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Abstract 
Utility elicitation is a critical function of any au­
tomated decision aid, allowing decisions to be tai­
lored to the preferences of a specific user. How­
ever, the size and complexity of utility functions 
often precludes full elicitation, requiring that de­
cisions be made without full utility information. 
Adopting the minimax regret criterion for decision 
making with incomplete utility information, we de­
scribe and empirically compare several new pro­
cedures for incremental elicitation of utility func­
tions that attempt to reduce minimax regret with as 
few questions as possible. Specifically, using the 
(continuous) space of standard gamble queries, we 
show that myopically optimal queries can be com­
puted effectively (in polynomial time) for several 
different improvement criteria. One such criterion, 
in particular, empirically outperforms the others we 
examine considerably, and has provable improve­
ment guarantees. 

1 Introduction 
As software for decision making under uncertainty becomes 
increasingly common, the process of utility elicitation takes 
on added importance. Tailoring decisions to a specific user 
requires knowledge of the user's utility function, information 
that generally cannot be built into software in advance. In 
domains as varied as travel planning, product configuration, 
and resource allocation, to name but a few, assessing a user's 
utility function is an integral part of interactive decision mak­
ing. Unfortunately, as is well-known among decision ana­
lysts, utility functions are unwieldy, complex, and difficult 
for users to articulate [5]. To mitigate these difficulties, ana­
lysts have developed many techniques for easing the burden 
of elicitation. For example, structuring of multiattribute util­
ity functions reduces the number of parameters that need to be 
assessed [6]; and the use of standard gamble queries and sen­
sitivity analysis allows users to calibrate utilities more easily 
[5]. 

More recently, emphasis has been placed on decision mak­
ing with incomplete utility information. The principle of 
maximum expected utility (MEU) cannot be used directly 
in such cases, since the utility function is unknown; thus 
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new decision criteria are needed. In addition, methods 
for the automatic generation of queries have been devel­
oped that reduce uncertainty or incompleteness in the util­
ity function with minimal effort. Within A l , probabilistic 
models of utility function uncertainty have been used [4; 
2]. By assuming a density over possible utility functions, 
expectations over this density can be taken to determine the 
value of a decision; and standard Bayesian updating tech­
niques can be used to account for the responses to queries. 
A different perspective is taken in work on imprecisely spec­
ified multiattribute utility theory (ISMAUT) [8; 7] in which 
linear constraints on multiattribute utility functions are re­
fined, allowing the set of Pareto optimal decisions to be iden­
tified; these constraints arc often refined until one action can 
be proven optimal. Boutilier, Bacchus and Brafman [3] and 
Blythe [1] adopt a somewhat related perspective, also reason­
ing with linear constraints on utility functions. 

In this work, we adopt a distribution-free model, work­
ing with linear constraints on utility functions, much like 
ISMAUT. Unlike ISMAUT, we allow for decisions to be 
made (or recommended) even when the incompleteness in 
utility knowledge prevents us from proving a decision is op­
timal. In such circumstances, we adopt the minimax regret 
decision criterion. We also propose and examine several 
methods for generating queries that reduce regret quickly, 
in contrast to work on ISMAUT (where query generation 
strategies have not been studied in depth). In this sense, 
our model more closely resembles probabilistic models [4; 
2], which rely on the fact that decisions of good expected 
quality can be made with uncertain utility information. Using 
the minimax regret criterion, we generate decisions whose 
quality (difference from optimal) can be bounded in the face 
of incomplete utility information. These bounds can be traded 
off against query cost or minimum error requirements to 
guide the query process. 

The paper is organized as follows. We outline relevant 
background in Section 2 and define the minimax regret crite­
rion for decision making with incomplete utility information. 
We show how decisions of minimax regret can be computed 
using simple linear programs (LPs) if utility constraints are 
linear. We also discuss incremental elicitation, focusing on 
standard gamble queries (SGQs) [5], the responses to which 
impose one-dimensional, linear utility constraints that can be 
easily handled using LPs. Our key contribution is described 
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in Section 3, where we develop several myopic elicitation 
strategies. Assuming linear constraints in each utility dimen­
sion (an assumption consistent with the use of SGQs), we 
show that the minimax regret improvement offered by any 
response to a SGQ, as a function of the (continuous) query 
parameter, is piecewise linear (PWL) and weakly monotonic 
(decreasing or increasing, depending on the response). This 
fact allows optimal queries under each query strategy to be 
computed efficiently, in time linear in the number of utility 
attributes, despite the fact that query space is continuous. We 
present empirical results comparing the different strategies in 
Section 4, demonstrating the effectiveness, in particular, of 
the maximum expected improvement strategy. 

