
Formal Verification of Diagnosability via Symbolic Model Checking

Alessandro Cimatti Charles Pecheur Roberto Cavada
ITC-irst RIACS/NASA Ames Research Center ITC-irst

Povo, Trento, Italy Moffett Field, CA, U.S.A. Povo, Trento, Italy
mailto:cimatti@irst.itc.it pecheur@ptolcmy.arc.nasa.gov cavada@irst.itc.it

Abstract
This paper addresses the formal verification of di­
agnosis systems. We tackle the problem of diagnos­
ability: given a partially observable dynamic sys­
tem, and a diagnosis system observing its evolution
over time, we discuss how to verify (at design time)
if the diagnosis system will be able to infer (at run­
time) the required information on the hidden part of
the dynamic state. We tackle the problem by look­
ing for pairs of scenarios that are observationally
indistinguishable, but lead to situations that are re­
quired to be distinguished. We reduce the problem
to a model checking problem. The finite state ma­
chine modeling the dynamic system is replicated to
construct such pairs of scenarios; the diagnosabil­
ity conditions are formally expressed in temporal
logic; the check for diagnosability is carried out
by solving a model checking problem. We focus
on the practical applicability of the method. We
show how the formalism is adequate to represent
diagnosability problems arising from a significant,
real-world application. Symbolic model checking
techniques are used to formally verify and incre­
mentally refine the diagnosability conditions.

1 Introduction
Diagnosis is the process of inferring the (most plausible)
causes for the behavior of a given system, given a set of ob­
servations. In many control applications, ranging from in­
dustrial plants (e.g. production, power) to transportation (e.g.
railways, avionics, space), diagnosis needs to be carried out
on-line, in parallel with the control process. This is needed to
identify whether the controlled system is working correctly
or not, and to provide the controller with information on the
degraded conditions (e.g. what are the malfunctioning de­
vices), so that the appropriate counter-measures can be taken.
The ability to validate such diagnosis systems becomes very
important, in particular in the case of applications operating
in hazardous or inaccessible conditions and carrying out vital
functions.

In this paper, we focus on the key issue of diagnosability,
i.e. the possibility for an ideal diagnosis system to infer accu­
rate and sufficient run-time information on the behavior of the

observed system. We propose a new, practical approach to the
verification of diagnosability, making the following contribu­
tions. First, we provide a formal characterization of diagnos­
ability problem, using the idea of context, that explicitly takes
into account the run-time conditions under which it should be
possible to acquire certain information.

Second, we show that a diagnosability condition for a given
plant is violated if and only if a critical pair can be found. A
critical pair is a pair of executions that are indistinguishable
(i.e. share the same inputs and outputs), but hide conditions
that should be distinguished (for instance, to prevent simple
failures to stay undetected and degenerate into catastrophic
events). We define the coupled twin model of the plant, and
show that it can be used to search for critical pairs.

Third, we recast the problem in the framework of Model
Checking [Clarke et al, 1999], a verification technique that
is gaining increasing interest also in AI. With model check­
ing, it is possible to exhaustively analyze the (possibly infi­
nite) behaviors of (large sized) finite state machines, and to
check if requirements expressed in terms of Temporal Log­
ics [Emerson, 1990] are met. We show how to represent a
diagnosability problem in terms of temporal logic formulae,
and how to reduce it to a model checking problem over the
coupled twin model.

Finally, we demonstrate the practical applicability within
the Livingstone framework, a model-based diagnosis system
developed at NASA Ames Research Center [Williams and
Nayak, 1996]. We developed a platform able to generate for­
mal models for the twin plant, starting from Livingstone mod­
els. Several diagnosability problems corresponding to inter­
esting scenarios from real-world applications were tackled by
means of the NuSMV model checker [Cimatti et al, 2002],
An experimental analysis shows that the verification of diag­
nosability can be practical: large Livingstone models of space
transportation systems are automatically analyzed within sec­
onds by means of SAT-based symbolic model checking tech­
niques.

