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Abstract 

This paper presents a new hybrid method for solv­
ing constraint optimization problems in anytime 
contexts. Discrete optimization problems are mod­
elled as Valued CSP. Our method (VNS/LDS+CP) 
combines a Variable Neighborhood Search and 
Limited Discrepancy Search with Constraint Prop­
agation to efficiently guide the search. Experiments 
on the CELAR benchmarks demonstrate signifi­
cant improvements over other competing methods. 
VNS/LDS+CP has been successfully applied to 
solve a real-life anytime resource allocation prob­
lem in computer networks. 

1 Introduction 
It is today indisputable that Constraint Programming (CP) 
fulfills industrial needs of optimization off-line. Many sys­
tems which use this technology are already operational in 
different fields of activity, such as planning, scheduling and 
resource allocation. In on-line optimization context, prob­
lems dynamically change according to the evolution of the 
external environment, and their resolution must respect strong 
temporal constraints (anytime contexts). However, CP is not 
yet adapted for solving such on-line problems : no guaran­
tee is supplied on the execution times, and current CP solvers 
do not lend themselves to the combination with other search 
methods which seem better adapted to respect temporal con­
straints, such as stochastic search methods. 

Our objective is to conceive anytime algorithms based on 
CP and to guarantee the following main properties : to pro­
duce in a very short time solutions of good quality, and more 
importantly to improve them gradually as computation time 
increases. To our knowledge, our proposal is one of the first 
attempt to efficiently address the problem of building anytime 
algorithms with Constraint Programming. 

This paper presents a new hybrid method, called 
VNS/LDS+CP, dedicated to the efficient computation of high 
quality solutions (possibly suboptimal) in an anytime con­
text. Our method combines a Variable Neighborhood Search 
[Hansen and Mladenovic, 1997] (it performs moves like local 
search), and a Limited Discrepancy Search [Harvey and Gins­
berg, 1995] with Constraint Propagation to efficiently guide 
the search. 
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Section 2 describes the general context in which we take 
place. Section 3 reviews the hybridization of search algo­
rithms and justifies our first choices. Section 4 details our 
proposal (VNS/LDS+CP). Section 5, gives computational ex­
periments on CELAR benchmarks ; both mechanisms of 
VNS/LDS+CP are then finely studied. Section 6 shows how 
VNS/LDS+CP has been successfully applied to solve a diffi­
cult network problem. Finally, we conclude and draw a few 
perspectives. 

2 Anytime constraint optimization context 
2.1 Anytime algorithms 
The term anytime algorithm was coined by Dean and Boddy 
in the mid-1980s in the context of their work on time-
dependent planning [Boddy and Dean, 1994]. Contrary to a 
standard algorithm, where no result is available until its end­
ing, an anytime algorithm can be stopped, at any time, to pro­
vide a solution of increasing quality over time. 

Performance profiles describe the evolution of the solution 
quality (produced by the algorithm) as a function of the com­
putation time. They provide a more precise description of the 
performances and of the behavior of an algorithm than the 
best known solution reported by usual algorithms. In the se­
quel of this paper, we consider mean performance profiles : 
such curves are built empirically by collecting statistics on 
the performance of the algorithm over many input instances. 

There are two kinds of anytime algorithms, namely, in-
terruptible and contract algorithms [Zilberstein, 1996]. A 
contract algorithm requires that the computing time must be 
known prior to its activation. It must produce a solution 
within a contract of time, and if it is interrupted before the 
end of the contract, there is no guarantee about the quality 
of the solution. However, for an interruptible algorithm, no 
information is (a priory) available about the allowed compu­
tation time, and a solution may be asked for at any time. The 
algorithm must always provide a good solution, and more im­
portantly, continue to refine it. 

In this paper we are interested by the design of interruptible 
algorithms, since every interruptible algorithm is trivially a 
contract algorithm, but the converse is not so immediate. 

