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Abstract 

We propose a generalization of expected utility 
that we call generalized EU (GEU), where a deci­
sion maker's beliefs are represented by plausibil­
ity measures and the decision maker's tastes are 
represented by general (i.e., not necessarily real-
valued) utility functions. We show that every agent, 
"rational" or not, can be modeled as a GEU max­
imizes We then show that we can customize 
GEU by selectively imposing just the constraints 
we want. In particular, by show how of Savage's 
postulates corresponds to constraints on GEU. 

1 Introduction 
Many decision rules have been proposed in the literature. Per­
haps the best-known approach is based on maximizing ex­
pected utility (EU). This approach comes in a number of 
variants; the two most famous are due to von Neumann and 
Morgenstern [1947] and Savage [1954]. They all follow the 
same pattern: they formalize the set of alternatives among 
which the decision maker (DM) must choose (typically as 
acts1 or lotteries2). They then give a set of assumptions (often 
called postulates or axioms) such that the DM's preferences 
on the alternatives satisfy these assumptions iff the prefer­
ences have an EU representation, where an EU representation 
of a preference relation is basically a utility function (and a 
probability measure when acts are involved) such that the re­
lation among the alternatives based on expected utility agrees 
with the preference relation. Moreover, they show that the 
representation is essentially unique. In other words, if the 
preferences of a DM satisfy the assumptions, then she is be­
having as if she has quantified her tastes via a real-valued 
utility function (and her beliefs via a probability measure) 
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1Formally, given a set S of states of the world and another set C 
of consequences, an act a is a function from S to C that, intuitively, 
associates with each state S the consequence of performing a in ,s. 

2Formally, a lottery is a probability distribution over conse­
quences; intuitively, the distribution quantifies how likely it is that 
each consequence occurs. 

and she is relating the alternatives according to their expected 
utility. The assumptions are typically regarded as criteria for 
rational behavior, so these results also suggest that if a DM's 
beliefs are actually described by a probability measure and 
her tastes are described by a utility function, then she should 
relate the alternatives according to their expected utility (if 
she wishes to appear rational). 

Despite the appeal of EU maximization, it is well known 
that people do not follow its tenets in general [Resnik, 1987]. 
As a result, a host of extensions of EU have been proposed 
that accommodate some of the more systematic violations 
(see, for example, [Gul, 1991; Gilboa and Schmeidler, 1989; 
Giang and Shenoy, 2001; Quiggin, 1993; Schmeidler, 1989; 
Yaari, 1987]). Again, the typical approach in the decision 
theory literature has been to prove representation theorems, 
showing that, given a suggested decision rule R, there ex­
ists a collection of assumptions such that a preference rela­
tion satisfies the assumptions iff it has an R representation, 
where an 7v representation of a preference relation is essen­
tially a choice of tastes (and beliefs) such that, given these 
as inputs, R relates the alternatives the way the preference 
relation does. 

Given this plethora of rules, it would be useful to have a 
general framework in which to study decision making. The 
framework should also let us understand the relationship be­
tween various decision rules. We provide such a framework 
in this paper. 

The basic idea of our approach is to generalize the notion 
of expected utility so that it applies in as general a context 
as possible. To this end, we introduce expectation domains, 
which are structures consisting of 

• three (component) domains: a plausibility domain, a 
utility domain, and a valuation domain, 

Intuitively, combines plausibility values and utility values 
much the same way that x combines probability and (real) 
utility, while combines the products to form the (general­
ized) expected utility. 

We have three domains because we do not want to require 
that DMs be able to add or multiply plausibility values or util­
ity values, since these could be qualitative (e.g., plausibility 
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values could be {"unlikely", "likely", "very l ike ly" , . . . } and 
utility values could be {"bad", "good", "better", . . . } ) . In 
general, we do not assume that is an order (or even a pre-
order), since we would like to be able to represent as many 
preference relations and decision rules as possible. 

