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Abstract 
Conventional methods used for the interpretation 
of activation data provided by functional neuro-
imaging techniques provide useful insights on 
what the networks of cerebral structures are, and 
when and how much they activate. However, 
they do not explain how the activation of these 
large-scale networks derives from the cerebral 
information processing mechanisms involved in 
cognitive functions. At this global level of repre­
sentation, the human brain can be considered as 
a dynamic biological system. Dynamic Bayesian 
networks seem currently the most promising 
modeling paradigm. Our modeling approach is 
based on the anatomical connectivity of cerebral 
regions, the information processing within cere­
bral areas and the causal influences that con­
nected regions exert on each other. The capabili­
ties of the formalism's current version are illus­
trated by the modeling of a phonemic categoriza­
tion process, explaining the different cerebral ac­
tivations in normal and dyslexic subjects. The 
simulation data are compared to experimental re­
sults [Ruff et al, 2001]. 

1 Introduction 
In Neurology and Neuropsychology, the diagnosis of the 
neurological causes of cognitive disorders, as well as the 
understanding and the prediction of the clinical outcomes 
of focal or degenerative cerebral lesions, necessitate 
knowing the link between brain and mind, that is what 
the cerebral substratum of a cognitive or a sensorimotor 
function is and how the substratum's activity can be in­
terpreted in cognitive terms, i.e. in terms of information 
processing. 

Studies in humans and animals [Bressler, 1995; De-
monet et al, 1994] have shown that sensorimotor or cog­
nitive functions are the offspring of the activity of ori­
ented large-scale networks of anatomically connected 
cerebral regions (Figure 1). In humans, functional neuro-
imaging techniques provide activation data, which are 
indirect measures of the brain's electrical or metabolic 

activity during a task performance. Statistical analyses of 
the activation data allow determining where [Fox and 
Raichle, 1985], i.e. in which areas, and/or when [Giard et 
al., 1995] during the task performance, the activation 
reaches local extrema. Through the study of covariation 
between local activations, they give a sketch of what the 
network of cerebral areas involved in the cognitive func­
tion is [Herbster et al. ,, 1996]. A known oriented ana­
tomical link between 2 areas allows determining why the 
activation of one area can affect the other one [Buchel 
and Friston, 1997]. Above methods allow identifying the 
substratum of a cognitive function and the activation 
level and dynamics of the substratum during the function 
performance. They do not give any clue of how the cog­
nitive processes participating in the function are imple­
mented by the substratum and how the activation derives 
from the processing. That is, they do not allow interpret­
ing neuroimaging data as the result of information proc­
essing at the integrated level of large-scale networks. 

Figure 1: Large-scale network involved in phoneme monitor­
ing, according to results from [Demonet, et al., 1994] 

Interpretative models, linking a networked structure 
activity to the realization of a function, are at the core of 
Computational Neurosciences. Most existing works in the 
domain are based on formal neural networks, with vary­
ing levels of biological plausibility, from physiology 
[Wang and Buzsaki, 1996], hardly interpretable in terms 
of information processing, to more or less biologically 
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plausible models of how basic cognitive functions 
emerge from neuronal activation [Grossberg et al, 2002], 
and to purely functional models [Cohen et al., 1990], not 
concerned with cerebral plausibility. Although these 
models answer the how, they do not meet two major re­
quirements for an interpretative approach of functional 
neuroimaging data. The models are not explicit enough to 
be directly used for clinical purpose, and they cannot 
evolve quickly and easily with new findings in neurosci-
ence, such as the integration of more detailed knowledge 
on the substratum, which often necessitates a complete 
rebuilding of the formal network. 

The causal connectivity approach [Pastor et al. , 2000] 
aims at answering the how and satisfying the constraints. 
However, the underlying formalism, causal qualitative 
networks based on interval calculus, limits severely the 
biological plausibility of the models, since it cannot rep­
resent major cerebral features, such as learning or the 
non-linearity and the uncertainty of cerebral processes. 
Dynamic Bayesian networks only meet the three major 
constraints: temporal evolution, uncertainty and nonlin-
earity [Labatut and Pastor, 2001]. The utility of graphical 
probabilistic formalisms for cognitive modeling has also 
been demonstrated in the representation of visuomotor 
mechanisms with Bayesian networks [Ghahramani and 
Wolpert, 1997]. 

