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Abstract 
This paper addresses the formal verification of di­
agnosis systems. We tackle the problem of diagnos­
ability: given a partially observable dynamic sys­
tem, and a diagnosis system observing its evolution 
over time, we discuss how to verify (at design time) 
if the diagnosis system will be able to infer (at run­
time) the required information on the hidden part of 
the dynamic state. We tackle the problem by look­
ing for pairs of scenarios that are observationally 
indistinguishable, but lead to situations that are re­
quired to be distinguished. We reduce the problem 
to a model checking problem. The finite state ma­
chine modeling the dynamic system is replicated to 
construct such pairs of scenarios; the diagnosabil­
ity conditions are formally expressed in temporal 
logic; the check for diagnosability is carried out 
by solving a model checking problem. We focus 
on the practical applicability of the method. We 
show how the formalism is adequate to represent 
diagnosability problems arising from a significant, 
real-world application. Symbolic model checking 
techniques are used to formally verify and incre­
mentally refine the diagnosability conditions. 

1 Introduction 
Diagnosis is the process of inferring the (most plausible) 
causes for the behavior of a given system, given a set of ob­
servations. In many control applications, ranging from in­
dustrial plants (e.g. production, power) to transportation (e.g. 
railways, avionics, space), diagnosis needs to be carried out 
on-line, in parallel with the control process. This is needed to 
identify whether the controlled system is working correctly 
or not, and to provide the controller with information on the 
degraded conditions (e.g. what are the malfunctioning de­
vices), so that the appropriate counter-measures can be taken. 
The ability to validate such diagnosis systems becomes very 
important, in particular in the case of applications operating 
in hazardous or inaccessible conditions and carrying out vital 
functions. 

In this paper, we focus on the key issue of diagnosability, 
i.e. the possibility for an ideal diagnosis system to infer accu­
rate and sufficient run-time information on the behavior of the 

observed system. We propose a new, practical approach to the 
verification of diagnosability, making the following contribu­
tions. First, we provide a formal characterization of diagnos­
ability problem, using the idea of context, that explicitly takes 
into account the run-time conditions under which it should be 
possible to acquire certain information. 

Second, we show that a diagnosability condition for a given 
plant is violated if and only if a critical pair can be found. A 
critical pair is a pair of executions that are indistinguishable 
(i.e. share the same inputs and outputs), but hide conditions 
that should be distinguished (for instance, to prevent simple 
failures to stay undetected and degenerate into catastrophic 
events). We define the coupled twin model of the plant, and 
show that it can be used to search for critical pairs. 

Third, we recast the problem in the framework of Model 
Checking [Clarke et al, 1999], a verification technique that 
is gaining increasing interest also in AI. With model check­
ing, it is possible to exhaustively analyze the (possibly infi­
nite) behaviors of (large sized) finite state machines, and to 
check if requirements expressed in terms of Temporal Log­
ics [Emerson, 1990] are met. We show how to represent a 
diagnosability problem in terms of temporal logic formulae, 
and how to reduce it to a model checking problem over the 
coupled twin model. 

Finally, we demonstrate the practical applicability within 
the Livingstone framework, a model-based diagnosis system 
developed at NASA Ames Research Center [Williams and 
Nayak, 1996]. We developed a platform able to generate for­
mal models for the twin plant, starting from Livingstone mod­
els. Several diagnosability problems corresponding to inter­
esting scenarios from real-world applications were tackled by 
means of the NuSMV model checker [Cimatti et al, 2002], 
An experimental analysis shows that the verification of diag­
nosability can be practical: large Livingstone models of space 
transportation systems are automatically analyzed within sec­
onds by means of SAT-based symbolic model checking tech­
niques. 

