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Abstract 

The evolution of Description Logics (DLs) and 
Propositional Dynamic Logics produced a hierar­
chy of decidable logics with multiple maximal el­
ements. It would be desirable to combine different 
maximal logics into one super-logic, but then in­
ference may turn out to be undecidable. Then it 
is important to characterize the decidability thresh­
old for these logics. In this perspective, an interest­
ing open question pointed out by Sattler and Vardi 
[Sattler and Vardi, 1999] is whether inference in a 
hybrid μ-calculus with restricted forms of graded 
modalities is decidable, and which complexity class 
it belongs to. In this paper we prove that this calcu­
lus and the corresponding are un­
decidable. Second, we prove undecidability results 
for logics that support both a transitive closure op­
erator over roles and number restrictions. 

Keywords: Description logics, hybrid μ-calculus, 
regular roles, graded modalities, number restric­
tions. 

1 Introduction 
Description logics are popular knowledge representation lan­
guages, with important applications to the semantic web, soft­
ware engineering and heterogeneous databases. Description 
logics (DLs) are strictly related to propositional dynamic log­
ics (PDLs), that play an important role in software and pro­
tocol verification based on automated reasoning techniques. 
The analogies between the two frameworks are so tight that 
DLs and PDLs can be regarded as syntactic variants of the 
same family of logics. 

The simplest DLs and PDLs can be easily embedded into 
a fragment of L2 , that is, first-order logic with two variables. 
Application requirements led researchers to extend these ba­
sic logics with more expressive constructs, such as fixpoints, 
nominals (that represent individuals in DLs), transitive clo­
sure operators similar to Kleene's star, and equivalents of gen­
eralized quantification called number restrictions (or count­
ing) in DLs and graded modalities in PDLs. At the same time, 
applications require these logics to be decidable and have ac­
ceptable computational complexity. 

The evolution of DLs and PDLs produced—and keeps 
on extending—a hierarchy of decidable logics with multi­
ple maximal elements. Currently, two of the maximal de­
cidable DLs are (featuring fixpoints and nomi­
nals [Sattler and Vardi, 1999; Bonatti, 2002]) and 
(featuring fixpoints and number restrictions). The corre­
sponding PDLs are the hybrid and the 
with graded modalities, respectively [Sattler and Vardi, 1999; 
Kupferman et al, 2002]. 

Of course, it would be desirable to combine the features of 
different maximal logics into one super-logic. A combination 
o f a n d w o u l d help—for example—in 
describing the functional behavior of e-Services (cf. [Bon­
atti, 2002] and related comments on SVC(X) in Section 5). 
However, in the super-logic inference may turn out to be too 
complex, and in particular undecidable. 

A related, interesting open question pointed out by Sattler 
and Vardi [Sattler and Vardi, 1999] is whether inference in 
the union of the hybrid and the with 
graded modalities is decidable, and which complexity class 
it belongs to. More precisely, Sattler and Vardi mention a 
slightly simpler logic: a hybrid with determin­
istic programs. Deterministic programs are a special case 
of graded modality, whose counterpart in DLs arc features, 
i.e., functional roles. The DL corresponding to the hybrid 

with deterministic programs is called 
The main contribution of this paper is a negative answer 

to the above open question. We prove that the hybrid 
calculus with deterministic programs and the correponding 

are undecidable. For this purpose, we use a 
novel approach based on nested fixpoints. 

The second contribution is an undecidability result for log­
ics that support number restrictions together with regular role 
expressions. These results show that transitive role closure 
can be more expressive than fixpoints in some contexts. 

In the next section we recall the basic notions about DLs 
and t h e S e c t i o n 3 is devoted to the undecidabil­
ity proof for and the hybrid with de­
terministic programs. Section 4 briefly illustrates the unde­
cidability result for the combination of transitive closure and 
number restrictions. Finally, Section 5 concludes the paper 
with a brief discussion of the results and some directions for 
further research. Some proofs wil l be omitted because of 
space limitations. 
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2 Preliminaries 
The vocabulary of the description logics we deal wi th in this 
paper is specified by the fo l lowing disjoint sets of symbols: 
a set of atomic concepts At, a set of nominals N o m , a set of 
concept variables Var, and a set of atomic roles AR. 

The set of roles is the smallest superset of AR such that if 
are roles then and R* are roles. 

Let R be a role, A" Var and n N. The set of concepts is 
the smallest superset of At U Nom U Var such that if C, C", D 
arc concepts, then and are con­
cepts, provided that all the free occurrences of A" in C" lie 
within the scope of an even number of operators -> and 

Semantics is based on interpretations of the form X = 
, 7) where is a set of individuals and I is an inter­

pretation function mapping each A At U Nom onto some 
A7 , and each R AR onto some 
Furthermore, nominals must be mapped onto singletons. A 
valuation o n I i s a f u n c t i o n . A s usual, 

denotes the valuation such that and 
for all Y The meaning of inverse 
roles is 

while and denotes the reflexive 
transitive closure of R7. 

