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Abstract 
In [Jegou, 1993], a decomposition method has been 
introduced for improving search efficiency in the 
area of Constraint Satisfaction Problems. This 
method is based on properties of micro-structure of 
CSPs related to properties of triangulated graphs. 
This decomposition allows to transform an instance 
of CSP in a collection of sub-problems easier to 
solve, and then gives a natural and efficient way for 
a parallel implementation [Habbas et al, 2000]. 
In this paper, we present a generalization of this ap­
proach, which is based on a generalization of trian­
gulated graphs. This generalization allows to de­
fine the level of decomposition which can be fixed 
by a graph parameter. The larger this parameter is, 
the more level of decomposition that is the num­
ber of sub-problems is. As a consequence, we can 
then define the level of decomposition, with respect 
to the nature of the parallel configuration used (the 
number of processors). 
First experiments reported here show that this ex­
tension increases significantly the advantage of the 
basic decomposition, already shown in [Habbas et 
al, 2000]. 

1 Introduction 
Constraint-satisfaction problems (CSPs) involve the assign­
ment of values to variables which are subject to a set of con­
straints. Examples of CSPs are map coloring, conjunctive 
queries in a relational databases, line drawings understand­
ing, pattern matching in production rules systems, combina­
torial puzzles... CSP is known to be a NP-complete problem. 
So, during last twenty years, many works have been proposed 
to optimize the classical Backtrack procedure, as constraint 
propagation, intelligent backtracking or network decomposi­
tions. 

In [Jegou, 1993], another approach has been proposed 
which is based on the decomposition of the "micro-structure" 
of the CSP. The micro-structure of a CSP is the graph defined 
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by the compatible relations between variable-value pairs: ver­
tices are these pairs, and edges arc defined by pairs of com­
patible vertices. Given the micro-structure of a CSP and us­
ing graph properties, the method realizes a pre-processing to 
simplify the problem with a decomposition of the domains of 
variables. For a CSP V, the decomposition generates a col­
lection of subproblems P1, P2, •. • Pk, which is equivalent to 
the initial problem V. Each subproblem Pi has the size of 
its domains less or equal to the size of domains of P, so the 
time complexity of each Pi is necessarily less than for the 
initial CSP. Moreover, given this collection of subproblems, 
we can separately solve them, or recursively apply again the 
decomposition. 

This decomposition allows to transform an instance of CSP 
in a collection of subproblems the domains size of which is 
less than domains size of the CSP. So, these sub-problems are 
theoretically easier to solve. Moreover, this decomposition 
defines and then gives a natural and efficient way for a paral­
lel implementation to solve CSP. In [Habbas et al, 2000], an 
experimental analysis of this approach is presented, realized 
on a parallel configuration. These experiments show clearly 
the efficiency of the approach: the decomposition generally 
offers better results than the results obtained to solving the 
problems without decomposition. This advantage is related 
to the natural parallelization of the approach since each sub-
problem is solved independently. This fact is clear for consis­
tent CSPs. Moreover, if we consider inconsistent CSPs, the 
results are more insteresting: without parallelization, solving 
the problem after its decomposition is clearly better as solv­
ing it without decomposition. 

In this paper, we present a generalization of this approach. 
This approach is based on a generalization of triangulated 
graphs. This generalization allows to define the level of de­
composition which can be fixed by a graph parameter. The 
larger this parameter is, the more level of decomposition (that 
is the number of sub-problems) is. As a consequence, we can 
then define the level of decomposition, with respect to the 
power of the parallel configuration used. 

To define this generalization, we exploit a generalization of 
triangulated graphs called CSGk graphs which has been in­
troduced in [Chmeiss and Jegou, 1997]. This class of graphs 
possesses the same kind of properties as triangulated graphs 
do. The most important here is the fact that the CLIQUE 
problem has a polynomial time complexity on these graphs. 
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First experiments reported here show that this extension 
increases significantly the advantage of the basic decompo­
sition, already shown in [Habbas et al, 2000]. Indeed, we 
present experiments wi th two levels of decomposition. The 
basic decomposition, and the second level (CSG2 graphs). 
The results show that for the second level of decomposition 
we obtain better results. 