The paper is organized as follows. In Section 2, we state 
our working hypotheses. In Section 3 we formalize the prob­
lem, while in Section 4 we characterize our approach. In Sec­
tion 5, we discuss the application of model checking tech­
niques. In Section 6, we describe the experimental frame-
work. Finally, Section 7 reviews similar work, and Section 8 
draws some conclusions and outlines future lines of activity. 
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Figure 1: Architecture of a diagnosis system 

2 Working Hypotheses 
We consider a diagnosis system connected to a feedback con­
trol loop between a plant and its controller (Figure 1). The 
inputs of the plant are the commands issued by the controller; 
its outputs are measurements returned back to the controller. 
The role of the diagnosis system is to observe the inputs and 
the outputs to the plant, and to report a state estimation, track-
ing the evolution of the unobservable state of the plant. This 
task is substantially more complex than diagnosis for a com­
binatorial, memory-less system. An estimation consists of a 
set of possible states of the plant, in the following referred to 
as a belief state. Although diagnosis might rank these states 
based on likelihood, as a first approach we ignore that aspect. 
We also disregard issues such as the correspondence between 
the model of the plant and the plant itself. We will focus on 
plants modeled as finite-state discrete systems. We assume 
that we have a model of the plant as a partially observable 
transition system, according to the following definition. 

Definition 1 A (partially observable) plant is a structure 
where X, 17, Y are finite sets, respectively 

called the state space, input space and output space, 
X x U x X is the transition relation, and is 
the observation relation. 

W e assume that a p l a n t i s given. W e use 
to denote states of to denote 

inputs of P, y, y0, y1, • • • to denote outputs of P. We write 
The 

state is the "hidden" part of the plant: only the sequences 
of inputs and outputs are observable. P covers all types of 
behaviors that diagnosis is expected to handle — including 
faulty behaviors, with X containing faulty states. In general, 
P need not be deterministic. Thus, the state after a transition 
may not be uniquely determined the state before the transition 
and by the input. Observability is modeled by associating to 
each state a (non empty) set of possible outputs. It is therefore 
possible to model different forms of observation, e.g. when 
the information conveyed by the sensors is also uncertain. In 
this paper, we present the (input, state and output) spaces of 
a plant by means of assignment to (input, state and output) 
variables ranging over finite sets of values; the transition and 
observation relation can be compactly presented with boolean 

formulae. (Notice however that the content of the paper is 
independent of the specific description used to present P.) 

Definition 2 A feasible execution of steps in P is 
a sequence such 

and for 0 
as the set of all feasible execu­

tions of P. The observable trace of a feasible execution 
is 
such a a exists. 

The above definition defines the dynamics of a plant and its 
observable counterpart. Notice that if an execution has k 
steps, then the corresponding t r a c e . The 
set of traces is in general a subset In the 
following we use to denote a feasible execution, and w to 
denote the corresponding (observable) trace. For explanatory 
purposes, we consider the plant outlined in Figure 2, that is 
a simplified segment of the real-world application described 
in Section 6. A pneumatic valve (PV) controls the flow of a 
feeding line to the engine, and it is closed in its resting posi­
tion (determined by the action of a spring). A solenoid valve 
(SV), when open, can open PV by directing the pneumatic 
flow against the spring. When SV is closed, the action of the 
spring is no longer contrasted and PV can close. SV can re­
ceive an input (open/close), but has no observables. PV has 
two sensors, each providing information on a position (e.g. 
whether it is open or not). Both valves can become stuck 
in their current position. The position of the valves influ­
ences the pneumatic and engine flows. Each of the valves 
has two unobservable variables: s t a t e , with values open 
and c l o s e d , and f a i l u r e mode, with values s t u c k and 
ok. The input variable can take the values no-cmd, open, 
and c l o s e . The effect of a command depends on the current 
status. Failures can occur at any time, and are permanent. 
Sensors of PV are also associated with a f a i l u r e _ m o d e 
variable, that determines what information is conveyed. 

3 Diagnosability 
Run-time diagnosis starts from a (possibly partial) initial 
knowledge, observes the sequence of inputs and outputs, and 
tries to update a belief state that is an estimate of the possible 
states of the plant. For instance, if S V is commanded open, 
and the PV is not sensed open, then some problem should be 
diagnosed. It could be that SV or PV are stuck, or even that 
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both PV sensors are not working correctly. Ideally, a diagno­
sis function should return belief states that are as specific (i.e. 
as small) as possible, but include the actual state of the plant. 

The intuition behind correct diagnosis values is that they en­
compass all potential current states, so that they cannot miss 
the actual state. In the following, we restrict ourselves to cor­
rect diagnosis functions. 