The paper is organized as follows. In Section 2, we state
our working hypotheses. In Section 3 we formalize the prob­
lem, while in Section 4 we characterize our approach. In Sec­
tion 5, we discuss the application of model checking tech­
niques. In Section 6, we describe the experimental frame-
work. Finally, Section 7 reviews similar work, and Section 8
draws some conclusions and outlines future lines of activity.

DIAGNOSIS 363

Figure 1: Architecture of a diagnosis system

2 Working Hypotheses
We consider a diagnosis system connected to a feedback con­
trol loop between a plant and its controller (Figure 1). The
inputs of the plant are the commands issued by the controller;
its outputs are measurements returned back to the controller.
The role of the diagnosis system is to observe the inputs and
the outputs to the plant, and to report a state estimation, track-
ing the evolution of the unobservable state of the plant. This
task is substantially more complex than diagnosis for a com­
binatorial, memory-less system. An estimation consists of a
set of possible states of the plant, in the following referred to
as a belief state. Although diagnosis might rank these states
based on likelihood, as a first approach we ignore that aspect.
We also disregard issues such as the correspondence between
the model of the plant and the plant itself. We will focus on
plants modeled as finite-state discrete systems. We assume
that we have a model of the plant as a partially observable
transition system, according to the following definition.

Definition 1 A (partially observable) plant is a structure
where X, 17, Y are finite sets, respectively

called the state space, input space and output space,
X x U x X is the transition relation, and is
the observation relation.

W e assume that a p l a n t i s given. W e use
to denote states of to denote

inputs of P, y, y0, y1, • • • to denote outputs of P. We write
The

state is the "hidden" part of the plant: only the sequences
of inputs and outputs are observable. P covers all types of
behaviors that diagnosis is expected to handle — including
faulty behaviors, with X containing faulty states. In general,
P need not be deterministic. Thus, the state after a transition
may not be uniquely determined the state before the transition
and by the input. Observability is modeled by associating to
each state a (non empty) set of possible outputs. It is therefore
possible to model different forms of observation, e.g. when
the information conveyed by the sensors is also uncertain. In
this paper, we present the (input, state and output) spaces of
a plant by means of assignment to (input, state and output)
variables ranging over finite sets of values; the transition and
observation relation can be compactly presented with boolean

formulae. (Notice however that the content of the paper is
independent of the specific description used to present P.)

Definition 2 A feasible execution of steps in P is
a sequence such

and for 0
as the set of all feasible execu­

tions of P. The observable trace of a feasible execution
is
such a a exists.

The above definition defines the dynamics of a plant and its
observable counterpart. Notice that if an execution has k
steps, then the corresponding t r a c e . The
set of traces is in general a subset In the
following we use to denote a feasible execution, and w to
denote the corresponding (observable) trace. For explanatory
purposes, we consider the plant outlined in Figure 2, that is
a simplified segment of the real-world application described
in Section 6. A pneumatic valve (PV) controls the flow of a
feeding line to the engine, and it is closed in its resting posi­
tion (determined by the action of a spring). A solenoid valve
(SV), when open, can open PV by directing the pneumatic
flow against the spring. When SV is closed, the action of the
spring is no longer contrasted and PV can close. SV can re­
ceive an input (open/close), but has no observables. PV has
two sensors, each providing information on a position (e.g.
whether it is open or not). Both valves can become stuck
in their current position. The position of the valves influ­
ences the pneumatic and engine flows. Each of the valves
has two unobservable variables: s t a t e , with values open
and c l o s e d , and f a i l u r e mode, with values s t u c k and
ok. The input variable can take the values no-cmd, open,
and c l o s e . The effect of a command depends on the current
status. Failures can occur at any time, and are permanent.
Sensors of PV are also associated with a f a i l u r e _ m o d e
variable, that determines what information is conveyed.

