
Amalgams of Constraint Satisfaction Problems

Andrei A. Bulatov Eugeny S. Skvortsov
Oxford University Computing Laboratory Ural State University, Ekaterinburg, Russia

Oxford, UK Skvortsov@dc.ru
andrei.bulatov@comlab.ox.ac.uk

Abstract
Many of standard practical techniques of solving
constraint satisfaction problems use various de­
composition methods to represent a problem as a
combination of smaller ones. We study a gen­
eral method of decomposing constraint satisfaction
problems in which every constraint is represented
as a disjunction of two or more simpler constraints
defined, possibly, on smaller sets of values. We call
a problem an amalgam if it can be decomposed in
this way. Some particular cases of this construc-
tion have been considered in [Cohen et a/., 1997;
2000b; 2000al including amalgams of problems
with disjoint sets of values, and amalgams of inde­
pendent problems. In this paper, we concentrate on
constraint classes determined by relational clones,
and study amalgams of such classes in the general
case of arbitrary finite sets of values. We com­
pletely characterise amalgams of this form solv­
able in polynomial time and provide efficient algo­
rithms.

1 Introduction
In the Constraint Satisfaction Problem (CSP) the aim is to
find an assignment to a set of variables subject specified con­
straints. CSP provides a generic approach to various com­
binatorial problems frequently appearing in artificial intelli­
gence and computer science, including the propositional sat­
isfiability problem, in which the variables must be assigned
Boolean values, graph-theoretical problems, scheduling prob­
lems, temporal and spatial reasoning, database theory, and
many others.

The general CSP is NP-complete [Montanari, 19741. How­
ever, the time complexity of many practical problems can be
considerably decreased by representing a problem as a com­
bination of smaller problems. Such decomposition methods
have been intensively studied and implemented in most of ex­
isting constraint solvers. Most of them deals with the hyper-
graph associated with a problem instance (see, e.g. [Gottlob
et al. , 2000; Dechter and Pearl, 1989; Freuder, 1990]), and
to date are highly developed. Another possibility, decompo­
sition of constraints themselves [Cohen et al. , 1997; 2000b;

2000a], remains almost uninvestigated. The present paper fo­
cuses on this class of decomposition methods.

In many cases of interest we may restrict the form of al­
lowed constraints by specifying a constraint language, that is
a set of allowed constraints. Every constraint is specified by a
relation, so, a constraint language is just a set of relations over
the set of values. One of the most natural ways to decompose
such a restricted CSP is to represent every its constraint as a
disjunction of two or more simpler constraints on, possibly,
smaller sets of values. We say that a constraint language, T,
is the amalgam of T1, T2 if every constraint in T is the dis­
junction of a constraint from T1 and a constraint from T2. In
this case we call T1, T2 the components of T.

The main research direction in the study of amalgams is,
of course, developing efficient algorithms solving the corre­
sponding constraint satisfaction problem. However, as we
shall see the complexity of the CSP arising from an amalgam
is not determined automatically by the complexity of its com­
ponents. Therefore, the first research problem we deal with is
the tractability problem: under which conditions the problem
arising from an amalgam is tractable. (A problem is called
tractable if it can be solved in polynomial time.) Then we
tackle the algorithmic problem: design efficient algorithms
for tractable amalgams.

As is naturally expected, algorithms for amalgams tend to
use algorithms for their components, especially if ones are
already known. Unfortunately, in general, the connection be­
tween constraint languages and their amalgam cannot be ex­
pressed by usual constraint techniques, and strongly depends
on properties of particular constraint languages. Thus, solu­
tions to both research problems are expected to be nontrivial.

Amalgams have been introduced in [Cohen et al, 1997],
though another name was used. In ICohen et a/., 2000a],
amalgams were considered in the simplest case when the
sets of values for languages T1, T2 are disjoint. In this case,
for any amalgam, the corresponding problem is trivially re­
ducible to the problems over the components, that solves
both the algorithmic problem and the tractability problem:
an amalgam gives rise to a tractable problem if and only
its components do. Certain properties of interaction of con­
straint languages may yield a reduction of an amalgam to its
components. In [Cohen et al, 1997] and later in [Cohen et
al, 2000b], several such properties, so-called independence
of constraint languages, have been identified. A number of

CONSTRAINTS 197

previously unknown tractable constraint languages have been
represented as amalgams of very simple and well studied in­
dependent constraint languages.