The meaning of compound concepts is determined by pairs 
( I , P). we denote the cardinality of a set S. 

Subscript p w i l l be sometimes omitted when it applies to a 
closed concept (i.e., such that all variables are bound by p). 

Other standard constructs can be derived f rom the above 
concepts. We use the symbol to define abbreviations. 

Here is the concept obtained f rom C by replacing 
all free occurrences of X with -X". 

The syntactic restrictions on concept variables make ev­
ery concept C monotonic wi th respect to its free variables. 
Then ) and j denote exactly the least and 
the greatest fixpoints of C ( X ) , that can be characterized wi th 
the standard iterative constructions. 

An assertion has the form _ where C and D are 
closed concepts. It is satisfied by X (equivalently, X is a model 
of the assertion) i f f . A TBox is a finite set of 
assertions. A TBox is satisfiable i f f it has a model, that is, an 
X that satisfies all the assertions in the TBox. Symmetric pairs 
of assertions such as _ and w i l l be abbreviated 
by C D. A TBox T entails if every model of T 
satisfies 

The description logic ACC is a fragment of the logic de­
scribed so far, supporting only atomic roles, and 

(plus all the constructs definable f rom these). In ALC, 

By convention, the name of a description logic contains 
ACC if the logic extends ACC. Moreover, the name contains 
an X if inverse roles are supported, an O if Nom 
a Q if number restrictions are supported, and a 
V if fixpoints are supported. For example, ACCIO denotes 
the extension of ACC wi th inverse roles and nominals. A 
subscript / indicates that roles may be declared to be func­
tions. Note that such assertions are a special case of number 
restriction, as they can be expressed wi th axioms of the form 

If the logic supports role operators besides 
inversion, we list those operators as superscripts. For exam­
ple denotes the extension of ACCX wi th role union 
and reflexive transitive closure. 

Description logics can be regarded as variants of the propo-
sitional Individuals correspond to possible worlds 
and roles correspond to accessibility relations. Atomic con­
cepts play the role of propositional symbols. In particular, 

can be embedded into the hybrid with 
deterministic programs and graded modalities ( ( n , P)F and 

via the fo l lowing satisfiability-preserving transla­
t ion. For all propositions p, and for all n > 0, 

Moreover, functional roles are mapped onto deterministic 
programs (whose accessibility relation is the graph of a 
function), and nominals are mapped onto their equivalents 
(called nominals, too), that in P D L terms arc propositional 
symbols that are true in exactly one wor ld. Program o 
denotes the universal program whose accessibility relation 
consists of all pairs of possible worlds. The reader is re­
ferred to [Sattler and Vardi, 1999; Kupferman et a/., 2002; 
De Giacomo, 1995] for further details. 

3 Undecidability of 
This section is devoted to the proof of the fo l lowing theorem. 

Theorem 3.1 In , concept satisfiability, TBox sat­
isfiability and entailment are all undecidable. 

We find it convenient to prove this theorem by first reduc­
ing domino problems to TBox satisfiability, and then extend­
ing this result to the other decision problems. 

Recall that domino problems consist in placing tiles on 
an infinite gr id, satisfying a given set of constraints on ad­
jacent tiles. Formally, a domino problem is a structure V — 
(T , H, V), where T is a set of tile types and spec­
i fy which tiles can be adjacent horizontally and vertically, 
respectively. A solution to V is a tiling, that is, a function 
r : such that 

The existence of a solution for a given domino problem is 
known to be undecidable (cf. [Gradel et al, 1999]). 
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Domino problems are reduced to reasoning problems by 
characterizing (i) the grid and (ii) correct tilings. Formally, 
the grid is a structure 

In description logics, can be denoted by two 
roles, h and v. If the two roles characterize the grid cor­
rectly (see Figure 1(a)), then characterizing the solutions of a 
domino problem is easy, even within simple (and decidable) 
description logics such as ACC, by means of the following 
assertion: 

Here for each tile type t, a distinct concept name Cf is in­
troduced. Assertion (1) basically states that each individual 
is a tile (first term), that distinct tile types contain different 
tiles (rest of the first line), and that the tiling preserves the 
constraints specified by H and V (second line). 

The real problem is characterizing the grid, because there 
is no direct way to force h and v to commute. Here we shall 
provide a projective characterization of G, that is, we shall 
capture exactly the class of interpretations isomorphic to the 
expansion is a unary 
relation and 

We proceed in three steps. First, h and v must be forced to 
be injective functions. For this purpose, we declare all roles 
and their converse to be functional, which is equivalent to 
adopting the following assertion, for all roles R. 