3 Diagnosability
Run-time diagnosis starts from a (possibly partial) initial
knowledge, observes the sequence of inputs and outputs, and
tries to update a belief state that is an estimate of the possible
states of the plant. For instance, if S V is commanded open,
and the PV is not sensed open, then some problem should be
diagnosed. It could be that SV or PV are stuck, or even that

364 DIAGNOSIS

both PV sensors are not working correctly. Ideally, a diagno­
sis function should return belief states that are as specific (i.e.
as small) as possible, but include the actual state of the plant.

The intuition behind correct diagnosis values is that they en­
compass all potential current states, so that they cannot miss
the actual state. In the following, we restrict ourselves to cor­
rect diagnosis functions.

Diagnosability aims at detecting if (parts of) the hidden
state can be accurately tracked by looking at the observable
traces. We use diagnosis conditions to specify which infor­
mation on the state we are interested in distinguishing.
Definition 4 A diagnosis condition for a plant P is a pair of
nonempty sets of states

We can express fault detection, i.e. telling if any fault is
present or fault separation, i.e. distin­
guishing between different faults (or fault classes) (
faulty). Intuitively, a diagnosis value is not satisfactory if it
intersects with both sides of the condition. In the example,
a fault separation condition is not satisfied if we have a be­
lief state containing both a state where PV is faulty, and one
where SV is faulty.
However, it would be unrealistic to require that diagnosis pro­
vide correct and exact state estimations, instantaneously and
under all circumstances. For instance, a stuck PV will stay
unnoticed at least as long as SV is not operated. Rather, we
require a diagnosis system to be able to decide between al­
ternative conditions on the state of the system in the context
where the distinction becomes critical.

Intuitively, 0 defines the initial conditions under which diag­
nosability is to be investigated, by inducing of a set of disjoint
belief states. Basically, the initial belief state XQ must fall
within one of the belief states induced by (the condition on

can be stated as " For
example, can partition states according to the positions of
PV and SV, to capture the assumption that we initially (only)
know those positions. characterizes pairs of relevant exe­
cutions. For instance, we may want to express the fact that the
controller commands SV to be open and closed at least one
time. In the case of fault detection, we might want to state
that the elements of are pairs of traces, there the first are
without faults, while the second ones have exactly one fault.
Notice that expressing would be inadequate:
for instance, in fault separation it would be impossible to con­
strain the two runs to have different failures. In the following
we assume that a context is given. The notion
of diagnosability is precisely characterized as follows.

4 Diagnosability as Coupled Reachability
Our approach to reasoning about diagnosability is based on
refutation, i.e. we search for ways in which the diagnosability
property can be violated. Intuitively, we verify the diagnos­
ability of by checking that P does not have a critical
pair, i.e. two executions with identical observable traces, one
leading to c1, one leading to c2 (see Figure 3).

Definition 7 A critical pair of a plant P, with trace w, for a
diagnosis condition is a pair of feasible executions

The absence of critical pairs for in a given context is
a necessary and sufficient condition for to be diag-
nosable in that context.

Theorem 8 is diagnosable over C in P, if and only
if P has no critical pair for

To prove the theorem, we introduce the notion of perfect di-
agnosis, written i.e. the most specific correct diagnosis
function that can be made assuming full knowledge of P.

Definition 9 The perfect diagnosis for a plant P is the diag-
nosis function

Given an initial belief state X0 and trace returns
exactly all states that can be reached from x0 through w. It is
easy to see that is correct, and that it is the most informative
diagnosis function, i.e. for any correct

We observe that a condition is diagnosable in a
plant P over a context C if and only if from
Definition 6, if
C2. Therefore, satisfies any diagnosable condition, since
its diagnosis values are more specific than any other correct
diagnosis function.
Proof of Theorem 8 is not diagnosable in P over C;
if and only if there exist X0 and w such that

DIAGNOSIS 365

Figure 3: Critical pair

if and only if there exist and
such that

x2 if and only if there exists a critical pair for for

In order to search for critical pairs in P, we build the cou­
pled twin plant for P, written P • P, i.e. a "Siamese twins**
plant, made out of two copies of P, whose inputs and outputs
are forced to be identical.