Diagnosability aims at detecting if (parts of) the hidden 
state can be accurately tracked by looking at the observable 
traces. We use diagnosis conditions to specify which infor­
mation on the state we are interested in distinguishing. 
Definition 4 A diagnosis condition for a plant P is a pair of 
nonempty sets of states 

We can express fault detection, i.e. telling if any fault is 
present or fault separation, i.e. distin­
guishing between different faults (or fault classes) ( 
faulty). Intuitively, a diagnosis value is not satisfactory if it 
intersects with both sides of the condition. In the example, 
a fault separation condition is not satisfied if we have a be­
lief state containing both a state where PV is faulty, and one 
where SV is faulty. 
However, it would be unrealistic to require that diagnosis pro­
vide correct and exact state estimations, instantaneously and 
under all circumstances. For instance, a stuck PV will stay 
unnoticed at least as long as SV is not operated. Rather, we 
require a diagnosis system to be able to decide between al­
ternative conditions on the state of the system in the context 
where the distinction becomes critical. 

Intuitively, 0 defines the initial conditions under which diag­
nosability is to be investigated, by inducing of a set of disjoint 
belief states. Basically, the initial belief state XQ must fall 
within one of the belief states induced by (the condition on 

can be stated as " For 
example, can partition states according to the positions of 
PV and SV, to capture the assumption that we initially (only) 
know those positions. characterizes pairs of relevant exe­
cutions. For instance, we may want to express the fact that the 
controller commands SV to be open and closed at least one 
time. In the case of fault detection, we might want to state 
that the elements of are pairs of traces, there the first are 
without faults, while the second ones have exactly one fault. 
Notice that expressing would be inadequate: 
for instance, in fault separation it would be impossible to con­
strain the two runs to have different failures. In the following 
we assume that a context is given. The notion 
of diagnosability is precisely characterized as follows. 

4 Diagnosability as Coupled Reachability 
Our approach to reasoning about diagnosability is based on 
refutation, i.e. we search for ways in which the diagnosability 
property can be violated. Intuitively, we verify the diagnos­
ability of by checking that P does not have a critical 
pair, i.e. two executions with identical observable traces, one 
leading to c1, one leading to c2 (see Figure 3). 

Definition 7 A critical pair of a plant P, with trace w, for a 
diagnosis condition is a pair of feasible executions 

The absence of critical pairs for in a given context is 
a necessary and sufficient condition for to be diag-
nosable in that context. 

Theorem 8 is diagnosable over C in P, if and only 
if P has no critical pair for 

To prove the theorem, we introduce the notion of perfect di-
agnosis, written i.e. the most specific correct diagnosis 
function that can be made assuming full knowledge of P. 

Definition 9 The perfect diagnosis for a plant P is the diag-
nosis function 

Given an initial belief state X0 and trace returns 
exactly all states that can be reached from x0 through w. It is 
easy to see that is correct, and that it is the most informative 
diagnosis function, i.e. for any correct 

We observe that a condition is diagnosable in a 
plant P over a context C if and only if from 
Definition 6, if 
C2. Therefore, satisfies any diagnosable condition, since 
its diagnosis values are more specific than any other correct 
diagnosis function. 
Proof of Theorem 8 is not diagnosable in P over C; 
if and only if there exist X0 and w such that 
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if and only if there exist and 
such that 

x2 if and only if there exists a critical pair for for 

In order to search for critical pairs in P, we build the cou­
pled twin plant for P, written P • P, i.e. a "Siamese twins** 
plant, made out of two copies of P, whose inputs and outputs 
are forced to be identical. 

In the following, we assume that the coupled twin plant 
P • P of P is given. The importance of the coupled twin plant 
construction is shown by the following theorem. 

Theorem 1 1 a r e two 
feasible executions in P if and only if 
(x1, X2) is a feasible execution in P ■ P. 

This is easily demonstrated by induction on the length k of 
executions. When From Defini­
tion 10, • X and 

The step case is proved by extend­
ing with a transition the executions of length k, for which the 
theorem holds. From Definition 10, the transitions in P • P 
mimic the transitions in P. For the last observation, we rea­
son as for the base case. 