Hereafter, we describe how the interpretation of func­
tional images for a clinical purpose can be tackled. Sec­
tion 2 presents our viewpoint on large-scale cerebral 
networks. After a short introduction to dynamic Bayesian 
networks, section 3 describes the characteristics of our 
formalism. Section 4 illustrates the formalism's capabili­
ties by an example. We conclude with some perspectives. 

2 Representation of Large-Scale Cere­
bral Networks 

2.1 Structural and Functional Nodes 
The function implemented by a large-scale network de­
pends on three properties: the network's structure 
[Goldman-Rakic, 1988], the functional role of each node 
(E.g. Wernicke's area (Figure 1), which is supposed to 
realize the early stages of phoneme processing), and the 
properties of the links (length, role: inhibitory or excita­
tory, ...). In each network, regions, which are the stride-
tural nodes, are information processors and connecting 
oriented fibers are information transmitters [Leiner and 
Leiner, 1997]. 

All neurons in a region do not have the same structure 
or the same role. Similar neurons constitute generally 
local populations that realize a specific function. For ex­
ample, the inhibitory role of GABAergic neurons on 
other neuronal populations may explain the fact that 
every visual stimulus is not perceived in high frequency 
stimulation [Pastor, et al, 2000]. Therefore, each region 
is itself a network of smaller neuronal populations {func­
tional nodes), connected through neuronal fibers. These 

nodes are information processors that implement func­
tional primitives, which may all be different. 

A large-scale network has therefore neurophysiologi-
cally constrained, oriented edges and possibly differenti­
ated nodes. The explicit representation of the nodes' 
function allows the direct expression of hypotheses on 
cerebral processing, and their easy modification in order 
to follow the evolution of knowledge in neurosciences. 
This cannot be dealt with by formal neural networks' 
implicit modeling that requires modifying the whole net­
work architecture to implement functional changes. 
Hereafter, a structural or a functional structure will be 
indifferently named a cerebral zone. 

2.2 Informat ion Representation and 
Processing 

The cerebral information processed by a neuronal popula­
tion can be seen as the abstraction of the number and the 
pattern of the neurons firing for this information. It can be 
represented both by an energy level and by a category. En­
ergy is indirectly represented by the imprecise activation 
data provided by neuroimaging techniques. The category 
representation is in agreement with the "topical" organiza­
tion of the brain, which reflects category maps of the input 
stimuli, and can persist from primary cortices to nonprimary 
cortices and subcortical structures [Alexander et al, 1992], 
through transmission fibers [Leiner and Leiner, 1997]. The 
energy and the category of a stimulus can also be easily 
extracted from its psychophysical properties. 

Modeling cerebral processes necessitates an explicit and 
discrete representation of time, both for taking into account 
the dynamics of cerebral mechanisms (transmission delays, 
response times...), and for complying with sampled func­
tional neuroimaging data. 

According to a definition of causality inspired by Hume 
[Hume, 1740] and consistent with Pearl's probabilistic cau­
sality [Pearl, 2001], information processing in a large-scale 
network can be considered as mediated through causal 
mechanisms. Causality is defined by three properties: spatial 
and temporal contiguity, temporal consistency, and statisti­
cal regularity [Labatut and Pastor, 2001]. In other words, 
two entities A and B are causally linked if they are contigu­
ous relatively to the system they belong to, if the beginning 
of A precedes temporally the beginning of B, and if most of 
the times, A provokes B. In the brain, oriented anatomical 
links provide spatial and temporal contiguity between cere­
bral nodes, cerebral events are temporally consistent (a fir­
ing zone provokes the activation of downstream zones), and 
there is a statistical regularity in the response of a specific 
neuronal population to a given stimulus. 

3 Description of the Formalism 

3.1 Dynamic Bayesian Networks 
In summary, the brain can be viewed as a network whose 
nodes are differentiated dynamic and adaptive informa-
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tion processors and oriented edges convey causality. 
Moreover, cerebral mechanisms, which are the abstrac­
tion, at the level of a neuronal population, of the chemi­
cal and electrical mechanisms at the cell levels, are often 
nonlinear. Causal dynamic Bayesian networks are the 
paradigm that meets best the constraints derived from 
these properties [Labatut and Pastor, 2001]. 