In the following, we assume that the coupled twin plant
P • P of P is given. The importance of the coupled twin plant
construction is shown by the following theorem.

Theorem 1 1 a r e two
feasible executions in P if and only if
(x1, X2) is a feasible execution in P ■ P.

This is easily demonstrated by induction on the length k of
executions. When From Defini­
tion 10, • X and

The step case is proved by extend­
ing with a transition the executions of length k, for which the
theorem holds. From Definition 10, the transitions in P • P
mimic the transitions in P. For the last observation, we rea­
son as for the base case.

5 Diagnosability via Model Checking
We work in the framework of Model Checking [Clarke et al,
1999], a formal verification technique that is increasingly ap­
plied to the design of industrial digital systems (e.g. com­
munication protocols, hardware design). Model checking al­
lows to verify if the (possibly infinite) behaviors of a system
satisfy a given property. The system being analyzed is pre­
sented as a Kripke structure, while properties are expressed
in a temporal logic [Emerson, 1990]. Model checking algo­
rithms are based on the exhaustive exploration of the Kripke
structure. The technique is completely automatic and, if a
property is violated, it can produce a counterexample, i.e. a
simulation witnessing the violation. Symbolic model check­
ing [McMillan, 1993] is based on the manipulation of sets
of states described by boolean formulae; efficient engines,
such as Binary Decision Diagrams (BDDs) [Bryant, 1986]
and SAT solvers [Moskewicz et al., 2001], provide a basis for
efficient representation and exploration of the search space.

Our approach to diagnosability inherits several elements
from model checking. The first is that a plant P can be asso­
ciated with a Kripke structure Kp representing its behavior.
This makes it possible for us to directly analyze a plant with
model checking techniques. A Kripke structure is basically a
nondeterministic transition system, where transitions are not
labeled, while information is associated with states (i.e. each
state is associated with a valuation to the state variables of
the structure). The mapping from plant to Kripke structure

is rather simple, and is based on the idea that the state, input
and output spaces of the plant can be encoded into the state
space of the Kripke structure. The information on the inputs,
labeling the transitions in P, simply becomes part of the state
of Kp, and is to be interpreted as "the input that wil l be pro­
cessed in the next transition**. More formally, each state s in
Kp is associated with a valuation that characterizes a triple

P is in state x, output y is observed and input
u is received. The dynamics of P directly induce the dynam­
ics of Kp. For each feasible execution in P of the form

there is a corresponding
path in Kp, i.e. a sequence of s t a t e s w h e r e
each S is associated with the triple The same
mapping lifts to the coupled twin plant construction. (In the
above description, we omit a few technical details, having to
do in particular with the fact that a Kripke structure is as­
sumed to be total, i.e. every state has at least one successor.
In this way, it is possible to assume that the analyzed paths are
infinite. Since inputs become part of the state, it is possible
that the transition relation is no longer total. There are stan­
dard workarounds to this problem, routinely used in verifica­
tion and in AI planning. See for instance [Cimatti and Roveri,
2000].) In the following, we assume that Kripke structure
Kp.p corresponding to the coupled twin plant P ■ P is given.

The second element from model checking is the symbolic
representation. The state of Kp.p is defined with a vec­
tor of variables (x 1 , x 2 , u , y) , respectively ranging over Ar,
X, U and Y. We can use formulae to characterize sets of
states. In Kp.p we express atomic propositions over such
variables. We can have equalities between variables and the
corresponding values: P I . P V , i n p u t = c l o s e denotes
the set of states where the first instance of PV receives the
c l o s e command. Variables of the same type can be equated:
P I . SV. f a i l u r e _ m o d e = P2 . SV. f a i l u r e mode de­
scribes the set of states where the two instances of SV in
the twin plant have the same failure mode. Any subset
c of XxXxUxY can be described with a formula
c (x 1 ,X2 ,y ,u) . For instance, the formula
expresses a state of the twin plant where the first instance is in
C1 and the second is in C2. Similarly, is a (proposi-
tional) formula expressing, in symbolic form, the equivalence
relation