The section 2 recalls the decomposition method while sec­
tion 3 presents the generalization of the decomposition. Ex­
perimental results and a discussion about these result are pre­
sented in the section 4. 

2 Preliminaries 

2.1 Constraint Satisfaction Problems 

A finite CSP (Constraint Satisfaction Problem) is defined as 
four tuple P = {X,D,C,R). X is a set of n variables 
x1,X2,--.xn. D is a set of finite domains D1,D2, ..... Dn, 
and C is a set of rn constraints. Here we only consider binary 
CSPs, that is the constraints are defined on pairs of variables 
{xi, Xj } and w i l l be denoted Ci,j. To each constraint , we 
associate a subset of the cartesian product (Di x Dj) which 
is denoted R i j and specifies which values of the variables are 
compatible wi th each other. R is the set of all RlJ. A solution 
is an assignment of values to variables which satisfies all the 
constraints. For a CSP P, the pair ( X ' , C ) is a graph called 
the constraint graph. Given a CSP, the problem is either to 
know if there exists any solution, to find solution, or to find 
all solutions. The first problem is known be to NP-complete. 

CSPs are normally solved by different versions of back­
track search. In this case, if d is the size of domains (maxi­
mum number of values in domains A ) , the theoretical time 
complexity of search is then bounded by the size of the search 
space, that is dn. Consequently, many works tried to improve 
the search efficiency. At present t ime, it seems that the most 
efficient algorithm is the procedure M A C which has been in ­
troduced in [Sabin and Freuder, 1994]. Other approaches use 
decomposition techniques based on structural properties of 
the CSP. These methods exploit the fact that the tractability 
of CSPs is intimately connected to the topological structure 
of their underlying constraint graph. Moreover, these meth­
ods give an upper bound to the complexity of the problem. 
As example of such decompositions, we have tree-clustering 
scheme [Dechter and Pearl, 1989]. The time complexity of 
this method is bounded by dk where k is induced by the topo­
logical features of the constraint graph. Intuitively, more the 
constraint graph is dense, more the value k is large. For ex­
ample, if the constraint network is a complete graph, then 
k = n. So, the complexity of these decomposition methods 
is the same as for classical backtracking, that is dn. So, in 
[Jegou, 1993], Jegou proposed an alternative way to decom­
pose CSPs which is not based on the constraint graph but on 
the micro-structure of a CSP. In the sequel, we called this de­
composition scheme TR-Decomposition. 

In other words, transforming a CSP as its micro-structure 
is clearly a polynomial reduction f rom CSP to CLIQUE, 
which is the problem of finding a clique of a given size 
belongs to a graph. As a consequence of this fact, as CSP, 
the CL IQUE problem is NP-Complete. Since the problem 
of finding a n-cliquc is NP-hard, TR-Decomposit ion exploits 
the fact that triangulated graphs constitute a polynomial 
class of instances for this problem. We recall briefly basic 
properties of these graphs. Given a graph G — (V, E) and an 
ordering of V, the successors of a vertex u2 

are the elements of the set 
w h e r e a vertex v i 

is simplicial in is a clique. The ordering 
of V is a perfect elimination ordering if, 

for , the vertex v1 is simplicial in the ordering 
A graph G = (V,E) is triangulated if and only if V 

admits a perfect el imination ordering. Triangulated graphs 
satisfies desirable properties. A triangulated graph on n 
vertices has at most n. maximal cliques (a clique is maximal 
i f f it is not included in an other clique) [Fulkerson and 
Gross, 1965]. Moreover, the problem of finding all maximal 
cliques in a triangulated graph is in 0(n + m) if n is the 
number of vertices and m the number of egdes [Gavri l , 1972]. 