(2) 

Second, all nodes are classified with respect to their incom­
ing and outcoming edges. Note that the domain and the range 
of a role B can be defined as follows. 

Now we can define the vertical and the horizontal borders of 
the grid (Bv and Bh, respectively), and the internal nodes 
(C). O is a nominal that represents the origin of the grid. 

The following assertions state the properties of O and force 
the above concepts to cover all the domain. 

(3) 
(4) 

Third, we characterize the global structure of the grid. The 
next assertions ensure that the vertical border Bv and the hor­
izontal border Bh have the desired structure (i.e., they should 
be isomorphic to N). 

(5) 

(6) 

Note that Bv and Bh contain no cycles, because of (2) and 
(3), so the two fixpoints induce infinite linear sequences of 
nodes. 

Finally, we introduce an assertion that forces h, and v to 
commute everywhere. 

(7) 

Informally speaking, the constructive characterization of the 
fixpoint in (7) corresponds to a visit of the grid along diag­
onals directed north-west (Figure 1(b)). At each iteration, a 
new node x0 is considered. Subformula ensures that 
xo is connected to the last visited element x\ in such a way 
that h and v commute. Actually, h and v are not explicitly re­
quired to commute. They actually do (equation (9)) because 
each visited node x but the last one (i.e., x\) must be con­
nected by vo h and h~ o v to another visited node (Proposi­
tion 3.3.e), therefore, by (2), there exist no further links voh~ 
and // o v connecting x to (the not yet visited node) X0. It 
follows that only x1 can be connected to X0 as specified by 

i. This makes h and v commute and ensures that x0 is 
unique. Every time the vertical border Bv is reached, subfor­
mula adds the first element of the next diagonal. For 
this purpose, subformula looks for diagonals 
entirely contained in X (the set of nodes visited so far) so that 
a new diagonal is not entered before the previous one has been 
completely visited. Figure 1(c) illustrates this phase. Let A', 
be the current set of visited nodes. The black circles are the 
elements of . In this example, equals 
X1, because the latter contains precisely the first 3 diagonals. 
In the following we formalize all the above intuitions. 

Let T consist of the assertions (2), the local constraints (3) 
and (4), and the fixpoint assertions (5), (6) and (7). In the rest 
of this section, let I be a model of T. 

First we introduce some notation related to the domain el­
ements of X. 

Note that edj is not necessarily defined, because h~I is par­
tial. Informally speaking, d counts diagonals and j is the dis­
placement within a diagonal (cf. Figure 1(b)). Indexes are 
ordered lexicographically. Define 

For all sets let max(S) be the element 
with _-maximal index (if any). The restriction of 

admits a successor relation, namely: 

With a slight abuse of notation, will denote 

Next we need a constructive characterization of the fixpoint 
in assertion (7). To improve readability, in the following we 
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a b b r e v i a t e F o r m u l a e 
will be treated in a similar way. Then the 

fixpoint can be characterized as follows. 

(8) 

To ensure that the fixpoint is actually reached within w steps, 
as implicitly claimed by the above construction, it suffices to 
show that is continuous. 

Proposition 3.2 is continuous, that is, for all non-
decreasing sequences is an ordinal, 

The following technical result formalizes the intuitive ex­
planation of the nested fixpoint construction. 

Proposition 3.3 For all integers i 
there exists such that: 

(9) 

Since (9) holds for arbitrary , we have that x0 

is the unique member of and hence point a holds. 
Now, since = 

(d , j ) , we immediately get point b. 
To prove c, note that 

Point e follows from the corresponding l.H.e and (9). 
We are only left to show that / holds. The induction 

hypothesis l.H.J covers all cases but (k,l) = (d,/). If 

This concludes the proof tor Case l. 
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Moreover, We con­
clude that / is an isomorphism. 

Proposition 3.5 G* is a model of T. 

Since the TBox T is a projective characteriza­
tion of G (by Propositions 3.4 and 3.5) and the 
assertion (1) is satisfied only by correct tilings, we derive the 
following lemma. 

Lemma 3.6 Satisfiability of TBoxes is undecid-
able. 

We are left to extend this lemma to concept satisfiability 
and entailment. This is done through the following reduc­
tions. 

Lemma 3.7 In all extensions of 

a. TBox satisfiability can be reduced to concept satisfiabil­
ity in polynomial time. 

b. Concept unsatisfiability can be reduced to entailment in 
polynomial time. 

By Lemma 3.6 and Lemma 3.7, we conclude that the main 
result of this section. Theorem 3.1, holds. 

Finally, with Theorem 3.1 and the standard embedding of 
description logics into propositional dynamic logics, we im­
mediately obtain the following result. 