The third ingredient from model checking is the use of
temporal logics to characterize behaviors of the system over
time. We use LTL (Linear Temporal Logic [Emerson, 1990]),
where formulae are constructed starting by combining atomic
propositions with boolean operators and temporal modalities.
If and are LTL formulae, so are (sometimes in the
future (always in the f u t u r e (s o m e t i m e s in
the future and, until then, (in the next time step
An LTL formula holds on a path TT (written
true in n at (step) 0 (written . If p is an atomic propo­
sition, then iff p is true according to the assignment
associated with the i-th state of Boolean connectives have
the standard interpretation and

The interesting cases of temporal operators are as

i f f there exists

366 DIAGNOSIS

MODULE SV_type (cmd_in)

MODULE PV_type ()
VAR pneumat icsL ine ln : {abvThresh,b lwThresh} ;
VAR va lvePos i t i onVa lue : {open ,c losed} ;
VAR mode : {s tuckOpen,nomina l ,s tuckClosed} ;

DEFINE _faul tmodes := {s tuckOpen,s tuckClosed} ;
DEFINE _broken := mode in __faultmodes;
DEFINE _brokencount := _broken;
DEFINE _brokenprob :=

case
mode = stuckOpen : 3;
mode = stuckClosed : 3;
e l se : 0;

esac;

MODULE EX_type (sv_cmd_in, . . .)
SV : SV_type(sv_cmd_in);
PV : PV_type();

DEFINE _brokencount := SV.__broken +
PV. broken +

Figure 4: The SMV model for the example

A diagnosis condition with a context is represented with
temporal logic formula such that holds if f there
is a critical pair. We express reachability in P • P of a criti­
cal pair for a diagnosis condition with the formula:

Model checking can be run on the
problem . If the answer is true,
then we have a witness for the a critical pair. Given the con­
text we enforce the initial condition with
the formula . The conjunc­
tion has the effect of restricting the analysis to the paths in
Kp.p starting from the states that satisfy is taken
into account assuming that a characterization of the sets of
traces is described by an LTL formula . The
model checking problem corresponding to diagnosability is

In practice, several simplifications are possible. Often
can be expressed in terms of propositional

constraints that must hold on all the states
of the execution; in such cases diagnosability in context C
is basically represented by the LTL formula

. Notice that the
formula holds if the path condition holds until the con­
ditions c1 and c2 are reached. When the context does not
constraint the executions, the above formula is equivalent to

MODULE main
VAR

sv_cmd : { no_cmd, open, c lose };
P I : EX_type(sv_crnd, . . .) ;
P2 : EX_type(sv_cmd, . . .) ;

INVAR
(PI.PV.sense_open = P2.PV.sense_open) & . . .

Figure 5: The SMV schema for the twin plant

6 Experimental Evaluation

We analyzed the practical applicability of our approach
within the Livingstone framework. Livingstone is a model-
based health monitoring system developed at NASA Ames
[Williams and Nayak, 1996]. It uses a model of a physical
system, such as a spacecraft, to infer its state and diagnose
faults from observations. Livingstone is one of the three parts
of the Remote Agent (RA), an autonomous spacecraft con­
troller developed by NASA Ames Research Center jointly
with the Jet Propulsion Laboratory. RA was the first Al
software to control an operational spacecraft [Muscettola et
al, 1998]. Livingstone has also been used in other applica­
tions such as the control of the In-Situ Propellant Production
system (1SPP) for Mars missions [Clancy et al, 1999], the
monitoring of a mobile robot [Simmons et al., 2001], and In­
telligent Vehicle Health Management (IVHM) for experimen­
tal space transportation vehicles [Bajwa and Sweet, 2002].