Once we have an expectation domain, DMs can express 
their tastes and beliefs using components of the expectation 
domain. More specifically, the DMs express their beliefs 
using a plausibility measure [Friedman and Halpern, 1995], 
whose range is the plausibility domain of the expectation do­
main (plausibility measures generalize probability measures 
and a host of other representations of uncertainty, such as sets 
of probability measures, Choquet capacities, possibility mea­
sures, ranking functions, etc.) and they express their tastes 
using a utility function whose range is the utility domain of 
the expectation domain. In an expectation domain, it is pos­
sible to define a generalization of expected utility, which we 
call generalized EU (GEU). The GEU of an act is basically 
the sum (in the sense of ©) of products (in the sense of <8>) 
of plausibility values and utility values that generalizes the 
standard definition of (probabilistic) expected utility over the 
reals in the obvious way. 

We start by proving an analogue of Savage's result with 
respect to the decision rule (Maximizing) GEU.3 We show 
that every preference relations on acts has a GEU represen­
tation (even those that do not satisfy any of Savage's postu­
lates), where a GEU representation of a preference relation 
basically consists of an expectation domain E, plausibility 
measure PI, and utility function u, such that the way acts 
are related according to their GEU agrees with the preference 
relation (Theorem 3.1). In other words, no matter what the 
DM's preference relation on acts is, she behaves as if she has 
quantified her beliefs by a plausibility measure and her tastes 
via a utility function, and is relating the acts according to their 
(generalized) expected utility as defined by the of 
some expectation domain. That is, we can model any DM 
using GEU, whether or not the DM satisfies any rationality 
assumptions. An important difference between our result and 
that of Savage is that he was constructing EU representations, 
which consists of a real-valued utility function u and '& prob­
ability measure Pr (and the expectation domain is fixed, so 

Given that GEU can represent all preference relations, it 
might be argued that GEU is too general—it offers no guide­
lines as to how to make decisions. We view this as a feature, 
not a bug, since our goal is to provide a general framework in 
which to express and study decision rules, instead of propos­
ing yet another decision rule. Thus the absence of "guide­
lines" is in fact an absence of limitations: we do not want to 
exclude any possibilities at the outset, even preference rela­
tions that are not transitive or are incomplete. Starting from 

3Many decision rules involve optimizing (i.e., maximizing or 
minimizing) some value function on the acts. Sometimes it is ex­
plicitly mentioned whether the function is to be maximized or min­
imized (e.g., "Minimax Regret" says explicitly to "minimize the 
maximum regret") while other times only the function name is men­
tioned and it is implicitly understood what is meant (e.g., "EU" 
means "maximize EU"). In this paper we will use "Maximizing 
GEU" and "GEU" interchangeably. 

a framework in which we can represent all preference rela­
tions, we can then consider what preference relations have 
"special" representations, in the sense that the expectation 
domain, plausibility measure, and utility function in the rep­
resentation satisfy some (joint) properties. This allows us to 
show how properties of expectation domains correspond to 
properties of preference relations. We can then "customize" 
GEU by placing just the constraints we want. We illustrate 
this by showing how each of Savage's postulates corresponds 
in a precise sense to an axiom on GEU. 

Intuitively, a decision rule maps tastes (and beliefs) to pref­
erence relations on acts. Given two decision rules R1 and 
R2, an R1 representation of R2 is basically a function T that 
maps inputs of R2 to inputs of R1 that represent the same 
tastes and beliefs, with the property that R 1 (T(Z) ) = R2(x)-
Thus, T models, in a precise sense, a user of R2 as a user of 
R1, since T preserves tastes (and beliefs). In a companion 
paper [Chu and Halpern, 2003] we show that (almost) every 
decision rule has a GEU representation. 

Although there has been a great deal of work on decision 
rules, there has been relatively little work on finding gen­
eral frameworks for representing decision rules. In partic­
ular, there has been no attempt to find a decision rule that 
can represent all preference relations. There has been work 
in the fuzzy logic community on finding general notions of 
integration (which essentially amounts to finding notions of 
expectation) using generalized notions of see, for 
example, [Benvenuti and Mesiar, 2000]. However, the expec­
tation domain used in this work is (a subset of) the reals; ar­
bitrary expectation domains are not considered. Luce [1990; 
2000] also considers general addition-like operations applied 
to utilities, but his goal is to model joint receipts (which are 
typically modeled as commodity bundles in economics) as a 
binary operation, rather than to represent decision rules. 