2 Minimax Regret with Incomplete Utility 
Information 

We assume a system charged with making a decision on be-
half of a user in a specific decision scenario. By a decision 
scenario, we refer to a setting in which a fixed set of choices 
(e.g., actions, policies, recommendations) are available to the 
system, and the (possibly stochastic) effects of these choices 
are known. For example, the decisions could be courses of 
medical treatment with known probabilities for specific out­
comes [4]. The system's task is to take the optimal decision 
with respect to the user's utility function over outcomes, or 
some approximation thereof. The system may have little in­
formation about the user's utility function, so to achieve this, 
it must find out enough information about this utility function 
to enable a good decision to be made. We assume that The 
system has available to it a set of queries it can ask of the user 
that provide such information. We make these concepts more 
precise below. 

2.1 The M in imax Cr i te r ion 

Formally, a decision scenario consists of a finite set of possi­
ble decisions D, a finite set of n possible outcomes (or states) 
5, and a distribution function Prd e A(S) , for each d 6 D1 

The term Prd(s) denotes the probability of outcome s be­
ing realized if the system takes decision d. A utility function 
u : S —> [0,1] associates utility u(s) with each outcome 
s. We often view u as a n-dimensional vector u whose ith 
component Ui is simply u(s{). We assume that utilities are 
normalized in the range [0,1] for convenience. The expected 
utility of decision d with respect to utility function u is: 

Note that EU(d,u) is linear in u. The optimal decision d* 
w.r.t. u is that with maximum expected utility (MEU). 

In general the utility function u wi l l not be known with cer­
tainty at the start of the elicitation process, nor at its end. As 
in ISMAUT [8; 7], we model this uncertainty by assuming a 
set of linear constraints C over the set of possibly utility func­
tions U = [0, l ] n . More precisely, we assume that constraints 

'The extension of our elicitation methods to a set of possible 
decision scenarios is straightforward. 

over unknown utility values ui are linear. We use C U to 
denote the subspace of U satisfying C. 

If a system makes a decision d under such conditions of 
incomplete utility information, some new decision criterion 
must be adopted to rank decisions. Following [3], we adopt 
the minimax regret decision criterion.2 Define the optimal 
decision d*u with respect to utility vector u to be 

If the utility function were known, du would be the correct 
decision. The regret of decision di with respect to u is 

i.e., the loss associated with executing di instead of acting 
optimally. Let C C U be the feasible utility set. Define the 
maximum regret of decision di with respect to C to be 

and the decision d*c with minimax regret with respect to C: 

The (minimax) regret level of feasible utility set C is 

If the only information we have about a user's utility function 
is that it lies in the set C, then d*c is a reasonable decision. 
Specifically, without distributional information over the set 
of possible utility functions, choosing (or recommending) d*r 

minimizes the worst case loss with respect to possible real­
izations of the utility function (e.g., if the true u were chosen 
by an adversary). 

If C is defined by a set C of linear constraints, then d*c 

as well as MMR(C) can be computed using a set of linear 
programs [3]. We can compute the pairwise max regret, for 
any pair of decisions di and dj, 

using an LP (i.e., maximizing a linear function of the un­
known outcome utilities subject to C). Solving 0(\D\2) such 
LPs, one for each ordered pair of actions, allows us to iden­
tify the decision d*c that achieves minimax regret and to de­
termine the minimax regret level MMR(C). 

2.2 Incremental El ic i tat ion 
Given partial knowledge of a utility function in the form of 
constraint set C, the optimal decision d*c may have an unac­
ceptable level in regret. In such a case, a user could be queried 
in order to reduce this level of uncertainty, thus generally im­
proving decision quality.3 
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A common type of query is a standard gamble w.r.t. out­
come .si, where the user is asked if she prefers Si to a gam­
ble in which the best outcome sT occurs with probability / 
and the worst s± occurs with probability 1 - / [6]. We wil l 
designate this query qi(l) and focus our attention on such 
standard gamble queries or SGQs.4 Given a response yes 
to query qi(/), the constraint ut > I can be imposed on the 
user's utility function, thus (in general) refining our knowl­
edge; similarly, a no response corresponds to the constraint 
ui < I. A response to any standard gamble query imposes 
a one-dimensional (i.e., axis parallel) linear constraint on the 
utility set. Thus if our initial constraint set C is linear, comput­
ing the minimax optimal decision after a sequence of SGQs 
can be accomplished using the LP method above. Further­
more, if C consists of a set of bounds on utility values in each 
dimension—i.e., C forms a hyper-rectangle within [0, l ] n — 
then after any sequence of SGQs, the feasible utility set re­
tains this form. 