Livingstone uses a qualitative relational model describing
the evolution of observable and hidden variables. Continuous
physical domains are abstracted into discrete intervals such
as { l o w , n o m i n a l , h i g h } . Each component has a mode
variable identifying its nominal and fault modes. Livingstone
models are specified in a hierarchical, declarative formalism
called JMPL, or using a graphical development environment.
Livingstone observes the commands issued to the plant and
uses the model to predict the plant state. It then compares the
predicted state against observations received from the actual
sensors. If a discrepancy is found, Livingstone performs a
diagnosis by searching for the most likely configuration of
component modes that are consistent with the observations.

Livingstone models directly induce a synchronous transi­
tions systems, very similar to a plant model. Pecheur and
Simmons [Pecheur and Simmons, 2000] have developed a
translator able to convert a Livingstone model and a re­
lated set of specifications in the language of the SMV model
checker [McMillan, 1993], and to convert back the diagnostic
traces in terms of the Livingstone model. Figure 4 outlines
the structure of the example plant in SMV language. For each
component type, there is a corresponding module. The first
module statements define the model for the SV and the PV.
For each of the components, a set of variables is defined, the
dynamics of which is directly induced from the Livingstone
model. Notice the _ b r o k e n p r o b variable, whose numeri­
cal value is the (negated) logarithm of the probability of fail­
ure for the component (e.g. 10 -3). This enables for a (rough)
analysis of failure probabilities. These modules are instan­
tiated in the EX module, with a parameter representing the
commands to PV.

DIAGNOSIS 367

In order to tackle diagnosability, we devised a systematic
way of constructing the SMV coupled twin plant of a Living­
stone model. The construction is outlined in Figure 5. The
EX plant is instantiated twice in the main, at top level, gen­
erating PI and P2. The same input variable (sv_cmd) is
given in input to both instances. Then, the outputs of the
two instances of the plant are constrained to exhibit the same
behavior by means of an INVAR statement, i.e. a condition
that must hold in all states. The SMV language enables for
the specification of context. The basic building blocks of the
properties are propositional conditions over states, that can
be expressed by means of the DEFINE construct. For in­
stance, it is possible to express conditions on the number of
failures, using the _ b r o k e n c o u n t variable defined in Fig­
ure 4. For instance, P I . _ b r o k e n c o u n t < 2 in the main
module states that at most one failure can occur in the first
instance of the circuit.

In the experimental analysis, we tackled several problems
for the Livingstone model of the Main Propulsion System
for the X-34, a next-generation vehicle for the Space Shut­
tle [Bajwa and Sweet, 2002]. We interacted with the NASA
experts of diagnosis, to check the representational adequacy
of our formalism, and to characterize diagnosability problems
of practical relevance. The problems were defined starting
from simulation runs, that tested a specific fault in a specific
context. We remark the impact of our approach is far be­
yond the one of testing, since it performs an exhaustive anal­
ysis (though at a higher abstraction level) within the cases
captured by the context. The experimental evaluation was
carried out by running different symbolic model checking
tools on models described in SMV language, such as the
CMU SMV [McMillan, 1993], Bwolen Yang's version of
SMV [Yang etal, 1999], and NuSMV [Cimatti et al, 2002].
While the former ones are based on Binary Decision Dia­
grams (BDDs) [Bryant, 1986], NuSMV also enables the use
of SAT-based techniques [Moskewicz et al, 2001]. This ac­
tivity suggested several considerations. First, the experimen­
tal analysis was fundamental to tune the formalism. Several
improvements (e.g. the notion of context) were conceived
while trying to encompass representational issues arising in
practice. Second, contexts are incrementally characterized.
Although the requirements for the diagnosis system can usu­
ally suggest an initial version for the context, it is seldom the
case that the precise conditions for diagnosability are known
(or can be precisely stated) in advance. The ability of the
model checker to find critical pairs was very useful in the re­
finement, since it helped to explain why diagnosability fails,
i.e. to understand whether the context is not strict enough, or
because a problem was found.