2.2 Valued Constraint Satisfaction Problems 
The Valued CSP (VCSP) [Bistarelli et al., 1999; Schiex et al., 
1995] framework is an extension of the CSP (Constraint Satis-
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faction Problem) framework, which allows over-constrained 
problems or preferences between solutions to be dealt with. 

More formally, whereas a CSP is defined as a triplet 
(V, V, C), where V is a set of variables, V a set of finite 
domains associated to the variables and C a set of constraints 
between the variables, a VCSP can be defined as a CSP pro­
vided with a valuation structure S and a valuation function 

The valuation structure S is a triplet (E, , where 
£ is a valuation set, a total order on E, and the maxi­
mum and the minimum element in E and _ a binary operation 
closed on E. The valuation function defined from C to E, 
associates a valuation to each constraint; the valuation of a 
constraint denotes its importance. 

Let A be an assignment of all the variables and 
be the set of the constraints unsatisfied by A. The valuation 
of A is the aggregation of the valuation of all the constraints 
in 

The objective is to find a complete assignment with mini­
mum valuation. Specific frameworks depend on the retained 
operator Classical CSP (A); Possibilistic CSP (max); Lexi­
cographic CSP (U on multi-sets); Weighted CSP . As many 
real-life problems use an additive criterion, we only consider 
weighted CSP (WCSP) in the sequel of this paper. From an 
algorithmic point of view, WCSPS are generally the most dif­
ficult to solve [Schiex et al., 1995]. 

3 Hybridizations of algorithms 

3.1 Complete search vs local search 
Exact (or complete) tree search methods, such as Branch and 
Bound, are able to produce both an optimal solution, and a 
proof of optimality. But, because of their exponential worst-
case behavior, they may be extremely time consuming. More­
over, it has been experimentally observed that, due to their 
systematic way of exploring the search space, the quality of 
their intermediate solutions is usually very poor. 

Due to their opportunistic way of exploring the search 
space, approximate (or incomplete) methods, based on 
stochastic local search (as Simulated Annealing, Tabu 
Search), can provide good solutions within a reasonable com­
puting time. But, such methods do not guide fast enough the 
search towards the best neighbor solutions. Indeed, they may 
waste a lot of time trying to improve the current solution with 
no success ; this is the case when they remain blocked in local 
minima during a prohibitive time. Such situation is not suit­
able in an anytime context, since the quality of solutions has 
to be improved gradually as fast as possible, as the comput­
ing time increases. Moreover, pure local search algorithms 
generally require a lot of time to adjust their noise parame­
ters ; their efficiency strongly depends on the value of these 
parameters, which are generally application-dependent. 

3.2 H y b r i d algor i thms 

Hybrid algorithms [Focacci et al, ] provide appropriate com­
promises between both kinds of search. More precisely, they 
are very efficient by combining the advantages of both con-
straint propagation (complete search) and opportunistic ex­
ploration of the search space (local search). 

Intertwined hybridizations are the most attractive and rel­
evant hybridizations of algorithms where both complete and 
local search are closely mingled during computation. The 
first kind of such hybrid algorithms belongs to the family of 
local search methods and uses ideas from CP in order to make 
large neighborhoods (LNS [Shaw, 1998]) more tractable. A 
second kind belongs to the family of exact search and uses 
some local search principles to improve the partial solutions 
at each node of the search tree [Prestwich, 2000] or to ex­
plore a set of solutions close to the greedy path in a search 
tree [Caseau et al, 1999]. 

3.3 Hybrid algorithms for anytime contexts 
VNS/LDS+CP is an Intertwined hybridization algorithm. 
From local search, we have retained a Variable Neighborhood 
Search (VNS) which extends the principle of large neigh­
borhoods (LNS) by dynamically adjusting the neighborhood 
size, when the current solution is a local optimum. This 
choice will partially remedy to the weaknesses of pure lo­
cal search methods. Indeed, the more the neighborhood is 
potentially large the more there are chances that it contains 
good solutions and thus improves quickly the current solu­
tion. However, as neighborhoods grow larger, finding the 
best neighbor may require a too expensive computational ef­
fort. So, we have selected the LDS partial search combined 
with constraint propagation (lower bounds computation) to 
efficiently explore these neighborhoods. 