The interactive decision making context we consider is one 
in which queries are asked repeatedly until the minimax re­
gret level falls to some acceptable value. At that point the 
"optimal" decision, that with minimax regret given the cur­
rent constraints, is recommended. Termination can be based 
on simple thresholding, or can take into account the cost of 
a query (which can be weighed against the predicted im­
provement in decision quality).5 Generally, queries will be 
asked that offer the greatest predicted improvement in deci­
sion quality. 

Both query selection and termination rely critically on the 
way in which "predicted improvement in decision quality" 
is defined for a query. For example, when asking a query 
qi{l) with respect to current constraint set C, we obtain two 
constraint sets Cno and Cyes.,respectively, given responses, 
no and yes. We might then define the improvement in de­
cision quality associated with the query as some function of 
MMR(Cno) and MMR(Cyes). Such a method of evaluating 
queries is myopic: the query is evaluated in isolation, without 
consideration of its impact on the value or choice of future 
queries. 

It is important to note that optimal query choice is inher­
ently nonmyopic—in general, a sequence of several queries 
may offer much more value than the aggregate myopic values 
of the component queries. Unfortunately, nonmyopic meth­
ods require some form of lookahead, and thus often impose 
severe computational costs on the process of query selec­
tion. For this reason, we focus on the development of several 
myopic query selection strategies in the next section. This 
is analogous to the use of myopic methods for the approx­
imation of value of information in cases where uncertainty 
is quantified probabilistically; while the computation of true 
value of information requires some form of sequential rea-

4Other types of queries could be considered, though we rely on 
the special nature of SGQs in some of our results. SGQs are used 
widely in decision analysis [5], and have been the main query type 
studied in recent Bayesian elicitation schemes [4; 2]. 

5Of course, elicitation can continue until a zero-regret (i.e., opti­
mal) decision is identified: this occurs whenever C C Rd for some 
decision d, the region of utility space for which d is optimal. The 
regions Rd are convex polytopes within U. 

soning, myopic approximations tend to be used frequently in 
practice [5; 4]. 

3 Myopic Elicitation Strategies 
In this section we describe three myopic strategies for query 
selection under the minimax regret criterion. Throughout this 
section we make the following assumptions: 

(a) The initial constraints have the form of upper and lower 
bounds in each utility dimension (these may be trivial 
bounds, 0, 1). 

(b) SGQs are asked, assuming some known best and worst 
outcome. These ensure that each constraint set (after any 
query) has the same form as the initial set (i.e., a hyper-
rectangle). We denote by uhl and lbi the current bounds 
on the utility Ui of outcome it. 

(c) For simplicity, we assume a threshold r is used to imple­
ment termination; that is, when the predicted improve­
ment of a query falls below T, we terminate the process. 

We discuss the impact of relaxing these assumptions later. 
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3.1 Character izat ion of Regret Reduction 
Query selection is complicated by the fact that, in general, 
there are n types of SGQs that can be asked—one per out­
come sx—and a continuous set of instances of each type i— 



Figure 1: Structure of various functions in dimension i, as a function of/: (a) The PMR for d\ (w.r.t. d1, d2, d3) are shown; as is 
MR(d,C,,i,l) the max (thin solid line0of pairwise max regret functions. MRno (thick solid upper line) is obtained by replacing the PMR 
line d2 — d\ (with negative slope) by the constant line, and again taking the max. (b) MMRn„ (dashed line) is the min of the MRno functions 
for each decision; (c) Intersection of MMRno and MMRyes gives maximin improvement in MMR. 

to max regret in dimensions other than i is constant, while 
the contribution to regret in dimension i given Ui — I is lin­
ear in /, with coefficient It follows that 

is a PWL convex 
function of/, since it is the max of these pairwise regret func­
tions (see Figure 1(a)). 