The rest of this paper is organized as follows. We cover 
some basic definitions in Section 2: plausibility domains, 
utility domains, expectation domains, decision problems, and 
GEU. We show that every preference relation on acts has 
a GEU representation in Section 3. In Section 4, we show 
that each of Savage's postulates corresponds to an axiom on 
GEU. We conclude in Section 5. Proofs of theorems stated 
are available at http://www.cs.cornell.edu/home/halpcrn. 

2 Preliminaries 
2.1 Plausibility, Utility, and Expectation Domains 
Since one of the goals of this paper is to provide a general 
framework for all of decision theory, we want to represent 
the tastes and beliefs of the DMs in as general a framework 
as possible. In particular, we do not want to force the DMs to 
linearly preorder all consequences and all events (i.e., subsets 
of the set of states). To this end, we use plausibility measures 
to represent the beliefs of the DMs and (generalized) utility 
functions to represent their tastes. 
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Clearly plausibility measures are generalizations of prob­
ability measures. As pointed out in [Friedman and Halpern, 
1995], plausibility measures generalize a host of other repre­
sentations of uncertainty as well. Note that while the proba­
bility of any two sets must be comparable (since R is totally 
ordered), the plausibility of two sets may be incomparable. 

We also want to represent the tastes of DMs using some­
thing more general than R, so we allow the range of utility 
functions to be utility domains, where a utility domain is a set 
U endowed with a reflexive binary relation . Intuitively, 
elements of U represent the strength of likes and dislikes of 
the DM while elements of P represent the strength of her be­
liefs. Note that we do not require the DM's preference to be 
transitive (although we can certainly add this requirement). 
Experimental evidence shows that DMs' preferences occa­
sionally do seem to violate transitivity. 

An act a is simple i f f its range is finite. That is, a is simple 
if it has only finitely many consequences. Many works in 
the literature focus on simple acts (e.g., [Fishburn, 1987]). 
We assume in this paper that A contains only simple acts; 
this means that we can define (generalized) expectation using 
finite sums, so we do not have to introduce infinite series or 
integration for arbitrary expectation domains. Note that all 
acts are guaranteed to be simple if either S or C is finite, 
although we do not assume that here. 

A decision problem is essentially a decision situation to­
gether with information about the tastes and beliefs of the 
DM; that is, a decision problem is a decision situation to­
gether with the subjective part of the circumstance that faces 
the DM. Formally, a (plausibilistic) decision problem is a 
tuple V = (A, E, u, PI), where 

• A = (A, 5, C) is a decision situation, 

• u : C —► U is a utility function, and 
• PI : 2s —► P is a plausibility measure. 

We say that V is monotonic i f f E is monotonic. 

2.3 Expected Ut i l i t y 
Let V — {{A,S, C), E, u,Pl) be a plausibilistic decision 
problem. Each a € A induces a utility random variable 
uu : S —> U as follows: uu(s) = u(a(s)). In the standard 
setting (where utilities are real-valued and PI is a probability 
measure Pi) , we can identify the expected utility of act a with 
the expected value of ua with respect to Pr, computed in the 
standard way: 

Note that the notion of additivity we defined is a joint prop­
erty of several components of a decision problem (i.e., <3), <&, 
u, and PI) instead of being a property of PI alone. Additiv­
ity is exactly the requirement needed to make the analogue 
of (2.4) equivalent to (2.3). While decision problems involv­
ing probability are additive, those involving representations 
of uncertainty such as Dempster-Shafer belief functions are 
not, in general. 
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We say that E is monotonic i ff (2.1) holds. It turns out that 
monotonicity does not really make a difference by itself; see 
the comments after the proof of Theorem 3.1. 

2.2 Decision Situations and Decision Problems 
A decision situation describes the objective part of the cir­
cumstance that the DM faces (i.e., the part that is independent 
of the tastes and beliefs of the DM). Formally, a decision sit­
uation is a tuple A = (A, 5, C) , where 

• S is the set of states of the world, 

• C is the set of consequences, and 

• A is a set of acts (i.e., a set of functions from S to C). 
4Sometimes we use x to denote Cartesian product; the context 

will always make it clear whether this is the case. 