4 The VNS/LDS+CP Method 
VNS/LDS+CP is basically a local search method, as depicted 
in algorithm 1. It differs from classic local search methods by 
the size of the neighborhoods, which is adjusted dynamically 
during the search. It starts with an initial complete assignment 
.s*; then, at each move, it relaxes (or unassigns variables) a 
large part of the current solution s and then rebuilds it (re­
assigns variables) by selecting the best neighbor that strictly 
improves the cost of the current solution. The algorithm ends 
when the maximum number of local moves (MAXMOVHS) is 
reached. 

LDS explores the neighborhood defined by the relaxed part 
of the solution. It benefits from constraint propagation based 
on lower bounds computation, and on dynamic heuristics for 
variable and value ordering. Moreover, only judicious neigh­
borhoods, related to conflict variables (i.e. variables occur-
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ing in violated constraints), are considered. Such a choice 
prevents LDS from modifying the value of conflict variables. 

4.1 Relaxing a solution 
Algorithm 2 describes how to select the variables to be re­
laxed. The function of line (1) computes the set v of current 
variables candidate to relaxation, according to a strategy Sir. 
A basic strategy is to select all the variables that are in con­
flict, size elements of v are randomly chosen to constitute 
rd the set of variables to be relaxed. This choice enables a 
balance between choosing variables according to a specific 
strategy and completely at random. Experiments have shown 
that the introduction of some randomness enables the search 
to escape quickly from local minima. 

4.2 Control of the Neighborhood Size 
Initially, the neighborhood size (size) takes a minimum value. 
To control the neighborhood size, different strategies have 
been implemented. The best strategy we have found, in­
creases systematically size by one, each time the method 
does not improve the cost of the current solution. 

4.3 Rebuilding a solution 
Algorithm 2 defines the function R e b u i l d . The global vari­
ables ub and lb record the upper and lower bounds of the prob­
lem optimum. LB(s,.r,) computes a lower bound of the sub-
problem, limited to the variables after i (i included), discrep 
sets the maximum number of choices that we can diverge 
from the heuristic (discrepancies). 

Limited Discrepancy Search 
The idea of LDS [Harvey and Ginsberg, 1995] is to explore 
heuristically good solutions that might be at a limited dis­
tance from greedy solution. LDS ensures a more balanced ex­

ploration of the search tree, and speeds up the reconstruction 
step, thus improving the performance profile of our method. 
LDS starts from the solution computed by the value heuristic, 
and successively explores solutions by increasing the number 
of discrepancies, until the fixed maximal number of discrep­
ancies is reached. 

We have used a generalized version of LDS for n-ary trees. 
The discrepancy is measured according to the rank of the 
value chosen for every variable in the order given by the 
heuristic on values. We count a single discrepancy for the 
second cheapest value of one variable, two discrepancies for 
either the third cheapest value of one variable, or the second 
cheapest value of two variables, and so on. We only perform 
one iteration of LDS, for a fixed discrepancy. This prevents 
re-visiting leaf nodes. 

Constraint Propagation 
One of the main strengths of our approach lies in the use of 
constraint propagation to prune useless sub-trees and to guide 
the choice of values during the reconstruction, while keeping 
this step fast enough. At each node of the search tree, lower 
bounds are computed in order to locally exclude all partial 
solutions which cannot lead to complete assignments of better 
valuation than the current best solution. To our knowledge, 
no method based on large neighborhoods (in particular VNS) 
uses such a mechanism. 

To compute lower bounds, we have adapted the following 
algorithms LLarrosa et al. , 1999] for wcSPs : (i) Partial For­
ward Checking and Directed Arc Consistency (PFC-DAC), all 
the constraints are directed, and DAC are computed from a di­
rected constraint graph (we have used specific data-structures 
to relax the condition of static variable ordering on DAC) ; 
(ii) Reversible )zfC(PFC-RDAC), constraints directions can 
change dynamically during search, looking for a good di­
rected graph causing a high lower bound ; (iii) Maintaining 
Reversible DAC (PFC-MRDAC), DAC are maintained during 
search, propagating the effect of value pruning. 