A causal Bayesian network consists of a directed 
acyclic graph where nodes represent random variables 
and edges represent causal relationships between the 
variables [Pearl, 1988]. A conditional probability is asso­
ciated with each relationship between a node and its par­
ents. If the node is a root, the probability distribution is a 
prior. When some nodes' values are observed, posterior 
probabilities for the hidden nodes can be computed 
thanks to inference algorithms such as the junction tree 
algorithm [Jensen, 1996]. 

In a dynamic Bayesian network (DBN), the evolution 
of random variables through time is considered. Time is 
seen as a series of intervals called time slices [Dean and 
Kanazawa, 1988]. For each slice, a submodel represents 
the state of the modeled system. DBNs are used to model 
Markovian processes, i.e. processes where a temporally 
limited knowledge of the past is sufficient to predict the 
future. The choice of the inference algorithm, generally 
an extension of the junction tree algorithm [Murphy, 
1999], depends on the DBN's structure, the nature of its 
variables (discrete or continuous), and relationships (lin­
ear or nonlinear). 

Activation data and/or the subject's responses to the 
stimuli are the only observable variables we have. There­
fore, they must be integrated in our models. One may 
reasonably consider that the hidden variables, describing 
the successive states of the cerebral network, constitute a 
Markov chain, and that observable variables depend only 
on them. Moreover, the variables are continuous and their 
relationships may be nonlinear. This is typically the de­
scription of a type of DBNs called fully nonlinear state 
space models. Specific and recent algorithms allowing 
dealing with nonlinearity exist for this type of structures. 
Their general principle is to linearize the model in order 
to apply the classic Kalman filter. These algorithms differ 
on the used linearization method: first-order Taylor ap­
proximations for the extended Kalman filter [Julier and 
Uhlmann, 1997; Norgaard et al, 2000] or polynomial 
approximations for the unscented Kalman filter [Julicr 
and Uhlmann, 1997], the divided difference filter (DDF) 
[Norgaard, et al, 2000], and others [Van Der Merwe and 
Wan, 2001]. The algorithms based on polynomial ap­
proximations seem to give more reliable results 
[Norgaard, et al., 2000]. Their computational complexity 
is 0(L3), where L is the state dimension [Van Der Merwe 
and Wan, 2001]. They offer equivalent qualities, but 
those of the DDF are more accurate according to its au­
thor [Norgaard, et al, 2000]. 

3.2 F o r m a l d e f i n i t i o n 

Stat ic and Dynamic Ne tworks 
A static network is the graphical representation of a 
large-scale network, whose nodes are cerebral zones and 
edges are the oriented axon bundles connecting zones. 
Due to anatomical loops, it is often cyclic. The DBN is 
the acyclic temporal expansion of the static network. 
Each node of the DBN is the processing entity related to 
a cerebral zone, i.e. the mathematical expression, at a 
given time slice, of information processing in the zone. 
Each edge is the propagation entity, whose orientation is 
its corresponding axon bundle's orientation. When deriv­
ing the DBN from the static network, values are given to 
the temporal parameters, according to known physiology 
results (e.g. the transmission speed in some neural f i ­
bers). That is, the length of the time slices is fixed, and a 
delay representing the average propagation time in the 
bundle's fibers is associated to the propagation entity. 

I n f o r m a t i o n Representa t ion 
Cerebral information is the flowing entity that is com­
puted at each spatial (cerebral zone) and temporal (time 
slice) step, by a processing entity. It is a two-
dimensioned data. The first part, the magnitude, stands 
for the cerebral energy needed to process the information 
in the zone. It is represented by a real random variable in 
the DBN. For the second part, the type, which represents 
the cerebral category the zone attributes to the informa­
tion, the representation is based on the symbol and cate­
gorical field concepts. 

A symbol represents a "pure" (i.e. not blurred with 
noise or another symbol) category of information. For 
example, when the information represents a linguistic 
stimulus, a symbol may refer to a non ambiguous pho­
neme. For cerebral information, the symbol represents, in 
each zone, the neuronal subpopulation being sensitive to 
(i.e. that fires for) the corresponding category. It may be, 
in the primary auditory cortex, the subpopulation sensi­
tive to a specific frequency interval. A categorical field 
is a set of symbols describing stimuli of the same seman­
tic class. The "color" categorical field contains all the 
color symbols, but it cannot contain phonemes. 