5 Diagnosability via Model Checking 
We work in the framework of Model Checking [Clarke et al, 
1999], a formal verification technique that is increasingly ap­
plied to the design of industrial digital systems (e.g. com­
munication protocols, hardware design). Model checking al­
lows to verify if the (possibly infinite) behaviors of a system 
satisfy a given property. The system being analyzed is pre­
sented as a Kripke structure, while properties are expressed 
in a temporal logic [Emerson, 1990]. Model checking algo­
rithms are based on the exhaustive exploration of the Kripke 
structure. The technique is completely automatic and, if a 
property is violated, it can produce a counterexample, i.e. a 
simulation witnessing the violation. Symbolic model check­
ing [McMillan, 1993] is based on the manipulation of sets 
of states described by boolean formulae; efficient engines, 
such as Binary Decision Diagrams (BDDs) [Bryant, 1986] 
and SAT solvers [Moskewicz et al., 2001 ], provide a basis for 
efficient representation and exploration of the search space. 

Our approach to diagnosability inherits several elements 
from model checking. The first is that a plant P can be asso­
ciated with a Kripke structure Kp representing its behavior. 
This makes it possible for us to directly analyze a plant with 
model checking techniques. A Kripke structure is basically a 
nondeterministic transition system, where transitions are not 
labeled, while information is associated with states (i.e. each 
state is associated with a valuation to the state variables of 
the structure). The mapping from plant to Kripke structure 

is rather simple, and is based on the idea that the state, input 
and output spaces of the plant can be encoded into the state 
space of the Kripke structure. The information on the inputs, 
labeling the transitions in P, simply becomes part of the state 
of Kp, and is to be interpreted as "the input that wil l be pro­
cessed in the next transition**. More formally, each state s in 
Kp is associated with a valuation that characterizes a triple 

P is in state x, output y is observed and input 
u is received. The dynamics of P directly induce the dynam­
ics of Kp. For each feasible execution in P of the form 

there is a corresponding 
path in Kp, i.e. a sequence of s t a t e s w h e r e 
each S is associated with the triple The same 
mapping lifts to the coupled twin plant construction. (In the 
above description, we omit a few technical details, having to 
do in particular with the fact that a Kripke structure is as­
sumed to be total, i.e. every state has at least one successor. 
In this way, it is possible to assume that the analyzed paths are 
infinite. Since inputs become part of the state, it is possible 
that the transition relation is no longer total. There are stan­
dard workarounds to this problem, routinely used in verifica­
tion and in AI planning. See for instance [Cimatti and Roveri, 
2000].) In the following, we assume that Kripke structure 
Kp.p corresponding to the coupled twin plant P ■ P is given. 

The second element from model checking is the symbolic 
representation. The state of Kp.p is defined with a vec­
tor of variables ( x 1 , x 2 , u , y ) , respectively ranging over Ar, 
X, U and Y. We can use formulae to characterize sets of 
states. In Kp.p we express atomic propositions over such 
variables. We can have equalities between variables and the 
corresponding values: P I . P V , i n p u t = c l o s e denotes 
the set of states where the first instance of PV receives the 
c l o s e command. Variables of the same type can be equated: 
P I . SV. f a i l u r e _ m o d e = P2 . SV. f a i l u r e mode de­
scribes the set of states where the two instances of SV in 
the twin plant have the same failure mode. Any subset 
c of XxXxUxY can be described with a formula 
c (x 1 ,X2 ,y ,u ) . For instance, the formula 
expresses a state of the twin plant where the first instance is in 
C1 and the second is in C2. Similarly, is a (proposi-
tional) formula expressing, in symbolic form, the equivalence 
relation 

The third ingredient from model checking is the use of 
temporal logics to characterize behaviors of the system over 
time. We use LTL (Linear Temporal Logic [Emerson, 1990]), 
where formulae are constructed starting by combining atomic 
propositions with boolean operators and temporal modalities. 
If and are LTL formulae, so are (sometimes in the 
future (always in the f u t u r e ( s o m e t i m e s in 
the future and, until then, (in the next time step 
An LTL formula holds on a path TT (written 
true in n at (step) 0 (written . If p is an atomic propo­
sition, then iff p is true according to the assignment 
associated with the i-th state of Boolean connectives have 
the standard interpretation and 