It has been shown in [Jeavons, 1998b] that the tractabil-
ity of the constraint satisfaction problem arising from a con­
straint language implies the tractability of the problem for the
relational clone generated by the language. Therefore, a rea­
sonable strategy is to concentrate on relational clones rather
than arbitrary constraint languages. In this paper we solve
the tractability and algorithmic problems for amalgams of re­
lational clones. We completely characterise tractable amal­
gams and provide efficient algorithms in this case. The char­
acterisation criteria is stated in terms of, first, properties of
components of an amalgam, and second, the tractability of
a certain constraint language on a 2-element set of values.
The latter language reflects the interaction of the components.
Thus, both the characterisation and the reducing algorithms
use Schaefer's Dichotomy Theorem for Boolean constraints
[Schaefer, 1978].

Throughout the paper we heavily use the algebraic tech­
nique for CSP developed in [Jeavons, 1998b; Jeavons et a/.,
1998].

2 Preliminaries
2.1 Basic Definitions
Let A be a finite set. The set of all n-tuples of elements of A
is denoted An. A subset of An is called an n-ary relation on
A, and any set of finitary relations on A is called a constraint
language on A.

Definition 1 Let Y be a constraint language on a set A.
CSP(r) is the combinatorial decision problem whose in-
stance is a triple V = (V; A; C) in which V is a set of vari­
ables, and C is a set of constraints, that is pairs of the form
C = (s, Q) where s is a list of variables of length mC called
the constraint scope, and Q Y is an rnc-ary relation, ccdled
the constraint relation. The question is whether there exists a
solution to V, that is a mapping ψ: V —> A such that ψ(s) € Q
for all (s, Q) C.

Example 1 An instance of G R A P H Q - C O L O R A B I L I T Y con­
sists of a graph G. The question is whether the vertices of
G can be labelled with q colours so that adjacent vertices are
assigned different colours.

This problem corresponds to where A is a q-
element set (of colours) and is
the disequality relation on A.

A constraint language T is said to be tractable [NP-complete]
if the problem CSP(r) is tractable [NP-complete].

Now we introduce the central notion of the paper.

Definition 2 Let TA, TB Be constraint languages on sets A,
B respectively. The amalgam of TA, TB is defined to be the
constraint language on A U B

= are
of the same arity].

Example 2 Let A = {a,c,d},B = {b,c,d}, and TA =
{QA}, TB = {QB} where QA,QB are partial orders:

Columns of the matrices represent tuples of the relations.
Then where QA U QB is a quasiorder.
Example 3 ([Cohen et a/.,2000b1) Let Z be the set of all
integers, and Y the set of congruences of the form x = a
(mod m) treated as unary relations. The Chinese Remainder
Theorem implies that Y is tractable. The amalgam con­
sists of expressions of the form x = a (mod ra) V x = b
(mod n), and by results of [Cohen et al, 2000b] is tractable.
For example, this means that we are able to recognised in
polynomial time the consistency of the system

x1 = 1 (mod 4) V x1 = 0 (mod 3)
x2 = 2 (mod 3) V x2 = 2 (mod 5)
x3 = 5 (mod 7).

We are concerned with the following two problems.

Problem 1 (tractability problem) When is CSP
tractable?

Problem 2 (algorithmic problem) Find a polynomial time
algorithm for tractable CSP |.
In fact, properties of the amalgam do not strongly depend nei­
ther on properties of the original constraint languages nor on
the way they interact. For example, if V\, T2 contains no re­
lations of the same arity then their amalgam is empty. We,
therefore, should restrict the class of constraint languages to
be studied.

2.2 Relational Clones
For any problem in CSP(T), there may be some sets of
variables whose possible values subject to certain constraints
which are not elements of Y. These constraints are said to be
implicit and arise from interaction of constraints specified in
the problem [Jeavons, 1998a].

To describe implicit constraint relations we make use of
the natural correspondence between relations and predicates:
for an n-ary relation Q on a set A, the n-ary predicate Pe is
true on a tuple a if and only if a Q. Usually, we will not
distinguish a relation and the corresponding predicate, and
freely use both terminology. An existential first order formula

is said to be primitive
positive (pp-) if its quantifier-free part $ is a conjunction of
atomic formulas.

Definition 3 A relation is an implicit relation of a constraint
language Y on a set A if it can be expressed by a pp-formula
involving relations from Y and the equality relation =A.

A constraint language Y is said to be a relational clone if it
contains all its implicit constraint relations.