In terms of performance, the critical factor was the size
of the models to be analyzed. The most significant plant
we analyzed has about 800 scalar variables. This number
almost doubles in the case of the twin plant, and (after the
elimination of equivalent variables) we are left with mod­
els having about 600 state variables. Different versions of
SMV were used to tackle the resulting diagnosability prob­
lems. Al l the BDD-based verification engines were defeated
by the size of models for coupled twin plants (i.e. no solution
found after running for 24hs). This failure occurred despite

the use of advanced techniques such as dynamic reordering,
invariant discovery, and conjunctive partitioning. We remark
that some of these BDD-based engines, most notably Bwolen
Yang's SMV, were able to tackle verification problems on
single plants very efficiently. On the other hand, the use
of model checking techniques based on SAT solving, imple­
mented in the NuSMV system [Cimatti etal, 2002], proved
to be very effective on these problems. We used a combined
approach, integrating bounded model checking (oriented to
finding bugs) and inductive reasoning. The SAT-based engine
of NuSMV was able to solve all the verification problems
in less than two seconds. The analysis of the results shows
that Livingstone models tend to feature a huge state space but
little depth; therefore, the symbolic processing provided by
SAT turns out to be very appropriate. It is worth mention­
ing that, while trying to refine a diagnosability property, we
discovered an unexpected behavior in the model of the X-34.
Further analysis highlighted a missing statement in the de­
scription. This result is quite significant, since the model had
been repeatedly tested.

7 Related Work
The idea of diagnosability has received a lot of attention in
the framework of Discrete Event Systems. In [Sampath et
al, 1995; 1996], diagnosability is precisely defined and an
algorithm for checking diagnosability is presented. The ap­
proach is limited to failures represented as reachability prop­
erties. Jiang and Kumar [Jiang and Kumar, 2002] generalize
the approach to the case of failures described as formulae in
linear temporal logics. The approach is based on a polyno­
mial algorithm for testing the diagnosability, formulated with
techniques from automata theory [Jiang et al, 2001]. In par­
ticular, they define a self-product automaton similar to our
twin plant. Console, Picardi and Ribaudo [Console et al,
2000] propose the use of a particular form of process alge­
bras, PEPA, for the formalization and the analysis of diagno­
sis and diagnosability problems.

Our work is rather different from the works mentioned
above, that are mostly oriented to the definition of the theoret­
ical framework, and do not address the problems related to the
practical application of the proposed techniques. Our objec­
tive is the definition of an effective platform for the analysis
of diagnosability, that can be practically applied in the de­
velopment process of diagnosis systems. The "twin-models"
approach allows us to directly reuse standard model check­
ing tools, without having to reimplement a complex tableau
construction described in [Jiang et al, 2001]. Furthermore,
our approach preserves the semantics of the problem, thus
making it possible to tune the decision procedure to the ap­
plication domain. In terms of expressivity, our work shares
several underlying assumptions with [Sampath et al, 1995;
1996], considering failures that can be represented as reach­
ability conditions. Compared to [Jiang et al, 2001], we only
tackle zero-delay diagnosability, although it seems that our
framework could be extended in this respect.

Our approach makes no hypothesis on the way the con­
troller exploits the information provided by the diagnosis sys­
tem. For this reason, we introduce the notion of context in

368 DIAGNOSIS

order to qualify the conditions under which diagnosability
should hold. In active diagnosis [Sampath et al, 1998], the
controller is designed taking into account the issues of di­
agnosability. Similar problems are also tackled in planning
under partial observability, where the planner can decide the
most appropriate actions to diagnose the fault, e.g. by probing
the system with actions that wil l provide suitable information,
and recover from it (see for instance [Bertoli et al, 2002]).