The interesting cases of temporal operators are as 

i f f there exists 
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MODULE SV_type (cmd_in) 

MODULE PV_type ( ) 
VAR pneumat icsL ine ln : {abvThresh,b lwThresh} ; 
VAR va lvePos i t i onVa lue : {open ,c losed} ; 
VAR mode : {s tuckOpen,nomina l ,s tuckClosed} ; 

DEFINE _faul tmodes := {s tuckOpen,s tuckClosed} ; 
DEFINE _broken := mode in __faultmodes; 
DEFINE _brokencount := _broken; 
DEFINE _brokenprob := 

case 
mode = stuckOpen : 3; 
mode = stuckClosed : 3; 
e l se : 0; 

esac; 

MODULE EX_type (sv_cmd_in, . . . ) 
SV : SV_type(sv_cmd_in); 
PV : PV_type( ); 

DEFINE _brokencount := SV.__broken + 
PV. broken + 

Figure 4: The SMV model for the example 

A diagnosis condition with a context is represented with 
temporal logic formula such that holds if f there 
is a critical pair. We express reachability in P • P of a criti­
cal pair for a diagnosis condition with the formula: 

Model checking can be run on the 
problem . If the answer is true, 
then we have a witness for the a critical pair. Given the con­
text we enforce the initial condition with 
the formula . The conjunc­
tion has the effect of restricting the analysis to the paths in 
Kp.p starting from the states that satisfy is taken 
into account assuming that a characterization of the sets of 
traces is described by an LTL formula . The 
model checking problem corresponding to diagnosability is 

In practice, several simplifications are possible. Often 
can be expressed in terms of propositional 

constraints that must hold on all the states 
of the execution; in such cases diagnosability in context C 
is basically represented by the LTL formula 

. Notice that the 
formula holds if the path condition holds until the con­
ditions c1 and c2 are reached. When the context does not 
constraint the executions, the above formula is equivalent to 

MODULE main 
VAR 

sv_cmd : { no_cmd, open, c lose }; 
P I : EX_type(sv_crnd, . . . ) ; 
P2 : EX_type(sv_cmd, . . . ) ; 

INVAR 
(PI.PV.sense_open = P2.PV.sense_open) & . . . 

Figure 5: The SMV schema for the twin plant 

6 Experimental Evaluation 

We analyzed the practical applicability of our approach 
within the Livingstone framework. Livingstone is a model-
based health monitoring system developed at NASA Ames 
[Williams and Nayak, 1996]. It uses a model of a physical 
system, such as a spacecraft, to infer its state and diagnose 
faults from observations. Livingstone is one of the three parts 
of the Remote Agent (RA), an autonomous spacecraft con­
troller developed by NASA Ames Research Center jointly 
with the Jet Propulsion Laboratory. RA was the first Al 
software to control an operational spacecraft [Muscettola et 
al, 1998]. Livingstone has also been used in other applica­
tions such as the control of the In-Situ Propellant Production 
system (1SPP) for Mars missions [Clancy et al, 1999], the 
monitoring of a mobile robot [Simmons et al., 2001 ], and In­
telligent Vehicle Health Management (IVHM) for experimen­
tal space transportation vehicles [Bajwa and Sweet, 2002]. 

Livingstone uses a qualitative relational model describing 
the evolution of observable and hidden variables. Continuous 
physical domains are abstracted into discrete intervals such 
as { l o w , n o m i n a l , h i g h } . Each component has a mode 
variable identifying its nominal and fault modes. Livingstone 
models are specified in a hierarchical, declarative formalism 
called JMPL, or using a graphical development environment. 
Livingstone observes the commands issued to the plant and 
uses the model to predict the plant state. It then compares the 
predicted state against observations received from the actual 
sensors. If a discrepancy is found, Livingstone performs a 
diagnosis by searching for the most likely configuration of 
component modes that are consistent with the observations. 