The relational clone (Y) of all implicit constraint relations
of T is called the relational clone generated by Y.
Example 4 The intersection of relations of the same arity,
and Cartesian product are expressible via pp-formulas:

198 CONSTRAINTS

The notion of a relational clone considerably simplifies the
analysis of constraint satisfaction problems in view of the
following result that links the complexity of a constraint lan­
guage and the relational clone it generates.
Theorem 1 ([Jeavons, 1998b]) Let T be a constraint lan­
guage on a finite set, and T (T) finite. Then CSP(T')
is polynomial time reducible to CSP(T).
This result motivates restricting Problems 1,2 to the class of
relational clones.
Example 3 (continuation) Reconsider the constraint lan­
guage T from Example 3. Results of [Cohen et al, 2000b]
implies that is also tractable. This larger amal­
gam includes, e.g., constraints of the form (mod m)V
y = b (mod n), which are not members of

2.3 Invariance Properties of Constraints
Another advantage of considering relational clones is that
they often admit a concise description in terms of algebraic
invariance properties [Poschel and Kaluznin, 1979; Jeavons,
1998b]. An (m-ary) operation / on a set A preserves an n-ary
relation Q on A (or Q is invariant under /, or / is a polymor-
phism of Q) if for any
Q the tuple belongs
to Q. For a given set of operations, C, the set of all relations
invariant under every operation from C is denoted by Inv C.
Conversely, for a set of relations, T, the set of all operations
preserving every relation from T is denoted by Pol T. Ev­
ery relational clone can be represented in the form Inv C for
a certain set of operations C [Poschel and Kaluznin, 1979].
Therefore, in view of Theorem 1 the complexity of a finite
constraint language depends only on its polymorphisms.

We need operations of some particular types that give rise
to tractable problem classes.
Definition 4 Let A be a finite set. An operation f on A is
called

• a majority operation if it is ternary, and f(x,x,y) =

• affine if
where +, — are the operations of an Abelian group.

Proposition 1 ([Jeavons et al, 1998; 1997]) // T is a con­
straint language on a finite set, and Pol T contains an op­
eration of one of the following types: constant, semilattice,
affine, majority; then Y is tractable.

The complexity of constraint languages on a 2-elemcnt set is
completely characterised in [Schaefer, 1978]. This outstand­
ing result is known as Schaefer's Dichotomy Theorem. By
making use of Proposition 1 the algebraic version of Schae-
fer's theorem can be derived [Jeavons et al, 1997].

'Note that in some earlier papers [Jeavons, 1998b; Jeavons et al,
1998] the term AC1 operation is used.

Theorem 2 (Schaefer, [Schaefer, 19781) A constraint lan­
guage T on a 2-element set is tractable if and only if Pol T
contains one of the operations listed in Proposition I. Other­
wise T is NP-complete.

3 Tractable amalgams
In this section we give a complete solution of Problems 1,2
for amalgams of relational clones. Throughout the section
A,B are finite sets, are relational
clones on A, B respectively. First, we reduce Problems 1,2 to
the case when = 1 and prove NP-completeness results in
this case. Then we concentrate on tractable cases and present
a solving algorithm for these cases.

3.1 The result

We assume that contain empty relations of any arity,
because otherwise contains a constant oper­
ation, and therefore is tractable by Proposition 1.

The case when D is empty was completely investigated in
[Cohen et al, 2000a].

Proposition2 ([Cohen et al., 2000a]) /f D = then
CSP is polynomial time reducible to CSP(RA),
CSP(RB). Hence, is tractable if and only if both

RA , RB are tractable.

So, we assume D to be non-empty.

Proposition 3 ([Jeavons et al, 1997; Jeavons, 1998hl) /f /
is a unary polymorphism of a constraint language T then the

mial time equivalent to CSP(T).

By we denote the restriction of a (unary) operation / onto

a set C. The following statement is straightforward.

Proposition 4 (J) If f is a unary polymorphism of
then are polymorphisms of respectively.

is polynomial time equivalent to

(3) If the amalgam is tractable then there is a poly­
morphism f of such that Otherwise,

complete.

Therefore, we may restrict ourselves to the case
let In this case we need more notation and termi­
nology.

Definition 5 The relational clone to be
monolithic i f c o n -
tains no unary relation E with

Let denote the relational clone generated by the set
where c = (c , . . . , c)2. Obviously,

is defined analogously.

2We do not specify the length of the tuple c = (c,... ,c), be­
cause it is always clear from the context.

CONSTRAINTS 199

In the following definition we introduce an auxiliary re­
lational clone on the 2-element set Z = {A,B} that de­
scribes interaction of the components of the amalgam. For
an-(n-ary) relation

We also define the cor­
responding predicate which is true if and
only if The variable y wil l be called
distinguished.

Definition 6 The meta-clone is defined to be the set of all
relations on Z expressible through a pp-formula of the form

where is a conjunction of predicates and
y1 , • • •,ym ,Z1• • • ,zk are the distinguished variables.

The meta-clone is defined in a similar way.

Lemma 1 Meta-clones are relational clones on Z.

We now in a position to state the main result of this paper.
Theorem 3 Let Then

1. if is monolithic then is tractable if and
only if is tractable;

2. if both are not monolithic then RA & RB is
tractable if and only if are tractable.

