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Abstract 

Motivated by the matchmaking problem in elec­
tronic marketplaces, we study abduction in De­
scription Logics. We devise suitable definitions of 
the problem, and show how they can model com-
monsense reasoning usually employed in analyz­
ing classified announcements having a standardized 
terminology. We then describe a system partially 
implementing these ideas, and present a simple 
experiment, which shows the correspondence be­
tween the system behavior with human users judge­
ment. 

1 Motivation 
We describe several scenarios in which matchmaking [Di 
Noia et al., 2003; Sycara et a/., 2002; Di Sciascio et al., 2001; 
Trastour et al., 2002] is necessary, starting with a human sit­
uation and moving to more automated ones. 

Human matchmaking. Imagine you are looking for an 
apartment in London, UK. On a local newspaper, you pub­
lished a classified ad, which we call D (for Demand), asking 
the following: 

Apt. required: Soho, 2 rooms, smoker, dog, 
garden, max 600/month. Phone xxx-yyyyy 

Since no one phoned you, you open a copy of the same news­
paper, and start filtering a long list of classified ads offering 
apartments to rent. You might encounter the following ad, 
that we call S1 (for Supply): 

Apt. centre (Piccadilly), car place, fireplace, 
2 rooms. Phone zzz-wwwww 

Then you wonder if this offer fits your needs. The match be­
tween Soho and Piccadilly depends on some domain knowl­
edge — actually, they are consistent, although Piccadilly does 
not imply Soho. Then S\ does not mention that dogs and 
smokers are allowed, but this does not necessarily mean that 
they are not (open-world assumption). It docs not mention 
a garden too, but there is a car place, which could be turned 
into a small garden if it is open air and private. Should you 
phone to inquire S\ first, or phone first the following S2: 

AAA Apt. in London. Phone sss-ttttt 

Here it is not just a problem of hypothetical reasoning, it is 
also a problem of giving some total order to offers that are 
compatible with yours, presumably trying to maximize the 
probability of finding a good offer in few phone calls - but 
wait: if these offers would match, why they didn't phone you'! 

Software agents matchmaking. A similar scenario, but for 
the fact that agents may actively look for a matching coun­
teroffer, instead of simply posting their offer. So they may 
actually call you... 

Matchmaking in Electronic marketplaces. The same sce­
nario, but with some sort of standardized language to describe 
supplies and demands, and maybe some centralized facilita­
tor for matchmaking, e.g., containing the necessary domain 
knowledge. 

Service Discovery. Either for software agents or in e-
marketplaces, the offers may describe a general service in 
some standardized language, such as the simple 128-bit string 
of Bluetooth, or the more structured DAML-S. 

The third and fourth scenarios are more amenable to au­
tomated matchmaking, since they imply a standardized lan­
guage and ontology. However, observe that also in the first 
and second scenarios, when supplies and demands are ex­
pressed in heterogeneous forms, matchmaking is not a mere 
schema/data integration problem. In fact, integration tech­
niques [Madhavan et al., 2001] may be employed to make 
heterogeneous supplies and demands comparable; but once 
they are reformulated in a comparable way, one is still left 
with true matchmaking problems: i) given a proposal, are 
there compatible counteroffers? ii) if there are many com­
patible counteroffers, which are the most promising ones (and 
why)? 

2 Principles for matchmaking 

We now discuss in detail various technical options for per­
forming matchmaking, first trying to highlight limitations 
of non-logical approaches, and then discussing the general 
Knowledge Representation principles that a logical approach 
may yield. 

First of all, we note that if supplies and demands are simple 
names or strings, the only possible match would be identity, 
resulting in an all-or-nothing approach to matchmaking. This 
is the approach taken by Bluetooth, whose Service Discov­
ery Protocol tries to match Universally Unique Identifiers of 
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services and requests. Although effective for fixed techni­
cal domains, such an approach misses the fact that proposals 
usually have some sort of structure in them. Such a structure 
could be exploited in order to evaluate "interesting" inexact 
matches. 

Vector-based techniques taken by classical Information Re­
trieval can be used, too, thus reverting matchmaking to sim­
ilarity between weighted vectors of stemmed terms, as pro­
posed in the COINS matchmaker [Kuokka and Harada, 1996] 
or in LARKS [Sycara et al, 2002]. Obviously lack of doc­
ument structure in descriptions would make matching only 
probabilistic and strange situations may ensue, e.g., the de­
mand "Apt. with two Rooms in Soho pets allowed no 
smokers" would match the supply "Apt. with two Rooms 
in Soho, no pets, smokers allowed". 