Livingstone models directly induce a synchronous transi­
tions systems, very similar to a plant model. Pecheur and 
Simmons [Pecheur and Simmons, 2000] have developed a 
translator able to convert a Livingstone model and a re­
lated set of specifications in the language of the SMV model 
checker [McMillan, 1993], and to convert back the diagnostic 
traces in terms of the Livingstone model. Figure 4 outlines 
the structure of the example plant in SMV language. For each 
component type, there is a corresponding module. The first 
module statements define the model for the SV and the PV. 
For each of the components, a set of variables is defined, the 
dynamics of which is directly induced from the Livingstone 
model. Notice the _ b r o k e n p r o b variable, whose numeri­
cal value is the (negated) logarithm of the probability of fail­
ure for the component (e.g. 10 -3). This enables for a (rough) 
analysis of failure probabilities. These modules are instan­
tiated in the EX module, with a parameter representing the 
commands to PV. 
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In order to tackle diagnosability, we devised a systematic 
way of constructing the SMV coupled twin plant of a Living­
stone model. The construction is outlined in Figure 5. The 
EX plant is instantiated twice in the main, at top level, gen­
erating PI and P2. The same input variable (sv_cmd) is 
given in input to both instances. Then, the outputs of the 
two instances of the plant are constrained to exhibit the same 
behavior by means of an INVAR statement, i.e. a condition 
that must hold in all states. The SMV language enables for 
the specification of context. The basic building blocks of the 
properties are propositional conditions over states, that can 
be expressed by means of the DEFINE construct. For in­
stance, it is possible to express conditions on the number of 
failures, using the _ b r o k e n c o u n t variable defined in Fig­
ure 4. For instance, P I . _ b r o k e n c o u n t < 2 in the main 
module states that at most one failure can occur in the first 
instance of the circuit. 

In the experimental analysis, we tackled several problems 
for the Livingstone model of the Main Propulsion System 
for the X-34, a next-generation vehicle for the Space Shut­
tle [Bajwa and Sweet, 2002]. We interacted with the NASA 
experts of diagnosis, to check the representational adequacy 
of our formalism, and to characterize diagnosability problems 
of practical relevance. The problems were defined starting 
from simulation runs, that tested a specific fault in a specific 
context. We remark the impact of our approach is far be­
yond the one of testing, since it performs an exhaustive anal­
ysis (though at a higher abstraction level) within the cases 
captured by the context. The experimental evaluation was 
carried out by running different symbolic model checking 
tools on models described in SMV language, such as the 
CMU SMV [McMillan, 1993], Bwolen Yang's version of 
SMV [Yang etal, 1999], and NuSMV [Cimatti et al, 2002]. 
While the former ones are based on Binary Decision Dia­
grams (BDDs) [Bryant, 1986], NuSMV also enables the use 
of SAT-based techniques [Moskewicz et al, 2001]. This ac­
tivity suggested several considerations. First, the experimen­
tal analysis was fundamental to tune the formalism. Several 
improvements (e.g. the notion of context) were conceived 
while trying to encompass representational issues arising in 
practice. Second, contexts are incrementally characterized. 
Although the requirements for the diagnosis system can usu­
ally suggest an initial version for the context, it is seldom the 
case that the precise conditions for diagnosability are known 
(or can be precisely stated) in advance. The ability of the 
model checker to find critical pairs was very useful in the re­
finement, since it helped to explain why diagnosability fails, 
i.e. to understand whether the context is not strict enough, or 
because a problem was found. 

In terms of performance, the critical factor was the size 
of the models to be analyzed. The most significant plant 
we analyzed has about 800 scalar variables. This number 
almost doubles in the case of the twin plant, and (after the 
elimination of equivalent variables) we are left with mod­
els having about 600 state variables. Different versions of 
SMV were used to tackle the resulting diagnosability prob­
lems. Al l the BDD-based verification engines were defeated 
by the size of models for coupled twin plants (i.e. no solution 
found after running for 24hs). This failure occurred despite 