Variables and Values heuristics 
Our heuristic for variable ordering first selects the variable 
having the lowest ratio domain cardinality divided by future 
degree. Constraint propagation, based on Forward Checking 
+ Directed Arc Consistency, allows us to use a dynamic min­
imum inconsistency count value ordering. During search, for 
each value, so-called Inconsistency Counts (ic) and Directed 
Arc Consistency counts (dac) which record the look-ahead ef­
fects on future (unassigned) variables, are computed. Values 
are selected by their increasing ic + dac. 

5 Experimentations on C E L A R Benchmarks 

5.1 Instances of CELAR 
The CELAR (French Centre d 'Electronique de I'Armement) 
has made available a set of 1 I instances of the Radio Link Fre­
quency Assignment Problem (RLFAP) [Cabon et al., 1999]. 
Most of them can be naturally cast as binary WCSPS. For our 
experiments, we have selected instance 6 (which involves 200 
variables, having an average of 40 values in their domain, and 
1322 constraints), instance 7 (which involves 400 variables, 
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having an average of 40 values in their domain, and 2866 con­
straints), and instance 6-Sub 1 (which involves 28 variables, 
having an average of 40 values in their domain, and 314 con­
straints) extracted from instance 6. These instances (6 and 7) 
are the most difficult ones. Whereas the optimum of instances 
6 and 6-Sub 1 are known (respectively 3389 and 2669), the 
optimum of instance 7 is still unknown; the best known upper 
bound is equal to 343592. 

5.2 Exper imental Methodology 
Our method has 4 parameters : the maximum number of local 
moves (MAXMOVES), the initial neighborhood size (size), 
the number of discrepancies (discrcp), and the propagation 
scheme. For all experiments, MAXMOVES has been set to 
150 and size to 4 ; it is the best value we have found 
among the following set of values : {2 ,3 ,4 ,5 ,6} . We car­
ried out experiments with different values of discrepancies 
(discrcp E {2 ,3,4,5}) and with three different propagation 
mechanisms : PFC-DAC, PFC-RDAC and PFC-MRDAC. 

For each combination of parameter settings, we ran 
VNS/LDS+CP 50 times on the considered instances. Dur­
ing each run, the best cost of the current solution has been 
recorded at regular time intervals (10 seconds). Al l plotted 
figures are mean performance profiles over the 50 runs. The 
methods have been implemented in choco [Laburthe, 2000]. 

5.3 Setting parameters for VNS/LDS+CP 
Number of discrepancies 
Figure 1 (top) shows the performance profiles obtained with 
PFC-DAC, for different settings of discrcp on instance 6. 
Performance profiles for discrcp - 2 and 3 are almost the 
same. We give only the curve associated to discrcp - 3. Re­
sults indicate, as expected, that the number of discrepancies 
has a great impact on the quality of the computed solutions. 
LDS with (discrcp = 4) gives the best results. The poor re­
sults for (discrcp > 4) are probably due to the fact that our 
value ordering does not make so many mistakes. Indeed, we 
exploit the propagation scheme to guide the value choices. 
Thus, few discrepancies are necessary to repair heuristic er­
rors. In contrast, for low discrepancies (discrcp < 3), the 
value heuristic too closely limits the solutions we can find, 
and so, it provides poor guidance to good solutions. For the 
instance 7, discrcp = 4 is also the best value. 