A further possibility is to use sets of words to describe the 
structure of supplies and demands. We consider these de­
scription as a particular case of logical description, and move 
on to Description Logics (DLs). Hence, from now on we 
suppose that supplies and demands are expressed in a DL C, 
equipped with a model-theoretic semantics. We suppose also 
that a common ontology for supplies and demands is estab­
lished, as a TBox T in L. Now a match between a supply 
S and a demand D could be evaluated according to T. This 
framework ensures the first property that we would like to 
hold for matchmaking, namely, an open-world assumption. 
Property 1 (Open-world descriptions) The absence of a 
characteristic in the description of a proposal should not be 
interpreted as a constraint of absence. Instead, it should be 
considered as a characteristic that could be either refined 
later, or left open if it is irrelevant for the issuer of the pro­
posal. 

Moreover, if all constraints of a demand D were fulfilled 
by a supply S, but not vice versa, then S should be among 
the top ranked supplies in the list of potential partners of the 
demander, while D should not appear at the top in the list of 
potential partners of the supplier. 
Property 2 (Non-symmetric evaluation) A matchmaking 
system may give different evaluations to the match between a 
supply S and a demand D, depending on whether it is trying 
to match S with D, or D with S — i.e., depending on who is 
going to use this evaluation. 

There are three relations between concepts expressing sup­
plies and demands, that we consider meaningful in match-
making: implication, consistency, and inconsistency. 

In the first case, i.e., constraints imposed 
by D imply those of S, and vice versa if 
This relation extends the previous set-based inclusion to gen­
eral concepts. If both 
then D and S should be considered equivalent in T. This 
relation extends exact matching, making syntax differences 
irrelevant. In case of consistency, is satisfiable in T. 
Then, there is a potential match, in the sense that the con­
straints of neither proposal exclude the other. This relation 
has been highlighted also by other researchers [Trastour et 
al., 2002]. However, that proposal lacks a ranking between 
different potential matches. In the third case, is unsat-
isfiable in T. Although also in this case a matching could be 

defined [Di Noia et al., 2003], we do not treat this case here 
for lack of space. Hence, from now on we concentrate on po­
tential match only. We now highlight some principles that — 
we believe — every ranking function should have in logical 
matchmaking. 

First of all, if a logic is used to give some meaning to de­
scriptions of supplies and demands, then proposals with the 
same meaning should have the same ranking, independently 
of their syntactic descriptions. 

Definition 1 (Syntax independence in ranking) A ranking 
of matches is syntax independent if for every pair of supplies 
S1 and S2, demand D, and ontology T, when S\ is logically 
equivalent to S2 then S\ and S2 have the same ranking for D, 
and the same holds also for every pair of logically equivalent 
demands D\. D2 with respect to every supply S. 

For example, an apartment S\, described as available for 
the summer quarter, should have the same rank — with re­
spect to a request — as another S2, identical but for the 
fact that it is described to be available for june-july-august. 
Clearly, when the logic admits a normal form of expressions 
— as CNF or DNF for propositional logic, or the normal form 
of concepts for the DL of CLASSIC [Borgida et al., 1989] — 
using such a normal form ensures by itself syntax indepen­
dence. 

We now consider the relation between ranking and impli­
cations. We go back to the descriptions with sets of words, 
since they are easy to read through. Let D be a demand and 
S1, S2 be two supplies defined as follows: 

D — {apartment, soho, two Rooms, pets Allowed) 
S\ — {apartment, soho, boiler, quiet} 
S2 = {apartment, soho, boiler, quiet, last Floor} 

In this case, the characteristics that S2 adds to S1 are irrele­
vant for D. Hence, whatever the rank for S\, the one for S2 

should be the same. If instead we let 

S3 = {apartment, soho, boiler, quiet, pets Allowed} 

then S3 should be ranked better than S1 since it adds a char­
acteristic required by D. We generalize this example to con­
cepts, and state the following definition. 

Definition 2 (Monotonicity of ranking over subsumption) 
A ranking of potential matches is monotonic over subsump­
tion whenever for every demand D, for every pair of supplies 
S\ and S2, and ontology T, if S1 and S2 are both potential 
matches for D, and , then S2 should be 
ranked either the same, or better than S1, and the same 
should hold for every pair of demands D1,D2 with respect 
to a supply S. 