A type concerns several symbols, due to the presence 
of noise or because of some compound information. Let 
S be the set of all existing symbols. We assume that a 
type T is defined for only one categorical field. Let S1 

be the subset of S, corresponding to this categorical 
field. The type T is an application from ST to [0,1], with 

the property , i.e. it describes a symbol reparti­

tion for a specific categorical field. In a stimulus, this 
repartition corresponds to the relative importance of each 
symbol compounding the information carried by the 
stimulus. Inside the model, T(s) stands for the proportion 
of s-sensitive neurons in the population that fired for the 
information whose type is T. Unlike the magnitude, the 
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type is not represented by a random variable. Indeed, it is 
not necessary to represent its uncertainty (and hence to 
make the computational complexity harder) since we 
cannot compare it to neuroimaging data. 

At time / and node X, the information is represented by 
the type and the magnitude at the output of X. 

Propagation and Processing 
For a zone X, both the cerebral propagation mecha­

nisms (i.e. the relationships towards the zone) and the 
processing (spatial and temporal integration of the inputs, 
and processing as such) are described by a pair of func­
tions, the type and the magnitude functions fM . In 

the general case where n zones are inputs to X, 
let be the corresponding delays of these rela­
tionships. In the DBN, the general form of the magnitude 
functions is: 

(1) 

where can be a nonlinear function. The random vari­
able models uncertainty in the cerebral 
processing. 

The type function is any combination of the incoming 
types and of the previous type that respects our type defi­
nition. If all types are defined on the same categorical 
field 5, the type function can be the linear combination: 

The functions' definition, as well as the setting of the 
parameters1 values (e.g. the value of a firing threshold), 
utilize mostly results in neuropsychology or in neuro­
physiology. The existence of generic models, that is, non 
instantiated, reusable, models of functional networks, is 
assumed. For example, primary cortices may implement 
the same mechanisms, although they arc parameterized so 
that they can process different types of stimuli [Pastor, et 
al., 2000]. 

4 Example 
The model, presented hereafter, is based on an experi­
mental study [Ruff, et al, 2001] that focused on the dif­
ferences between normal and dyslexic subjects during a 
passive phonemic categorization process. 

Six patients and six controls were submitted to a pas­
sive hearing of stimuli that are mixes of the two phoneti­
cally close syllables /pa/ and /ta/. The pivot is noted devO 
and the deviants are 4 different mixes of /pa/ and /ta/, 
noted dev2M, dev1M, dev1P, dev2P (Table 1). The meas­
urements were made with fMRI. An experiment is consti­
tuted of 5 blocks, corresponding to the pivot and the de­

viants. Each block contains 6 sequences of 4 sounds, 3 
pivots and the block's deviant, in a random order. 

We focus on a single region, a part of the right tempo­
ral superior gyrus involved in the early processing of 
auditory stimuli and activated differently in controls and 
dyslexic subjects. Phylogeny is in favor of the existence 
of specialized phonemic processors in this area (Figure 
2). Since their location is unknown, they cannot consti­
tute separate structural nodes. They are supposed to have 
the same building functional nodes. According to our 
genericity hypothesis, the processors' structure and pa­
rameters are based on a previously released visual cortex 
model [Pastor, et al., 2000]. The Input Gating Nodes 
(IGN.) express the phoneme processors' sensitivity to the 
stimulus. The Output Gating Nodes (OGN.) send infor­
mation to the downstream areas. Intra and inter (lateral) 
inhibitions (/TV. and LIN.) are assumed between the /pa/ 
and /ta/ processors. LIN. make the activation of an IGN. 
cause an inhibition in the opposite IGN.. Each Firing 
Threshold Node (FTN.) is modulated by an OGN. that 
can lower it. Since only one activation measure is pro­
vided by fMRI for the area, it is represented by the sole 
AN node in the static model. Stim stands for the stimulus. 

Figure 2: Static network used to model the cerebral phonemic 
categorization process. 