Propagation mechanism 
We turn now to choose the propagation scheme which pro­
duces significant lower bounds and, as global effect, leads to 
a better behavior of our method. Figure 1 (bottom) reports 
the performance profiles obtained for the three propagation 
algorithms, with discrep = 4 on instance 6. LDS with PFC-
DAC leads to very substantial profits. Because of the over­
head of propagation over small neighborhoods these bene­
fits decrease clearly when using stronger propagation (PFC-
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RDAC and PFC-MRDAC). Indeed, compared to PFC-DAC, 
the two other propagation schemes perform more work per 
node to finally obtain results very close to PFC-DAC. So, the 
more complex and time-consuming propagation schemes do 
not pay-off for this context. 

5.4 Comparisons and discussion 

We have compared VNS/LDS+CP (discrap = <1 with PFC-
DAC) with LNS/CP/GR [Lobjois et al, 2000], another hybrid 
method which also relies on solving VCSPs in an interruptible 
context, and also with two standard versions of Simulated-
Annealing (SA) : Quick and Medium. 

LNS/CP/GR is based on the principle of LNS with neigh­
borhood size being constant during all the search. To rebuild 
the relaxed variables, it uses a greedy algorithm combined 
with constraint propagation. But this propagation (performed 
variable per variable) is only used for selecting the best val­
ues for each variable, which is fundamentally different from 
our CP based on usual propagation for WCSP. For instances 6 
and 7, the percentage of unassigned variables represents 40% 
of the total number of variables [Lobjois et a/., 2000]. 

Figure 2 compares the performances of the four methods. 
The performance profile of VNS/LDS+CP is always better 
than those of the two versions of SA. At the beginning, the 
profile of VNS/LDS CP is very close to that of LNS/CP/GR. 
But after few seconds of computation (< 20 seconds on in­
stance 6 and < 35 seconds on instance 7), VNS/LDS+CP 
becomes very effective and always provides solutions of bet­
ter quality, thus clearly outperforming LNS/CP/GR on both 
instances. This behavior can be explained by the fact that, 
at the beginning, the size of the neighborhood is relatively 
small and consequently the benefits of constraint propaga­
tion are poor. But as soon as this size becomes sufficiently 
large, our propagation mechanism (lower bounds computa­
tion) produces more pruning, and becomes very effective. 
This leads to a better compromise between quality and time 
for VNS/LDS+CP. This confirms our choice for computing 
significant lower bounds. Note however, the good anytime 
behavior of LNS/CP/GR compared with those of SA. 

Figure 4: Comparing VNS and LNS on instance O-.6-Subl. 

5.5 Study of mechanisms VNS and LDS+CP 
In order to evaluate the contribution of each component of 
VNS/LDS+CP we have carried out experiments on instance 
6-Subl, with MAX MOVES - 150, and size = 4 ; the two other 
instances being out of reach from complete searches. Five 
methods have been compared : the Depth First Branch and 
Bound (DFBB), LDS with only one iteration, two variants of 
LNS (LNS/CP/GR and LNS/LDS+CP) which mainly differ 
by their reconstruction mechanism, and VNS/LDS +CP. For 
the two variants of LNS, the best percentage of unassigned 
variables represents 60% of the total number of variables. 

Once again, discrcp = A constitutes the best parameter 
setting for VNS/LDS+CP. The behavior of VNS/LDS+CP is 
quite similar to those observed on instances 6 and 7, which 
clearly offers better performance profiles than the other com­
peting methods. On this instance, VNS/LDS+CP almost finds 
the optimum in a very short time at each run. We can draw 
some remarks : 

• pure LDS (or only one iteration of LDS) is completely 
inefficient in an anytime context, even if LDS leads to 
better performance profiles than DFBB. 

• the efficiency of VNS/LDS+CP is certainly partly due 
to the reconstruction mechanism. Indeed, the compar­
ison between performance profiles of LNS/CP/GR and 
LNS/LDS+CP show that, with an effective propagation 
(lower bounds computation) combined with LDS, LNS 
obtains a gain in quality of 7% after 20 seconds. 