Intuitively, the above definition could be read of as A rank-
ing is monotonic over subsumption if: the more specific, the 
better. Observe that we use the word "better" instead of using 
any symbol <, >. This is because some rankings may assume 
that "better" means "increasing" (towards either infinity, or 1) 
while others may assume "decreasing" (towards 0). Observe 
also that the above definition refers only to potential matches, 
i.e., consistent matches — otherwise, would be the best 
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match (being the most specific concept), which is obviously 
not the case. 

We remark that the properties and definitions we stated in 
this section are independent of the particular DL employed, 
or even the particular logic chosen. For instance, the same 
properties could be stated if propositional logic was used to 
describe supplies, demands and the ontology. In this respect, 
we believe that this section keeps its significance also if one 
chooses more expressive DLs such as SHOQ (V) [Horrocks 
and Sattler, 2001] or DAML [Paolucci et ai, 2002]. 

3 Abduction in Description Logics 
We tend to follow the notation of [Riter and Gottlob, 1995] 
for propositional abduction whenever possible, and adapt it 
to our setting. 

Definition 3 Let C be a DL, C, D, be two concepts in C, and 
T be a set of axioms in C. A Concept Abduction Problem 
(CAP), denoted as (C, C, D, T), is finding a concept H C 
such that 

We use P as a symbol for a CAP, and we denote with 
SOL(V) the set of all solutions to a CAP P. Observe that 
if is unsatisfiable in T, then trivially 
i.e.., there are no solution to P if C and D are not a poten­
tial match. Hence from now on we concentrate on the case 

As propositional abduction extends implication, a CAP ex­
tends concept subsumption. But differently from proposi­
tional abduction, we do not make any distinction between 
manifestations and hypotheses, which is usual when ab­
duction is used for diagnosis. However, diagnosis is not 
our domain of application for abduction, and when mak­
ing hypotheses about properties of goods in e-marketplaces, 
there is no point in making such a distinction. This unifor­
mity implies that if is satisfiable in T, then D 
SOL((C,C, D,T)), i.e., there is always the trivial solution 
D to a non-trivial CAP (£, C, D,T). Interpreted in our e~ 
marketplace application domain, it means that if 1 hypoth­
esize for the counteroffer exactly all my specifications, the 
counteroffer trivially meets my specifications. Since one 
wants to model Occam's razor, some minimality in the hy­
potheses must be defined. In the following definition, we 
denote with the subsumption relation between concepts 
w.r.t. a TBox T. 
Definition 4 Let be a CAP. The set 

is the subset of whose concepts are max­
imal under is the subset ofSOL(P) 
whose concepts have minimum length. 

We note that being maximal under is still a minimality 
criterion, since it means that no unnecessary hypothesis is as­
sumed. It can be proved that the two measures are incompa­
rable. 

Proposition 1 There exists a CAP P such that the two sets 
are incomparable. 

Proof. It is sufficient to consider 
C = A 1 a n d T h e logic i s 
even propositional. Then 

and neither solution is in the 
other set. □ 
The proof highlights that, although -minimality could be 
preferable for conciseness, it is heavily dependent on T. For 
every concept H SOL(P), it is sufficient to add the axiom 
A — H to get a -minimal solution A. 

A third minimality criterion is possible for DLs that admit 
a normal form as a conjunction of concepts, that is, every 
concept C in C can be rewritten as an equivalent concept 

. This is the case for L= ACM, and for the DL of 
the CLASSIC KR system. We call such a normal form CNF, 
in analogy with propositional logic. 

Definition 5 Let P = ( L , C, D, T) be a CAP in which C ad­
mits a CNF. The set is the subset of SOL{P) 
whose concepts are minimal conjunctions, i.e., /f C 

then no sub-conjunction of C is in SOL(P). We 
call such concepts irreducible solutions of P. 

It turns out that -minimality subsumes both -minimality 
and -minimality. This is not a surprise, since -minimality 
is a form of -minimality, i.e., maximality for subsumption 
w.r.t. an empty TBox. 

Proposition 2 For every CAP P in which C admits a CNF, 
both , are included in , 

Proof. If a concept C is not -minimal, then it is not 
-minimal, and the same for — ~ 

3.1 Computat ional Complexi ty 
Since Concept Abduction extends Concept Subsumption 
w.r.t. a TBox, complexity lower bounds of the latter problem 
carry over to decision problems related to a CAP. 

Proposition 3 Let P= (C ,C ,D ,T ) be a CAP If Concept 
Subsumption w.r.t. a TBox in C is a problem C-hard for a 
complexity1 class C, then deciding whether a concept belongs 
to SOL(P) is both C-hard and co-C-hard. 