4 Representing Savage's Postulates 
Theorem 3.1 shows that GEU can represent any preference 
relation. We are typically interested in representing prefer­
ence relations that satisfy certain constraints, or postulates. 
The goal of this section is to examine the effect of such con­
straints on the components that make up GEU. For definite-
ness, we focus on Savage's postulates. For ease of exposition, 
we restrict to additive decision problems in this section; recall 
that this restriction does not affect Theorem 3.1. 

A set Vc of axioms about (i.e., constraints on) plausibilis-
tic decision problems represents a set of postulates Pr about 
decision situations and preference relations iff 
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Theorem 3.1 can be viewed as saying that the empty set of 
axioms represents the empty set of postulates. 

5Note that, unlike most representation theorems, there is no 
uniqueness condition. However, we can show that our representa­
tion is canonical in a certain sense. 

3 Representing Arbitrary Preference 
Relations 

In this section, we show that every preference relation on acts 
has a GEU representation. GEU, like all decision rules, is 
formally a function from decision problems to preference re-

The idea is to let each consequence be its own utility and 
each set be its own plausibility, and define such that 

all simple acts; in particular, A contains all constant acts. 
We do not assume that here.) 



that X1,..., Xn is a partition of Y iff the Xis are nonempty 
and pairwise disjoint, and Ui Xi = Y. 

Fix some decision situation (A, S, C). Readers familiar 
with [Savage, 1954] will recall that Savage implicitly as­
sumes that A consists of all possible functions from S to 
C, since the DM can be questioned about any pair of func­
tions. Throughout this paper, we have assumed that A could 
be any nonempty subset of the set of all simple acts. It is 
possible to maintain that assumption here, though some of 
the postulates would fail, not because does not relate cer­
tain members of A, but because A does not contain certain 
pairs of acts. We could adapt the postulates by "relativizing" 
them (so acts not in A are not required to be related) as we do 
in the full paper; however, that involves changing the state­
ments of Savage's postulates somewhat, and the presentation 
becomes more complicated. To simplify the exposition here, 
we assume in this section only that A consists of all simple 
acts. Here are Savage's first six postulates (stated under the 
assumption that A consists of all simple acts from S to C, 
so that, for example, if a and b are in A, and X C S, then 
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S into events such that the DM's preference about a and b is 
unaffected if c were to happen in any element of the partition. 
Savage also has a seventh postulate, but it is relevant only for 
general (nonsimple) acts; since we consider only simple acts, 
we omit it here. 

Since we focus on additive decision problems in this sec­
tion, we can define a notion of conditional GEU, which 
greatly simplifies the presentation of the GRU axioms. Given 

PI is the standard necessary condition for representation 
by EU (and many of its generalizations), since the reals are 

C 



Al says that the expected utility values are linearly pre-
ordered; more specifically, A 1(a) says that they are totally 
preordered and A 1(b) says that the relation is transitive. 
Note that Al does not say that the whole valuation domain 
is linearly preordered: that would be a sufficient but not a 
necessary condition for GEU(D) to satisfy PI . Since we 
want necessary and sufficient conditions for our represen­
tation results, some axioms apply only to expected utility 
values rather than to arbitrary elements of the valuation do­
main. As the following theorem shows, every subset of 
{A l (a ) , Al (b ) , . . . , AG} represents the corresponding subset 
of { P l ( a ) , P l ( b ) , . . . , P 6 } . 

Theorem 4.1 is a strong representation result. For example, 
if we are interested in capturing all of Savage's postulates but 
the requirement that is totally ordered, and instead are 
willing to allow it to be partially ordered (a situation explored 
by Lehmann [1996]), we simply need to drop axiom A 1(b). 
Although we have focused here on Savage's postulates, it is 
straightforward to represent many of the other standard pos­
tulates considered in the decision theory literature in much 
the same way. 

5 Conclusion 
We have introduced GEU, a notion of generalized EU and 
shown that GEU can (a) represent all preference relations on 
acts and (b) be customized to capture any subset of Savage's 
postulates. In [Chu and Halpern, 2003], we show that GEU 
can be viewed as a universal decision rule in an even stronger 
sense: almost every decision rule has a GEU representation. 
Thus, the framework of expectation structures together with 
GEU provides a useful level of abstraction in which to study 
the general problem of decision making and rules for decision 
making. 
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