• the use of variable size neighborhoods is a key point 
in the efficiency of VNS/LDS+CP. Indeed, it produces 
better performance profiles than LNS/LDS+CP. After 2 
seconds, VNS obtains a gain in quality of 9% ; this gain 
reaches a value of 5% after 15 seconds. This amelio­
ration comes from the speed of the exploration of rela­
tively small neighborhoods (in particular during the first 
moves of VNS). This greatly improves the quality of the 
computed upper bound which will enable a better prun­
ing at the next reconstruction step. This is not the case 
for LNS, which needs much more time to obtain good 
upper bounds, due to the important size of the neighbor­
hoods. 

To evaluate the improvement speed of the quality of 
solutions provided by VNS and LNS, figure 4 compares 
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VNS/LDS+CP and LNS/LDS+CP, in term of the average per­
centage of improvement, Qp(t), with respect to the initial 
cost, Co, and in term of the number of attempted moves (in 
percentage). Qp(t) = 100 . (C0 - C( / ) ) /C 0 , where C{t) is 
the valuation of the best solution found at each instant t. 

As depicted in figure 4, VNS/LDS+CP provides the better 
improvement of the initial cost Co. This difference in quality 
(in favor of VNS) is very significant during the first instants. 
After only 4 seconds of computation, VNS improves Co by 
35%, with a percentage of attempted moves equal to 4% of 
MAXMOVES. For comparison, LNS needs 15 seconds and 
practically three times more of local moves (~ 14%) to reach 
the same improvement of quality. Moreover, the number of 
moves attempted by LNS grows larger with time, while for 
VNS this number remains low and quasi constant. 

6 Resource allocation in ATM networks 
VNS/LDS+CP has been successfully applied to a real-life 
anytime resource allocation problem. This application, de­
veloped for France Telecom R&D, takes place in an ATM 
(Asynchronous Transfer Mode) network administration con­
text. The problem consists in planning demands of connec­
tion over a period of one year. Reservations must be com­
puted within at most one minute per demand. 

A new demand is accepted if both bandwidth requirements 
and quality of service are satisfied. If not, we try to reroute 
some already accepted connections in order to find a route 
for the new demand. If rerouting fails, the demand is re­
jected. First, a routing heuristic computes shortest paths 
which minimize capacity violations on the links. From these 
violations, a sub-area of the network that can be modified 
by rerouting some already accepted connections is deter­
mined and modelled as a VCSP. Then, rerouting is performed 
with VNS/LDS+CP. Experimental results show that rerout­
ing with VNS/LDS+CP enables to admit an average of 67% 
of demands that are rejected with a greedy algorithm without 
rerouting [Loudni et al, 2003]. 

7 Conclusions and further work 
VNS/LDS+CP is a new hybrid method for solving constraint 
optimization problems (modelled as VCSPs) in an anytime 
context. It has been successfully applied to a real-life any­
time resource allocation problem in ATM networks (67% of 
rejected demands are now accepted). 

Experiments on the CELAR benchmarks have shown that 
VNS/LDS+CP provides better performance profiles than the 
other competing methods. Moreover, our method is robust : 
for all considered instances, the best parameters setting is al­
ways the same. Finally, VNS-LDS+CP is stable : the distri­
bution of the medians 1/4, 1/2 and 3/4 shows that the vari­
ation of the evolution of solution quality is negligible within 
the fifty runs. However, the difference between the best run 
and those of the medians is relatively distant for instance 7. 

From an anytime point of view, in addition to the proper­
ties of monotonicity, interruptibility and measurable quality, 
our performance profiles also verify the important property of 
diminishing returns, which guarantees that the improvement 
in solution quality is larger at the early stages of computation. 

Performance profiles show a decelerating phase leading to 
a quasi stable plateau. To escape from this plateau, we intend 
to study two possibilities : to cooperate with other efficient 
pure local search method [Voudouris and Tsang, 1998] or to 
re-start our method. 

In this paper we have mainly focused on the design of any­
time algorithms. Works remain to be done concerning tech­
niques for monitoring and control (see [Hansen and Zilber-
stein, 2001]). We are currently investigating such techniques 
for meta-level control. The use ofnogoods would help to ob­
tain more relevant neighborhoods. 
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