I t i s not hard t o see t h a t T h e r e ­
fore, by Theorem 1, is tractable whenever
is tractable. The converse inclusion follows from Lemma 2.
Then, it can be proved by straightforward calculation that

is polynomial time reducible to
RB). Finally, in Sections 3.2,3.3, we show how to reduce

Lemma 2 If RA is monolithic then is poly­
nomial time reducible to
Proof: Let RA be monolithic. We set out the proof in several
claims.
C L A I M 1. For any a A - {c} , there is a unary polymor­
p h i s m s u c h that
__ Let ; be the list of all unary polymorphisms of
RA , and E = Sup­
pose that c E. Since RA is monolithic, E RA-
Therefore, there is a polymorphism h(x1,..., xn) such that
h(b1... ,bn) E for some bi E, say, bi = aji. The
operation is also a polymor­
phism of RA [Poschel and KaluZnin, 1979], and h'(a) E,
a contradiction.
C L A I M 2. RA is invariant under the constant operation c.

S i n c e f o r any a A - {c} , w e have
This implies for any

Then choosing an element
we get Continuing the process
we eventually obtain an operation f(x) =
such that is the required constant
operation.
Claim 2 implies that if is non-empty then
C L A I M 3. The operation g on AuB where
and is a polymorphism of

200 CONSTRAINTS

3.2 The Spl i t Problem
We transform a problem over an amalgam so that the interac­
tion of its components becomes more transparent.

Lemma 4 V is equivalent to V.

3.3 Solving the Spl i t Problem

CONSTRAINTS 201

References
[Cohen et al, 1997] D.A. Cohen, P.G. Jeavons, and

M. Koubarakis. Tractable disjunctive constraints. In
Proceedings 3rd International Conference on Constraint
Programming—CP'97 (Linz, October 1997), volume
1330 of Lecture Notes in Computer Science, pages
478-490. Springer-Verlag, 1997.

[Cohensal , 2000a] D.A. Cohen, P.G. Jeavons, and R.L.
Gault. New tractable constraint classes from old. In Pro-
ceedings 6th International Conference on Principles and
Practice of Constraint Programming—CP'2000, volume
1894 of Lecture Notes in Computer Science, pages 160-
171. Springer-Verlag, 2000.

ICohen et al, 2000b] D.A. Cohen, P.G. Jeavons, P. Jonsson,
and M. Koubarakis. Building tractable disjunctive con­
straints. Journal of the ACM, 47:826-853,2000.

[Cooper, 1989] M.C.Cooper. An optimal k-consistency al­
gorithm. Artificial Intelligence, 41:89-95,1989.

[Dechter and Pearl, 1989] R. Dechter and J. Pearl. Tree
clustering for constraint networks. Artificial Intelligence,
38:353-366,1989.

[Dechter and van Beek, 1997] R. Dechter and P. van Beek.
Local and global relational consistency. Theoretical Com­
puter Science, 173(1):283-308,1997.

[Freuder, 1990] B.C. Freuder. Complexity of K-tree struc­
tured constraint satisfaction problems. In Proceedings of
8th National Conference on Artificial Intelligence AAAl-
90, pages 4-9, 1990.

[Gottlob et al, 2000] G. Gottlob, L. Leone, and F. Scarcello.
A comparison of structural CSP decomposition methods.
Artificial Intelligence, 124(2):243-282,2000.

[Jeavons et al, 1997] P.G. Jeavons, D.A. Cohen, and
M. Gyssens. Closure properties of constraints. Journal of
the ACM, 44:527-548, 1997.

[Jeavons et al, 19981 P.G. Jeavons, D.A. Cohen, and M.C.
Cooper. Constraints, consistency and closure. Artificial
Intelligence, 101(l-2):251-265,1998.

Ueavons, 1998a] P.G. Jeavons. Constructing constraints.
In Proceedings 4th International Conference on Con­
straint Programming—CP' 98 (Pisa, October 1998), vol­
ume 1520 of Lecture Notes in Computer Science, pages
2-16. Springer-Verlag, 1998.

[Jeavons, 1998b] P.G. Jeavons. On the algebraic structure of
combinatorial problems. Theoretical Computer Science,
200:185-204,1998.

[Montanari, 1974] U. Montanari. Networks of constraints:
Fundamental properties and applications to picture pro­
cessing. Information Sciences, 7:95-132,1974.

[Poschel and Kaluznin, 1979] R. Poschel and L.A. Kaluznin.
Funktionen- und Relationenalgebren. DVW, Berlin, 1979.

[Schaefer, 1978] T.J. Schaefer. The complexity of satisfia­
bility problems. In Proceedings 10th ACM Symposium on
Theory of Computing (STOC'78), pages 216-226,1978.

202 CONSTRAINTS