Given the micro-structure of any CSP, it is not possible to 
immediately use these properties because any micro-structure 
is not necessary a triangulated graph. So, in adding edges 
in E, we can bui ld a new graph T(G) = (V, Ef) which is 
triangulated. This addition of edges is called triangulation, 
and can be realized in a linear t ime in the size of the graph. 
So, after the triangulation, all maximal cliques of G can be 
found in linear t ime. Appl ied to a 
the triangulation of its micro-structure 
produces the graph the set of maximal cliques of 
which is i. Every Y, is a set of values, 
and then defines a subproblem of P. More formaly, given a 
binary CSP P = (X,D,C, R), its micro-structure = 

The CSP induced by Y on 

1Note that in [Hamadi, 1996], TR-Decomposition has been gen­
eralized to General CSPs, that is CSPs were constraints can be de­
fined on more than two variables. 
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2.2 T R - D e c o m p o s i t i o n 

Theorem 1 



V, denoted V{Y) is defined by: 

Finally, to ensure the validity of the decomposition, 
presents the theorem below: 

Theorem 2 [Jegou, 1993] Given a binary CSP P, its 
m i c r o - s t r u c t u r e , the set o f the maxi­
mal cliques of T 

Solutions 

To summarize the approach, we recall the algorithm: 
Algorithm: TR-Decomposition 
Begin 
1 Build the micro-structure 
2 Triangulation 
3 MaximalCliquesi 
4 for all Yi do 
5 if Yi is a covering of all the domains in D 
6 then Solve 
7 else has no solution 

endfor 
End; { TR-Triangulation } 

The steps 1, 2 and 3 can be realized in a linear time w.r.t. 
the size of the problem V. The procedure Triangulation re­
turns a perfect elimination ordering a which allows to the 
procedure Maximal Cliques to find sets Yi. The step 4, that 
is the iteration for, can be replaced by a parallel execution 
on independent subproblems P(Yl). In this case, if the CSP 
V is consistent, the cost is related to the cost of solving the 
easiest subproblem, while it is the cost of the hardest sub-
problem for inconsistent CSPs. A such implementation has 
been realized in [Habbas et al, 2000]. In step 5, a set Yi is 
not a covering of all the domains in D if there is a subdomain 
Dy.j induced by Yi which is the empty set. This subproblem 
is then trivially inconsistent. In step 6, to solve V(Yi), we can 
use any classical search method such that standard backtrack­
ing, Forward-Checking or MAC [Sabin and Freuder, 1994]. 
Finally, note that the quality of decomposition depends on the 
quality of the triangulation step. 

The last point is the most important. Nevertheless, it's well 
known that the problem of finding an optimal (w.r.t. the size 
of the largest induced clique) triangulation is NP-Hard (see 
[Arnborg et al, 1987]). Several algorithms have been pro­
posed for triangulation. In all cases, the aim is to minimize 
either the number of added edges or the size of cliques in 
G'. Three classes of approaches are usable. The first one 
consists in finding an optimal triangulation which produces a 
graph the maximum size clique of which has minimum size 
over all triangulations. [Shoikhet and Geiger, 1997] propose 
a such algorithm the time complexity of which is exponen­
tial. The second is to find a minimal triangulation, that is 
a triangulation computing a set E\ such as if for any other 
triangulation is not 

triangulated. Note that a triangulation can be minimal and 
not optimal. See [Berry, 1999] who presents an algorithm 
in 0(n(n + m)). The last one consist in using a triangu­
lation consuming a linear time which does not gurantee the 
minimality. Nevertheless, the purpose of this paper is not to 
propose a good triangulation, but to exploit a generalization 
of triangulated graphs to generalize this decomposition. One 
of the aims of this generalization is to avoid the problem of 
finding optimal triangulations. 

3 Generalizing TR-Decomposition 
3.1 A first basic property 
To generalize TR-Decomposition, we can extend the­
orem 2. Consider a , , _ , . . , and its 
m i c r o - s t r u c t u r e C o n s i d e r a graph 

Consider 
now the set of maximal cliques of 
Every Zi is a set of values, and then, as in section 2.2, defines 
a subproblem of P which is the CSP induced by Z i, on V (it 
is denoted V(Zi)). 