Proof. Hardness for C comes from the fact that C is subsumed 
by D in T if T SOL{P). □ 
Hence, if C contains the DL AC, then deciding whether 
a concept belongs to SOL(P) is EXPTIME-hard [Donini, 
2003] for a general TBox T, but it is PSPACE-hard if T con­
tains only acyclic concept axioms [Calvanese, 1996]. 

Regarding upper bounds, a simple result can be derived 
from the fact that D is always a solution of the CAP 
(C,C,D,T) — although not always a minimal one. First 
of all, a total length-lexicographic order can be defined 
over concepts as follows: given two concepts C, D C, 
let C D if either or both and C 
is lexicographically before D. Based on this total order, an 
algorithm for finding a -minimal solution of a CAP, using 
polynomial space relatively to an oracle for subsumption in 
C, is the following: 

input: a 
output: a concept in 
variables: concept 
begin 

x : = T ; 
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then return x; 
x := next concept following x in 

endwhile; 
return D 

end. 
The above algorithm uses polynomial space (considering the 
two calls to subsumption as an oracle) since it just tries all 
concepts with less symbols than D, and returns D if it does 
not find a shorter solution. Therefore, it provides an upper 
bound on the complexity of CAP, depending on the complex­
ity class to which subsumption in C belongs to. Although this 
result does not directly lead to a practical algorithm, it puts an 
upper bound on the complexity of the problem, hence on the 
complexity of every optimal algorithm. 

Theorem 1 Let P=(C, C, D, T) be a CAP. If subsumption in 
C belongs to a complexity class C that is included in PSPACE, 
then finding a concept in , is a problem in PSPACE. 
Otherwise ifPSPACE is included in C, then finding a concept 
in is a problem in C. 

Given that the problem of finding a solution cannot be simpler 
than the corresponding decision problem, we can conclude 
with some general results about -minimal abduction. 

Theorem 2 Let V={C,C,D,T) be a CAP, with C a DL 
whose expressiveness is between AC and the DL containing 
concept constructors and role construc­
tors role chain, transitive-reflexive roles, role identity, role 
inverse. Then finding a concept in , is a problem 
EXPTlME-complete when T is a general TBox. 

Proof. Hardness results for AC are in [Donini, 2003]. Mem­
bership result for the most expressive logic comes from 
converse-Propositional Dynamic Logic [Vardi and Wolper, 
1986]. 
Hence, for a general TBox the best known algorithms re­
quire exponential time and also exponential space (unless one 
proves PSPACE = EXPTIME). 

When the TBox is acyclic, complexity results for subsump­
tion imply that finding a concept in is a problem 
PSPACE-complete for DLs whose expressiveness is between 

[Calvanese, 1996] and ACC [Baader and Hollunder, 
1991], Even for the simplest logic the problem is co-
NP-hard [Calvanese, 1996]. 

3.2 I r reducib le solutions in ACN 

In this section, we assume that T of a CAP V= (£, C, Z,, T) 
is always acyclic. Finding an irreducible solution is easier 
than finding a -minimal or a minimal solution, since a 
greedy approach can be used to minimize the set of conjuncts 
in the solution: starting from C D, delete one redundant 
conjunct at a time from D. However, instead of starting 
from C D, we adapt a structural subsumption algorithm 
[Borgida and Patel-Schneider, 1994] that collects all concepts 
that should be conjoined to C to be subsumed by D. The al­
gorithm operates on concepts in normal form; roughly speak­
ing, this form is obtained by expanding concept names with 

their definition in T, and then applying the following rewrit­
ing rules as much as possible: 

In the following algorithm, we denote the fact that a con­
cept A appears as a conjunct of a concept C with A C. 

Algorithm findIrred(V); 
i n p u t : , 

output: concept 
(where H = T means that C is already subsumed by D) 
variables: concept H 
begin 

/ / := T; 
for every concept name y in D 

i f y is not in C 
then H := . 

for every concept 
such that there is no concept 

for every concept 
such that there is no concept 

for every concept 
if there exists 

t h e n ; 
else, 

but it might be reducible */ 
for every concept 

if H without 
then delete H1 from H; return H; 

end. 