Corollary 3.8 Formula satisfiability in the hybrid μ-calculus 
with deterministic programs is undecidable. 

4 Regular roles and counting 
Description logics with regular role expressions introduce a 
form of recursion (Kleene's star, or reflexive transitive clo­
sure) different from fixpoints. It is interesting to investigate 
the interplay of this form of recursion and counting. 

Consider (the extension of ALCIO with role 
union and reflexive transitive closure). We prove its undecid-
ability by characterizing domino problems with unbounded 
grids (i.e., grids without borders) in . The grid is 
modelled by splitting the injective functional role h (resp. v) 
into the disjoint union of two roles ho and h1 (resp. vo and 
v1), alternated as shown in Figure 2(a). Nodes are then par-
tioned into four c l a s s e s , according t o their 
incoming and outcoming edges 

Al l nodes are forced to belong to one of these four classes by 
an assertion 

Furthermore, the four assertions 

(16) 

(where force the desired alternation of 
V0 and v1 (cf. Figure 2(a)). 

Now the compound role applied to a node C0 

can reach at most five different nodes (cf. Figure 2(b)), 
because the alternation of edges with index 0 and 1 (more 
precisely, assertions (16)) guarantees that c1, c3, c4 have no 
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Figure 2: Model ing an even grid G 

outcoming v j edges, and that C2, C3 C4 have no outcoming h1, 
edges. 

Then the fo l lowing assertions (where imply 
that for each node in ni,j h1 and vj commute. 

(17) 

In fact—with reference to Figure 2(b)—for all C0 in n i , j, as­
sertion (16) forces nodes c0-c4 to belong to different (mutu­
ally disjoint) concepts nx,y, wi th the exception of c3 and C4, 
both of which belong to n1 _ i ,1 _ j. Now if then (17) 
would be violated (there would be 5 nodes reachable wi th 

so h1 and vjcommute (i.e., h0, h1 v o , v 1 char-
acterize the unbounded grid). 

We are only left to model correct ti l ings. It suffices to adapt 
assertion (1) by replacing h and v wi th and 
V1, respectively. From the above discussion we derive the 
fo l lowing theorem. 

Theorem 4.1 is undecidable. 

O n the c o n t r a r y , i s decidable. I n fact, every 
expression i n i s equivalent t o a n expression i n 
the decidable logic thanks to the equivalence 

Then Theorem 4.1 suggests that transitive closure is more 
powerful than fixpoints in this context (the extension of 

wi th fixpoints is decidable, while the extension 
wi th * is not). 

5 Discussion and conclusions 
Description logics evolved into a hierarchy of decidable log­
ics wi th mult iple maximal elements. Some support fixpoints, 
inverse roles, and either nominals or number restrictions (but 
not both) iSattler and Vardi, 1999; Kupferman et al, 2002]. 
Others support r ich sets of role operators, including union and 
transitive closure. 

The results of this paper show that the above features can­
not be easily combined into one decidable logic. In particular, 
no decidable extension of ALCI can simultaneously support 
fixpoints, nominals and number restrictions, even in the very 
special case where number restrictions are confined into the 

functionality assertions (2).1 As a corollary, the hybrid 
calculus wi th deterministic programs is proved to be unde­
cidable. Moreover, Theorem 4.1 shows that role union and 
transitive closure cannot occur together wi th in number re­
strictions (it provides also evidence that * is more expressive 
than fixpoints). 

These results have immediate implications on VCR [Cal-
vanese et al, 1999], a rich DL wi th n-ary relations. Recall 
that μ ALCTQ can be embedded into [Calvanese et 
al, 1999]. Similarly, ALCIQ can be embedded into VCR 
(the fragment of without fixpoints). Then Theo­
rem 3.1 and Theorem 4.1 imply that decidabil ity is preserved 
neither by extending wi th nominals,2 nor by extend­
ing DLR wi th role operators U and *. 

An interesting question arising f rom these results concerns 
the family of service description logics SVC(X) [Bonatti, 
2002]. These logics are analogous to in the sense 
that they model mappings (that can be regarded as n-ary re­
lations). SVC(X) differs f rom because the former 
features set abstraction and composit ion, whi le DLRμ sup­
ports number restrictions. Service descriptions in SVC(X) 
are supposed to extend an underlying ontology written in a 
standard description logic X (modell ing concepts and roles 
only). The main reasoning tasks for SDL(X) are proved 
to be decidable by embedding SVC(X) into decidable ex­
tensions of both and X. By the undecidability of 

, it fol lows that this technique cannot be applied 
when X supports number restrictions, or simply functional 
roles. Then the (un)decidabil ity of SVC(X), when .V sup­
ports number restrictions of some sort, remains an interesting 
open issue. 
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