Theorem 3 Given a binary CSP P, its micro-structure 
and { Z 1 , . . . Zj), the set of the maximal cliques of 

then Solutions 

Proof. Given a binary CSP V, its micro-structure 
and by theorem 1, we know that each solution of V is a 
clique of size n. If we consider 
w h e r e e a c h clique o f i s included i n a 
maximal clique Therefore, each solution of 
V appears in the associated subproblem 

While TR-Decomposition is limited to triangulated graphs, 
theorem 3 allows to define a larger class of decomposition 
of domains. Nevertheless, because the number of maximal 
cliques can be exponential in an arbitrary graph, and then, the 
number of induced subproblems, we must consider graphs 

which possess a limited number of maximal cliques 
as triangulated graphs do. So, we exploit here a class of 
graphs which is a generalization of triangulated graphs. 

3.2 A generalization of triangulated graphs 
In [Chmeiss and Jegou, 1997], a new class of graphs, called 
CSGk graphs has been introduced. These graphs which 
generalize triangulated graphs, possess the same kind of 
properties as triangulated graphs, e.g. hereditary property of 
subgraphs, existence of an elimination scheme, polynomial 
time recognizing algorithm, and polynomial class of graph 
for CLIQUE problem. Informally, a CSG0 graph is a 
complete graph, a CSG1 graph is a triangulated graph, and a 
CSG2 graph is a graph allowing an elimination vertex scheme 
where the successors of every vertex induce triangulated 
graphs. More generally, CSGk graphs are defined inductively. 

Definition [Chmeiss and Jegou, 1997] The class of CSG0 

Graphs is the class of complete graphs. Given k > 0, the 
class of CSGk graphs is the class of graphs G = (V, E) such 
that there exists an ordering of V such that 
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for i = l ,2 , ...n, the graph Graph. 
The ordering a is then called a CSGk scheme. 

it's easy to see that CSG1 Graphs is the class of trian­
gulated graphs. As for triangulated graphs, there exists a 
polynomial time algorithm for recognizing CSGk 

graphs; its time complexity is 
In the context of decomposition of micro-structure, the num­
ber of maximal cliques is an important criteria. CSGk graphs 
inherit of a generalization of the property of Fulkerson and 
Gross [Fulkerson and Gross, 1965] related to this number 
since, a Graphs with n vertices have less than nk 

maximal cliques. Moreover, a graph with n vertices 
and m edges has at most n + m maximal cliques. Finding 
these cliques is easy, since, given a constant value k the 
CLIQUE problem is polynomial on this class of graphs since 
the time complexity of finding the clique of maximum size in 
an undirected graph is bounded by 

3.3 TR k -Decomposi t ion 

CSGk graphs can be exploited as a way to generalizing of TR-
Decomposition, defining TRk-Decomposition as decomposi­
tions corresponding to the class of associated graphs. For K= 
1, TRk-Decomposition is exactly TR-Decomposition, while 
for k= 2, TRk-Decomposition, that is TR2-Decomposition, 
it's the decomposition induced by CSG2 graphs. More gen­
erally, TRk-Decomposition is summarized as: 

Algorithm: TRk-Decomposition 
Begin 
1 
2 
3 
4 
5 
6 
7 

End; 

Note that: 

• T h e procedure k-Triangulation produces a graph 
which is a CSGk graph and returns an order­

ing a which allows to the procedure k-MaximalCliques 
to find all the maximal cliques 

• As for TR-Decomposition the step 4, that is the iteration 
for, can be replaced by a parallel execution on indepen­
dent subproblems In this case, if the CSP V is 
consistent, the cost is related to the cost of solving the 
easiest subproblem, while it is the cost of the hardest 
subproblem for inconsistent CSPs. 

• For steps 5 and 6, remarks given for TR-Decomposition 
hold. 

• Finally, the quality of decomposition depends on the 
quality of the k-triangulation step. 