It can be proved that the concept H returned by find lrred () 
is indeed an irreducible solution of V. As for complexity, 
the expansion of the TBox in the construction of the normal 
form can lead to an exponential blow-up, as demonstrated by 
Nebel in [1990]. And anyway, a polynomial algorithm cannot 
be expected since subsumption in AC with an acyclic T is 
co-NP-hard [Calvanese, 1996]. However, in the cited paper 
Nebel argues that the expansion is exponential in the depth 
of the hierarchy T; if the depth of T is 0( log |T|), then the 
expansion is polynomial, and so is the above algorithm. 

Theorem 3 Let V= ( £ , C , D , T ) be a CAP, with C=AC, 
and T an acyclic TBox whose depth is always bounded by 

. Then finding an irreducible solution to V is a 
problem solvable in polynomial time. 

In order to rank the proposals in a marketplace according 
to how "near" they are to a given proposal D, we take the 
number of concept names in the irreducible solution returned 
by the above algorithm. Although this makes the rank depend 
on the algorithm, it can be easily proved that this definition is 
in accordance with the principles highlighted in Section 2. 
Moreover, the fact that a concept H is actually computed 
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makes it easy to devise an explanation facility, in case a user 
wants to know why a given proposal has been ranked before 
another. This transparency is crucial for our electronic busi­
ness scenario, where we must give the user reasons to trust the 
system. In the next section, we show the results of an exper­
iment comparing the rank obtained by our deployed system 
and the rank provided by some users in the same scenario. 

4 Experiments 
Using the highlighted properties as a formal specification we 
designed and implemented a prototype facilitator. The system 
embeds an adapted NeoClassic reasoner, the C++ implemen­
tation of the original Classic. The rationale of the choice of 
the Classic system, apart from the obviously useful availabil­
ity of concrete datatypes and the possibility to extend its func­
tionalities through test functions, is its polynomial time infer­
ence. The system receives a description of demand/supply. 
Then, the reasoner checks the description for consistency; if it 
fails, based on the reasoner output, the system provides an er­
ror message stating the error occurred. Otherwise the proper 
matchmaking process takes place, and the system returns a 
ranked set of matches. When no exact match is available, 
The user may investigate potential matches. In this process 
he/she is helped by the system ranking. We believe that de­
gree of conformance of an automated matchmaking facilitator 
to users' perception is of extreme importance, especially in a 
setting as our own, which ranks and categorizes matches. To 
evaluate the ability of the system to meet users' expectations 
we set up a little experimental framework. 

We selected all apartments-rental advertisements from the 
dedicated section of a local newspaper on Oct. 6th of last 
year. We subdivided them in two sets, demands (23 adver­
tisements) and supplies (39 advertisements). It is notewor­
thy that, at least for the single-day pick we made, we were 
not able to detect any exact match. We submitted to twenty 
volunteers of various sex and age, a questionnaire that in­
cluded 8 items. Each item was one demand and a set of 
up to eight supplies, or one supply and a set of up to eight 
demands. Volunteers were asked to rank, according to their 
judgement, elements of each set with respect to the given ad­
vertisement, with the following question: Order the follow­
ing Demands(Supply) with respect to the given Supply (De­
mands) as you would contact them had you issued the given 
Supply (Demand). Volunteers were given unlimited time and 
in average it took approximately half hour to complete the 
questionnaire. Then the same sets of items were submitted 
to the reasoner. As a general consideration, the response of 
the reasoner was quite close to the users' ones, and consid­
ering average volunteers orderings the system ranking was in 
agreement with the human judgement almost always. Aver­
age percentage of deviation from the mean values determined 
by the users on the whole experiment was 8.3. 

As an example, we show here in more detail results of 
the evaluation for a single demand/supplies matching process, 
extracted form the experimental setting. Let us consider the 
example demand: student looking for a nice 1/2 bed flat, ch, 
furnished, kitchen, washing machine. Price: 150 

Also consider the following advertisements submitted as 

demand (and Bedroom ( a l l toLe tFor Student) ( a t - l eaB t 1 hasBed) 
(at-most 2 hasBed) ( a t - l e a s t 1 h a s F a c i l i t i e s ) ( a l l h a s F a c i l i l i e s 
(and WashingMachine NoAutonomousHeating Fu l l yFurmshed) ) ( a l l 
haaServices Ki tchen) ( a l l p r i c e (maximum 150))) 

s u p p l y l (and Bedroom ( a l l p r i c e (minimum 120)) ( a l l p r i ce l nc l udes 
(and B i l l TVPrice)) ( a l l h a s F a c i l i t i e B (and Ful lyFurn iBhed 
Spa t ious ) ) ) 