Now define the 
max regret of d after obtaining a negative response to query 

(Note that this differs from which is de­
fined by assuming . _ „ is 
also a PWL convex function, obtained from the set of lin­
ear PMR-functions that make up as follows: 
we replace any linear components with negative slope by the 
constant line Intuitively, if the regret of d 
w.r.t. d' after learning Ui = I decreases with /, then simply 
learning that cannot reduce pairwise max regret, since 
this weaker constraint does not rule out the maximum regret 
at (see Figure 1(a) for this intuitive flattening of the 
regret line for d2 - d1). This ensures that is 
also nondecreasing in /, as illustrated in Figure 1(a). 

Finally, note that, by definition of minimax regret, 
The minimum of 

a collection of PWL, convex, nondecreasing functions is also 
PWL and nondecreasing (though not necessarily convex) (see 
Figure 1(b)). 
Note that this proof sketch shows how to construct a finite 
representation of the function as a finite col­
lection of linear functions and inflection points. By entirely 
analogous reasoning, we also have: 

3.2 M a x i m i n Improvement 

One goal of any query strategy is to determine utility informa­
tion that reduces regret as quickly as possible. Unfortunately, 
for any given the exact reduction in regret can­
not typically be predicted in advance, since it differs depend­
ing on whether a yes or no response is obtained. The max-
imin improvement (MMl) query strategy myopically selects 
queries with the best worst-case response. More precisely, 
let C be our current constraint set. We define the minimum 

At each stage, the query qi(l) is asked whose minimum im­
provement with respect to the current constraint set is max­
imum. The process stops when no query has minimum im­
provement greater than threshold r. 

To compute the optimal M M I query point, we find the 
optimal query point in each dimension i, and ask the SGQ 
corresponding to the dimension with greatest MMI . The 
PWL representation of the functions MMRyesi(C,i,l) and 
MMRno(C,i, I) described above allows the optimal point in 
each dimension to be computed readily. The point / that of­
fers MMI in dimension i can be determined by computing the 
intersection of the two functions: since one is nondecreas­
ing and the other nonincreasing, the maximum point of the 
function must lie at the intersec­
tion. Note that the intersection must exist since each has the 
same maximum value MMR(C) (see Figure 1(c)).6 Finally, 
the value of the improvement in regret is the difference be­
tween the original minimax regret level and this value. 

Computation of the intersection of these functions is 
straightforward, requiring only the computation of the inter­
section of the linear segments whose bounds overlap. As 
such, this can be accomplished in linear time in the maximum 
number of segments in either function. The number of seg­
ments in these functions is (very loosely) bounded by ? 
Since we must compute the optimizing point for each util­
ity dimension, the complexity of this algorithm is 
The algorithm thus scales linearly in the number of outcomes 
and quadratically with the number of decisions. 

3.3 Average and Expected Improvement 
One difficulty with the MMI criterion for query selection is 
that, due to its worst-case nature, we can often find situations 
in which no query offers positive (minimum) improvement 
(we wil l see evidence of this in the next section), despite the 

6If the intersection occurs where both functions are "flat," any 
query point in the intersection can be used. 

7In practice, the number of segments appears to grow sublinearly 
in the number of decisions \D\. 
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fact that the current regret level is positive. This occurs when 
at least one of the responses for every query offers no im­
provement, thus stalling the query process. Intuitively, just 
because one response to a query ql(l) offers no improvement 
is no reason not to ask the query: the opposite response may 
still offer immediate improvement.8 This suggests an alterna­
tive criterion called maximum average improvement (MAI): 
SGQs are ranked according to the average improvement of­
fered by both positive and negative responses. 

Computing the optimal query point according to MAI can 
also exploit the PWL nature of the functions 
and MMRno(C, i, /) . As with M M I , we compute the optimal 
query point I in each dimension i independently. It is not hard 
to see that the point of maximum average improvement must 
occur at an inflection point of one of the two functions. Thus, 
each dimension can be optimized in time linear in the number 
of segments in the two functions. 

The MAI criterion is not subject to stalling in the sense that 
MMI is: if MMR(C) is positive, then there exists some query 
with positive M A I (this wil l follow from a result discussed 
below). However, it is subject to a different form of stalling: 
it may well be the case that the query qi(l) with MAI occurs 
at one of the boundary points . In such a case, only 
one (consistent) response is possible, imposing no additional 
constraints on the utility function. As such, the constraint 
set C wil l remain unchanged, meaning that the same query 
remains MAl-optimal at the next stage. 