Except for the parameterization of the IGN. nodes, 
which reflects the specialization of each phonemic proc­
essor to the phoneme category (/pa/ or /ta/), the functions 
for both the /pa/ and /ta/ parts share exactly the same 
structure and parameters. Thus, only the pa part will be 
presented. In the following equations, the ith parameter of 
the function of a node X is noted a (1) 

The refractory period of the processor's neurons is 
modeled in by a sigmoid function that makes 
the node sensitive to the incoming stimulus only if the 
magnitude of the output is already close to zero: 

The categorical field contains two symbols (pa and ta). 
The type of a stimulus represents the proportions of the 
two symbols (Table 1). 
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Table 1: Constants for both phonemic categorization models 

The sensit ivity of each 1GN. to the received type is de­
f ined by a constant type sens.. is more sensitive to 
the symbol pa, and to ta. The funct ion in 

equation (3) is used w i th the constant and the i n ­
coming st imulus ' type in order to modulate the mag­

nitude of 

The types are used only for the input gating; they do 
not intervene in the rest of the model. The sigmoid 

in magnitude funct ion al lows i t to f i re only i f 
the magnitude coming f rom the is greater than the 
f i r ing threshold's one: 

AN consists in the sum of the successive I G N s ' activa­
tions dur ing one experimental b lock: 

(8) 

This is a gross approximation of the f M R I data, which 
models only the part of the information processing mecha­
nisms in the activation bui lding and neglects metabolic 
processes at the level of the cerebral blood f low. Since, ex­
cept the Stim and the AN nodes, all nodes represent neu­
ronal activities, the time unit is set to 1 ms. We used the 
DD2 algorithm [Norgaard, ei al., 2000] to perform the simu­
lations. 

The hypothesis is that the difference of processing be­
tween normal and dyslexic subjects is caused by a disorder 
in the inhibitory mechanisms. Thus, the two models, one for 
the average patient and the other for the average control, use 
the same functions and share the same parameters, except 
for the inhibit ion nodes (IN. and L IN.) . There are no lateral 
inhibitions in the dyslexic model. It can be interpreted in 
cognitive terms as the fact that all the processors compete 
for each stimulus and that no clear category can be built. 
Also, the dyslexic model's internal inhibitions are slightly 
stronger than in the normal one, leading to a slowing in the 
stimulus perception. These two tentative interpretations are 
good starting points for new experiments. 

The differences in the inh ib i t ion parameters are suf f i ­
cient to obtain very di f ferent act ivat ion data. For con­

trols, the more distant ( f rom the p ivota l st imulus, cate­
gorical ly speaking) the deviant is, the stronger the activa­
t ion is (Figure 3). This is supposed to be caused by a ha­
bituat ion mechanism that lowers the act ivat ion, fo l lowed 
by an activation the force of wh ich depends on the "sur­
pr ise" caused by the deviant. Dyslexic subjects do not 
correctly categorize the dif ferent phonemes, both the pa 
and the ta parts of the gyrus activate for each block. This 
il lustrates how activat ion data can be explained thanks to 
the understanding of the cerebral informat ion processing 
mechanisms expressed in the models. 

Figure 3: Compared results between simulated data (± 2 stan­
dard deviations) and experimental measures. 

5 Conclusion 
Instead of bu i ld ing a specialized model , designed for a 
specific funct ion or cerebral network, we have presented 
a general f ramework, a l low ing the interpretation of func­
t ional neuroimaging data. This f ramework has been de­
signed to be open to evolut ions of the knowledge in neu­
ropsychology and neurophysiology. Using DBNs al lows 
model ing the brain as a dynamic causal probabil ist ic 
network w i th nonlinear relationships. We have i l lustrated 
this w i th an example concerning a language-related proc­
ess. Current ly, our f ramework is adapted to automatic 
processing, wh ich is dominant in cerebral funct ioning. In 
funct ion of the stimulus type, nodes can react di f ferent ly 
and different networks may be activated, thus implement­
ing different funct ions. Our future work w i l l focus on the 
integration of more b io log ica l p lausib i l i ty in the frame-
work. The representation of complex relationships be­
tween and inside the zones w i l l a l low the representation 
of control led processes and contextual modulat ion of the 
cerebral act iv i ty . The combinat ion of types f rom different 
categorical domains and the search for regularit ies in the 
combinations w i l l a l low the implementat ion of learning 
mechanisms. Another essential topic is to make our mod-
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els independent of the used data acquisition technique, 
thanks to interface models, able to translate cerebral in-
formation processing variables into neuroimaging results. 
Our long-term goal is to progressively include in our 
framework various validated models and to build a con­
sistent and general brain theory based on large-scale net­
works. 
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