supply2 (and ( a l l p r i c e (minimum 150)) ( a t - l e a s t 2 hasRoom) (at-mosr 
2 hasRoom) ( a l l hasRoom Room) ( a t - l e a s t 2 toLetFor) (at-tnoBt 2 
t o L e t F o r ) ( a l l toLetFor (and Couple S t u d e n t ) ) ( a t - l e a s t 1 
depoai t R e q u i r e d ) ( a l l depooi tRequi red Yes)) 

supply3 (and ( a t - l e a s t 1 d e p o a i t R e q u i r e d ) ( a l l depos i t Required 
Y e s ) ( a l l p r i c e (minimum 80)) Bedroom ( a l l toLetFor (and Student 
NoSmoker Worker ( a l l sex Female))) ) 

supply4 (and SingleRoom ( a l l toLetFor (and NoSmoker 
S t u d e n t ) ) ( a t - l e a a t 2 o c c u p a n t s ) ( a l l p r i c e (minimum 120))) 

Bupply5 (and DoubleRoom ( a l l toLetFor S i n g l e ) ( a l l h a s F a c i l i t i e s 
(and Lounge G a r d e n ) ) ( a l l hasServices K i t c h e n ) ( a l l p r i c e (minimum 
8 5 ) ) ( a l l p r i c e l n c l u d e s Counci lTax)) 

supply6 (and Bedroom ( a t - l e a s t 1 occupants) ( a l l p r i c e (minimum 
81)) ( a l l toLetFor Fema le ) (a i l h a s F a c i l i t i e s (and WashingMachine 
TV VCR))) 

supply7 (and Bedroom ( a l l p r i c e (minimum 95)) ( a l l occupants 
Family) ( a t - l e a s t 2 occupants) ( a l l toLe tFor (and Student 
Pro fess iona l ( a l l sex Female))) ) 

supplyB (and F l a t ( a t - l e a s t 2 hasBed) (at-most 2 hasBed) ( a l l 
toLetFor Student) ( a l l h a s F a c i l i t i e s ADSL) ( a l l p r i c e (minimum 
9b ) ) ) ) 

Figure 1: Neoclassic descriptions of demand and supplies 

supplies: 

• Supply 1: large, fully furnished room, price includes cable TV 
and bills. Price: 120 

• Supply2: double room, suit a couple or two girls, required 
deposit. Price: 150 

• Supply3: room to rent, suit a non smoking female student with 
worker, international preferred, deposit required. Price: 80 

• Supply4: single room in clean flat for nosmoker quiet student, 
sharing with 2 others. Price: 120 

• Supply5: dbl room in shared house, suit single person, use of 
lounge, kitchen , garden, rent includes council tax. Price: 85 

• Supply6: female to share a room in a residential areaflatshare, 
washing machine, TV, VCR. Price: 81 

• Supply 7: large room in family houseshare with 2 adults, suit 
prof / student female, viewing recommended. Price: 95 

• Supply8: 2 bed flat, perfect for student, dble bed ADSL com­
puter beneath. Price: 600 

The translation of these advertisements into Classic, in ac­
cordance with our ontology is pictured in Figure 1. Table 1 
shows results provided from the matchmaking algorithm 
comparing the system provided ranking and the average vol­
unteers orderings for demands w.r.t. to a supply. Figure 2 
shows the same results in a graphical form. Notice that, 
while volunteers gave strictly ranked orderings, the system 
could also provide equal ranking for various matches. Poly­
gons represent a range for the system total order of supplies, 
when there are equally ranked supplies. For example, Sup­
ply 3 and 7 are given the same rank by the system, so they 
could be equally put in fourth or fifth position when supplies 
are given a total order. Hence we consider correct system 
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Table 1: System results and user preferences 

Figure 2: System and averaged users ranking 

ranks for Supply 3 and 4, because users' rank fall inside the 
polygons, while we consider incorrect system placement of 
Supply 2 and 7 (dotted lines mark the difference). 

5 Conclusion 
Motivated by the matchmaking problem in electronic mar­
ketplaces, we have studied abduction in DLs. We have pre­
sented suitable definitions of the problem, and have shown 
how they can model commonsense reasoning usually em­
ployed in analyzing typical commercial advertisements. Al­
though we used the simple DL ACM, our definitions and 
logical framework can be used also when a more expressive 
DL is used. Of course in this case more complex algorithms 
should be devised. To substantiate these ideas we have im­
plemented a prototype based on the devised specifications 
adapting a NeoClassic reasoner, and presented experiments 
that show the correspondence between the system behavior 
with human users judgement. 
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