This second type of stalling can be prevented. Suppose 
that a query qi(l) is optimal, where We know that 

(i.e., a yes offers 
greater improvement at the point ubl)\ but since cannot 
exceed ubi, the probability of receiving a yes response is 
zero, so the yes-improvement cannot be realized. We can thus 
make the query qi(l) appear to be less desirable by accounting 
for the odds of receiving a specific response. The maximum 
expected improvement (MEI) criterion does just this. We de­
fine the expected improvement of a query: 

At each stage, we ask the query with maximum El. 
Computation of expected improvement requires some dis­

tribution over responses. For simplicity, we assume a uni­
form distribution over utility functions and noise-free re­
sponses: thus, (with 
the negative probability defined similarly). This assumption 
also allows for the ready computation of the MEl-optimal 
query. Again, we optimize each dimension separately. The 
optimization in dimension i can be effected by doing sep­
arate optimizations in the regions defined by the union of 
the inflection points in the functions and 

We defer the details, but note that the func­
tion being optimized within each region is a simple quadratic 
function of/ that can be solved analytically. Thus the compu­
tational complexity of this criterion is similar to that of M M I 
and MAI . Fortunately, MEI is not subject to stalling: 

Predicted MMR by MEI 
Actual MMR by MEI 
True Regret by MEI 

Actual MMR by Random Queries 
True Regret by Random Queries 

8Note that, since MMI is myopic, even a nonimproving response 
may offer information that can be exploited in the future. 

Figure 2: Performance of MEI on three-good problems (40 runs). 

Proposition 1 If MMR{C) > 0, then there exists some query1 

qt(l) with positive expected improvement; and at least one 
response to the MEl-optimal query reduces minimax regret. 

The MEI criterion could be adopted using other distri­
butional assumptions, though the optimization required by 
query selection could become more complicated. It is worth 
noting that the manner in which we use distributional in­
formation is consistent with the worst-case perspective im­
posed by the minimax criterion. With some distribution 
over utility functions, we could adopt the perspective of [4; 
2], and make decisions by taking expectations with respect 
to this distribution. However, even in this case, minimax re­
gret allows one to offer guarantees on decision quality that a 
Bayesian approach does not address. The MEI criterion ex­
ploits distributional information only to guide the querying 
process, hoping to reach a point more quickly where accept­
able guarantees can be provided; the distribution is not used 
to evaluate decisions per se. 

While other prior distributions wil l generally require a dif­
ferent approach to the optimization problem for query selec­
tion, it is interesting to observe that queries associated with a 
mixture of uniform distributions can be determined in exactly 
the same manner. The derivation of the optimal query given 
such a mixture is straightforward, and these models have the 
desirable property (like uniform priors) that they are closed 
under update by query responses. Thus, if our prior beliefs 
can be approximated well using a mixture of uniforms with 
a small number of components, MEI-querying can be used 
directly as described here, without distribution-specific opti­
mization. It is important to note, however, that, even if the 
approximate priors are used, the decision quality of the MEI 
strategy is unaffected—only the number of queries required 
may be adversely impacted. 
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We evaluated the MM1, M A I , and ME1 query criteria on 
a number of elicitation problems in two different domains. 
With the MEI criterion, we have also tested its robustness to 
different assumptions about the prior over utility functions. 

We first tested our methods in two bidding scenarios in­
volving simultaneous auctions and combinatorial preferences 
[2]. In the first scenario, a bidding agent must offer bids for 
four different goods auctioned simultaneously in four differ­
ent markets. To discretize the decision space, we assume that 
the agent can offer three distinct bids—low, medium, and 
high—for each good. Each of these bid levels corresponds 
to a precise cost: should the bid win, the user pays the price 
associated with each bid (with, of course, higher prices as­
sociated with higher bid levels). To suppress the need for 
strategic reasoning, the agent has a fixed, known probability 
of winning a good associated with each of the three bid lev­
els. The probabilities of winning each good are independent, 
and increasing in the bid level. With four goods and three 
bid levels, there are 81 possible decisions (mappings from 
markets to bids) and 16 outcomes (subsets of goods the user 
might obtain). The user's utility function need not be addi­
tive with respect to the goods obtained. For instance, the user 
might value goods g\ and g2 in conjunction, but may value 
neither individually. Thus utility is associated with each of 
the 16 outcomes. We assume that the overall utility function 
(accounting for price paid) is quasi-linear; so the price paid 
is subtracted from the utility of the subset of goods obtained. 
A smaller scenario with three goods was also run: this has 27 
decisions and 8 outcomes. 

