a 
general theory. 
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