Because of the time complexity of managing graphs, 
that is it seems reasonable to focus our 
attention on small values of k;. So, in the sequel we limit our 
study to CSG2 graphs. Therefore, the number of maximal 
cliques will be bounded now by Nev­
ertheless, two problems must be adressed here. Finding an 
efficient algorithm for 2-triangulation, and an operational al­
gorithm to find maximal cliques of a graph. 

For 2-triangulation, we can imagine an algorithm the time 
complexity of which is theoreticaly bounded by 0(nm(n. + 
m)). This algorithm consider an ordering on vertices which 
is obtained by the Maximum Cardinality Search of Tarjan and 
Yannakakis. Given this ordering, we consider vertices vi and 
then, we run a triangulation on . This first step is 
in 0(n(n + m)) but this approach does not guarantee to get 
a 2-triangulation. Indeed, given two vertices vl and Vj, with 
i < j, the triangulation of which is realized af­
ter the triangulation of can add edges that restore 
the new subgraph not triangulated. So, a second 
step of verification and repairing the subgraphs 
in adding new edges must be realized. This additionnal work 
induces a theoretical complexity of 0(nm(n + 777,)). Never­
theless, expermients show that this additionnal work will be 
rarely reached in practical cases (see section 4). 

4 Experiments 
Our aim in this section is to show the usefulness of the gener­
alized decomposition method comparing to the MAC (Main­
taining Arc Consistency) algorithm and the decomposition 
method by triangulation of the micro-structure and to give 
an idea about the efficiency of the proposed method. For the 
generalized decomposition method we wil l consider the TR2-
Decomposition, i.e. k = 2. 

As mentionned in section 3, we wil l not focus on the 
triangulation and 2-triangulation algorithms because it is 
not the principal objective of this paper. In experiments, we 
wil l use the Tarjan and Yannakakis's triangulation algorithm 
[Tarjan et al, 1984]. This algorithm requires a precomputed 
elimination ordering on the vertices. Then, it adds edges, 
with respect to the ordering, which maintain the chordality 
property (i.e. when a vertex is treated, its successors must 
form a clique). Also, for the 2-triangulation, we wil l use an 
algorithm based on the Tarjan and Yannakakis's triangulation 
one as described in section 3.3. In practice, we have observed 
that the additionnal step is rarely realized and then the 
observed time of the 2-triagnluation is in n(n + m ) . So, for 
CSPs of great size, the CPU time used to decompose the 
problem is generally not significant with respect to the time 
ofsolving the CSP. 

We have expermiented these methods on random CSPs 
generated at the phase transition. These CSPs are generated 
according to the model B generator [Prosser, 1996]. Such a 
generator admits four parameters: 

• the number N of variables 
• the common size of the initial domains D 
• the proportion p1 of constraints in the network (or the 

number C = p1 * N • (N - l ) / 2 of constraints) 
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Table 1: experimental results 

• the proportion p2 of forbidden pairs of values in a con­
straint (or the number T = p2 * D * D of forbidden 
pairs) 

In the following, we will use C and T instead of p1 and 
p2. C is called the density of the constraint graph and T the 
tightness of the constraints. We have analysed decomposi­
tion using the procedure MAC as basic search algorithm (the 
used heuristic is dom/deg [Bessiere and Regin, 1996]). That 
is MAC has been used before decomposition on the initial 
problem and after decomposition on each induced subprob­
lem. 

In order to have a credible idea on the performance of these 
methods, we consider several classes of problems. We vary 
two parameters (the number of variables N and the domains 
size D). In order to deal with classes near the phase transition, 
we search the appropriate values of the tightness (T) and the 
density (C). 

For each value of N, we vary D from small domains size 
to larger ones. So, we can observe the behavior of the de­
composition when D grows. Also, we have remarked that the 
performance of the decomposition method was not the same 
for satisfiable and unsatisfiablc problems. So, we have chosen 
to present the results seperately. 