We first discuss the smaller (3-good) scenario. For each 
query criterion, we run elicitation using that criterion for 40 
steps (or until no query has positive value). For each cri­
terion, 40 trials using random utility functions drawn from 
[0, l ] n were run, with elicitation simulated using responses 
based on that function. For each query in a run, we record: 
(a) predicted MMR—the MMR level that is predicted to hold 
after asking the optimal query;9 (b) actual MMR—the MMR 
level realized once the actual query response is obtained; and 
(c) the true regret—the difference in utility between the mini-
max decision and the true optimal decision for the underlying 
utility function. While our algorithms don't have access to 
true regret, this measure gives an indication of true decision 
quality, not just the quality guarantees the algorithms provide. 

Figure 2 shows the performance of the MEI criterion (std. 
error bars are shown on actual MMR and true regret, but are 
excluded from predicted MMR for legibility). We see that 
the algorithm quickly converges to a point where the mini-
max regret guarantees are quite tight: within 20 queries, the 
average regret guarantee falls below 0.1 (less than 10%); and 
within forty queries, decision quality is guaranteed to be with 
4% of optimal. More interesting, we see that true regret 
falls to under 10% with 5 queries, and to near zero within 20 
queries. Thus the actual decision quality associated with act­
ing according the decision with MMR is generally far better 
than the MMR guarantee. The MEI criterion seems to select 

9For example, MMI predicts the maximum regret over all re­
sponses, while MEI predicts the expected regret. 

Figure 3: Performance of MAI on three-good problems (40 runs). 

suitable queries, allowing optimal decisions and tight regret 
guarantees to be identified with few interactions. For refer­
ence, we also include the performance of randomly selected 
queries (where both dimension i and query point / are chosen 
uniformly at random from the feasible region). Because the 
problem is of relatively low dimension, random queries per­
form reasonably well, though they have difficulty reducing 
regret to zero, and do not compete with MEI queries. 

Figure 3 shows the same measurements for the MAI crite­
rion. We note that this query strategy does not reduce regret 
bounds nearly as quickly as the MEI strategy, reaching only 
an average regret guarantee of 0.18 after 40 queries. True re­
gret is generally much better, but still does not approach the 
performance of MEI (or even random queries). We note that 
the MAI criterion often stalls: in such a case, we complete the 
data with the last minimax regret value. Finally, it is worth 
noting that the M M I criterion performs extremely badly. We 
don't plot its performance, but note that in all runs, it stalls 
after a maximum of five queries; its average minimax regret 
bound is 0.8, and average true regret level is 0.3 when it stalls. 

The MEI criterion appears to offer much better perfor­
mance than MAI , M M I , or random querying. Figure 4 shows 
the performance of MEI, M A I and random querying strate­
gies on the larger four-good (16-outcome, 81-decision) sce­
nario. Again we see that MEI converges quickly and outper­
forms the other strategies. With the increase in dimensional­
ity, random queries fare worse than MAI-optimal queries. We 
note that in all experiments, the optimal query (regardless of 
criterion) can be computed very quickly. 

We have also tested the MEI criterion on a travel plan­
ning domain (as in the previous tests, MEI seems to domi­
nate the other criteria, so we focus on it). In this domain, 
an agent must choose a collection of flight segments from 
a flight database to take a user from a source to a destina­
tion city [1]. To make the elicitation problem interesting, we 
added the following information to the DB: the probability of 
any flight arrival being delayed by specific amount of time; 
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Figure 4: Performance on four-good problems (40 runs). Figure 5: Performance on YYZ-SFO, with utility functions drawn 
from uniform (40 runs). 

the probability of missing a connecting flight as a function of 
connection time and airport; a distribution over ground travel 
times to a hotel in the destination city as a function of arrival 
time (reflecting, e.g., arrival in rush hour or off-peak); and the 
probability of losing a hotel room as a function of arrival time 
at the hotel. As a result, for any specific flight combination 
(decision), a joint distribution over these variables (outcome) 
is obtained. A user's utility function is quasi-linear, given 
by her utility for a specific outcome over these four attributes 
less the flight price. The specific formulation discretizes these 
attributes, so the outcome space is of size 64. In our exper­
iments, the flight DB was designed to allow 20 flights (both 
direct and indirect) between pairs of cities. 