the use of advanced techniques such as dynamic reordering, 
invariant discovery, and conjunctive partitioning. We remark 
that some of these BDD-based engines, most notably Bwolen 
Yang's SMV, were able to tackle verification problems on 
single plants very efficiently. On the other hand, the use 
of model checking techniques based on SAT solving, imple­
mented in the NuSMV system [Cimatti etal, 2002], proved 
to be very effective on these problems. We used a combined 
approach, integrating bounded model checking (oriented to 
finding bugs) and inductive reasoning. The SAT-based engine 
of NuSMV was able to solve all the verification problems 
in less than two seconds. The analysis of the results shows 
that Livingstone models tend to feature a huge state space but 
little depth; therefore, the symbolic processing provided by 
SAT turns out to be very appropriate. It is worth mention­
ing that, while trying to refine a diagnosability property, we 
discovered an unexpected behavior in the model of the X-34. 
Further analysis highlighted a missing statement in the de­
scription. This result is quite significant, since the model had 
been repeatedly tested. 

7 Related Work 
The idea of diagnosability has received a lot of attention in 
the framework of Discrete Event Systems. In [Sampath et 
al, 1995; 1996], diagnosability is precisely defined and an 
algorithm for checking diagnosability is presented. The ap­
proach is limited to failures represented as reachability prop­
erties. Jiang and Kumar [Jiang and Kumar, 2002] generalize 
the approach to the case of failures described as formulae in 
linear temporal logics. The approach is based on a polyno­
mial algorithm for testing the diagnosability, formulated with 
techniques from automata theory [Jiang et al, 2001]. In par­
ticular, they define a self-product automaton similar to our 
twin plant. Console, Picardi and Ribaudo [Console et al, 
2000] propose the use of a particular form of process alge­
bras, PEPA, for the formalization and the analysis of diagno­
sis and diagnosability problems. 

Our work is rather different from the works mentioned 
above, that are mostly oriented to the definition of the theoret­
ical framework, and do not address the problems related to the 
practical application of the proposed techniques. Our objec­
tive is the definition of an effective platform for the analysis 
of diagnosability, that can be practically applied in the de­
velopment process of diagnosis systems. The "twin-models" 
approach allows us to directly reuse standard model check­
ing tools, without having to reimplement a complex tableau 
construction described in [Jiang et al, 2001]. Furthermore, 
our approach preserves the semantics of the problem, thus 
making it possible to tune the decision procedure to the ap­
plication domain. In terms of expressivity, our work shares 
several underlying assumptions with [Sampath et al, 1995; 
1996], considering failures that can be represented as reach­
ability conditions. Compared to [Jiang et al, 2001], we only 
tackle zero-delay diagnosability, although it seems that our 
framework could be extended in this respect. 

Our approach makes no hypothesis on the way the con­
troller exploits the information provided by the diagnosis sys­
tem. For this reason, we introduce the notion of context in 
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order to qualify the conditions under which diagnosability 
should hold. In active diagnosis [Sampath et al, 1998], the 
controller is designed taking into account the issues of di­
agnosability. Similar problems are also tackled in planning 
under partial observability, where the planner can decide the 
most appropriate actions to diagnose the fault, e.g. by probing 
the system with actions that wil l provide suitable information, 
and recover from it (see for instance [Bertoli et al, 2002]). 

8 Conclusions 
In this paper, we have proposed a novel approach to the ver­
ification of diagnosability, with emphasis on its practical ap­
plicability. Our work is based on a new conceptualization of 
the problem, with the twin plant construction and the use of 
temporal logic formulae to describe the context of a diagnos­
ability problem. To the best of our knowledge, this is the first 
approach to diagnosability that enables the direct exploitation 
of symbolic model checking technology. We tackled signif­
icant diagnosability problems from a real-world application, 
discussed a practical methodology for the incremental refine­
ment of diagnosis contexts, and were able to verify large-
sized problems. In the future, we will try to take into account 
the fact that diagnosis can propose several candidates, with 
different degrees of likelihood. A compositional approach to 
verification, exploiting the modular structure of the design, 
will be investigated. In the longer term, we plan to tightly in­
tegrate the approach within the Livingston toolset, in order to 
allow Livingstone application developers to use model check­
ing to assist them in designing and correcting their models, as 
part of their usual development environment. 
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