Results are reported in three tables. Each table represents 
results for a given number of variables TV. As measures 
of comparison, we used the number of consistency checks 
(#checks) performed by each of the methods and the number 
of visited nodes (#nodes). We mention that, the execution 
time is proportional to the number of checks. 
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In the tables, results are organized as following : the first 
column contains the calsses of problems represented by the 
four parameters < N,D,T, C >. For each class, we give 
results of the differents methods for satisfiable (Sat) and un-
satisfiable (Unsat) problems seperately. So, we have two 
lines per class. The second and the third columns give the 
number of subproblems induced by the TR-Decomposition 
and the TR2-Decomposition respectively. The fourth column 
indicates the number of satisfiable and unsatisfiable prob­
lems over the 50 randomly generated CSPs. The next three 
columns give the number of consistency checks for MAC, 
TR-Decomposition and the TR2-Decomposition respectively. 
The last three columns present the number of visited nodes by 
the different methods. 

As the subproblems induced by the decomposition are in­
dependent, we can envisage a parallel implementation. In 
other words, we can imagine one process by subproblem. 
So, for saisfiable problems we consider the faster subproblem 
(the firstly solved subproblem since we have the response the 
it is satisfiable) while we consider the hardest subproblem for 
unsatisfiable ones. 

Tables show, that decomposition improve the MAC algo­
rithm on all classes. The improvement is more significant 
for larger domains. Also, the performance of MAC is im­
proved more significately for denser constraint graphs. If 
we look at table 1 where N = 20, we remark that the 
TR2-Decomposition is five times faster than MAC for the 
< 20,10,30,130 >. For classes with D = 20 the improve­
ment is more significant. This remark is confirmed when 



the constraint graphe is denser. For example, for the class 
< 20,20,130,150 > and for satisfiable problems, the perfor­
mance ratio between TR2-Decomposition and MAC is about 
1 tp,22. In other words, for each consistency check performed 
by TR2-Decomposition l'algorithm MAC performs 22 checks 
for satisfiable problems. For unsatisfiable problems, the per­
formance ratio is about 1 to 12. 

This overall view on experiments shows that the general­
ized decomposition method is promising and results are en­
couraging. Finally, we would like to mention the importance 
of the triangulation (2-triangulation) phase. We think that the 
efficieny of the decomposition method is related to the quality 
of the triangulation (2-triangulation). We believe that other 
triangulation algorithms might offer a better decomposition. 

5 Conclusion 
In this paper, we have presented a generalization of the de­
composition of micro-structure, introduced in [Jegou, 1993]. 
This decomposition allows to transform an instance of CSP in 
a collection of sub-problems easier to solve, and then gives a 
natural and efficient way for a parallel implementation [Hab-
bas et al, 2000]. While the original method is based on tri­
angulated graphs, our generalization is based on a generaliza­
tion of triangulated graphs called CSGk graphs. For a given 
value A:, we get a special sub-class of graphs. E.g. CSG° 
graphs are complete graphs and CSG 1 graphs are triangu­
lated graphs. The value k allows to define a particular level of 
decomposition. So, we have introduced TRk-Decomposition 
as the generalized decomposition based on CSGk graphs. 

There are two motivations for this generalization of the de­
composition: 

• to extend the level of decomposition, 

• to be able to fix this level to give an optimal exploitation 
for the parallel configuration used. 

Indeed, it has been experimentally observed in [Habbas et 
al., 2000] that the first level of decomposition, that is TR1-
Decomposition, outperforms classical algorithms, and that 
the more the number of sub-problems is, the more the effi­
ciency of TR1-Decomposition is. 

Our experimental results confirm these facts. We have 
studied two levels of decomposition, for k = 1 and k = 2 and 
the experiments show that TR2-Decomposition outperforms 
TR1-Decomposition. Moreover, the number of sub-problems 
is greater for k — 2 than for k = 1. 

We have limited our experiments to k = 2 because the time 
complexity of managing graphs is related to the value 
k. More precisely, is the time complexity 
to recognize these graphs. So in future works, we will try to 
propose efficient algorithms to realize decomposition. 
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