We tested the ME1 strategy using a uniform prior over util­
ity space to select queries, with user utility functions drawn 
from the same uniform distribution. The results for a specific 
source-destination pair (Toronto-San Francisco) are shown in 
Figure 5. As before, we see that the ME1 strategy easily out­
performs random querying, both in terms of the regret guar­
antees, and the true regret of the decisions it would recom­
mend at each stage. These results are representative of those 
obtained in other decision scenarios. 

We also explored the use of strong prior knowledge to 
guide the querying process. We repeated the test above, draw­
ing user utility functions from a strongly peaked (truncated) 
Gaussian distribution over utility space (with diagonal covari-
ance matrix, and variance 0.03 in each dimension). We tested 
the MEI-criterion using a (hand-chosen) mixture of three uni­
form distributions over subregions of utility space that very 
roughly approximated the Gaussian.10 To test the robustness 
of MEI to inaccurate priors, we also used MEI using a single 
uniform prior over all of utility space (despite the fact that 
the true utility function is drawn from the Gaussian). The re­
sults illustrated in Figure 6 demonstrate that MEI can benefit 

10In principle, this mixture could have been fit to the actual pnor 
using, say, EM; but our goal is not accurate modeling of the prior. 

considerably from strong prior information. Indeed, minimax 
regret is reduced very quickly when a reasonable prior is used 
to select queries; and true regret is reduced to zero in every 
instance of this scenario within four queries. Random query­
ing does very poorly, indicating that this problem is not easy 
to solve without sufficient utility information. The robustness 
of MEI to inaccurate priors is also in evidence. We see that 
minimax regret and true regret are also reduced very quickly 
when an uniformative uniform prior is used to guide the MEI-
querying process. 

5 Concluding Remarks 
We have presented a new procedure for decision making with 
incomplete utility information which recommends decisions 
that minimize maximum regret. We defined several different 
myopic query selection criteria, and showed that myopically 
optimal queries under each criterion can be computed effec­
tively, in polynomial time. The empirical performance of one 
such criterion, maximum expected improvement, proved to 
be rather attractive: not only did it provide strong guarantees 
after few queries, but true decision quality tended to exceed 
these guarantees significantly. 

Our work differs from existing approaches to preference 
elicitation in several important ways. Like recent Bayesian 
approaches [4; 2], our approach identifies a concrete decision 
in the face of utility function uncertainty. Unlike these meth­
ods, for the purposes of decision making, we assume only 
constraints on possible utility functions, not distributions. As 
a result, the minimax regret criterion is used to identify de­
cisions with guaranteed error bounds on quality. Our use of 
constraints on utility functions is more closely related to work 
on ISMAUT [8; 7]. However, the focus in ISMAUT is the 
identification of Pareto optimal decisions in the face of utility 
function uncertainty, as opposed to the choice of a specific de­
cision that maximizes some decision criterion. Furthermore, 
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Figure 6: Performance on YYZ-SFO, with utility functions drawn 
from a strongly peaked Gaussian. MEI querying using both a uni­
form prior and a 3-component mixture are shown (40 runs). 

little attention has been paid to query strategies in ISMAUT, 
which, in contrast, is our main focus. 

There are a number of directions in which this work can 
be extended. Obviously, scaling issues are of paramount 
importance. We are currently exploring pruning techniques 
for removing decisions from consideration that can never be 
minimax optimal, thus reducing the quadratic dependence 
on the number of decisions. We are also exploring meth­
ods for dealing with more general linear constraints (apart 
from one-dimensional bounds), as well as more expressive 
query types. Also of interest are methods for dealing with 
noisy/inconsistent query responses, and visualization tech­
niques. Finally, we are developing heuristics that simulate 
some of the effects of nonmyopic elicitation without explicit 
lookahead. One such technique involves enumerating the ver­
tices of the regions Rd of utility space in which each decision 
d is optimal (the regions are convex polytopes). Queries at 
those points can quickly help rule out suboptimal actions. We 
hope to combine the computationally attractive methods de­
vised in this paper with more intensive techniques like this to 
help reduce the number of required queries even further. 
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