8 Conclusions
In this paper, we have proposed a novel approach to the ver­
ification of diagnosability, with emphasis on its practical ap­
plicability. Our work is based on a new conceptualization of
the problem, with the twin plant construction and the use of
temporal logic formulae to describe the context of a diagnos­
ability problem. To the best of our knowledge, this is the first
approach to diagnosability that enables the direct exploitation
of symbolic model checking technology. We tackled signif­
icant diagnosability problems from a real-world application,
discussed a practical methodology for the incremental refine­
ment of diagnosis contexts, and were able to verify large-
sized problems. In the future, we will try to take into account
the fact that diagnosis can propose several candidates, with
different degrees of likelihood. A compositional approach to
verification, exploiting the modular structure of the design,
will be investigated. In the longer term, we plan to tightly in­
tegrate the approach within the Livingston toolset, in order to
allow Livingstone application developers to use model check­
ing to assist them in designing and correcting their models, as
part of their usual development environment.

References
[Bajwa and Sweet, 2002] A. Bajwa and A. Sweet. The Liv­

ingstone Model of a Main Propulsion System. In Proc.
IEEE Aerospace Conference. IEEE, 2002.

[Bertoli et al.,2002] P. Bertoli, A. Cimatti, J. Slaney, and
S. Thiebaux. Solving power supply restoration problems
with planning via symbolic model checking. In Proc.
ECAI'02, Lyon, France, 2002.

[Bryant, 1986] R. E. Bryant. Graph-Based Algorithms for
Boolean Function Manipulation. IEEE Transactions on
Computers, C-35(8):677-691, August 1986.

[Cimatti and Roveri, 2000] A. Cimatti and M. Roveri. Con­
formant Planning via Symbolic Model Checking. Jour-
nal of Artificial Intelligence Research (JAIR), 13:305-338,
2000.

[Cimatti et al, 2002] A. Cimatti, E. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. Integrat­
ing BDD-based and SAT-based symbolic model checking.
In Proc. FROCOS, volume 2309 of LNAI, pages 49-56.
Springer-Verlag, April 2002.

[Clancy et al, 1999] D. Clancy, W. Larson, C. Pecheur,
P. Engrand, and C. Goodrich. Autonomous control of
an in-situ propellant production plant. In Proceedings of
Technology 2009 Conference, November 1999.

[Clarke et al., 1999] E. M. Clarke, O. Grumberg, and D. A.
Peled. Model Checking. The MIT Press, Cambridge, Mas­
sachusetts, 1999.

[Console etai, 2000] L. Console, C. Picardi, and M. Rib-
audo. Diagnosis and diagnosability using Pepa. In
Proc. ECA1 '00, pages 131-136, Berlino, Germany, August
2000. IOS Press.

[Emerson, 1990] E. A. Emerson. Temporal and modal logic.
In J. van Leeuwen, editor, Handbook of Theoretical Com­
puter Science, Volume B: Formal Models and Semantics,
chapter 16, pages 995-1072. Elsevier, 1990.

[Jiang and Kumar, 2002] S. Jiang and R. Kumar. Failure di­
agnosis of discrete event systems with linear-time tempo­
ral logic fault specications, 2002. IEEE Trans, on Auto­
matic Control.

[Jiang et al, 2001] S. Jiang, Z. Huang, V. Chandra, and
R. Kumar. A polynomial algorithm for testing diagnos­
ability of discrete event systems. IEEE Transactions on
Automatic Control, 46(8): 1318-1321, August 2001.

[McMillan, 1993] K.L. McMillan. Symbolic Model Check­
ing. Kluwer Academic Publ., 1993.

[Moskewicz et al., 2001] M. Moskewicz, C. Madigan,
Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proc. ofDAC-38, pages 530-535.
ACM, 2001.

[Muscettola et al., 1998] N. Muscettola, P. P. Nayak, B. Pell,
and B. Williams. Remote Agent: To boldly go where no
Al system has gone before. Artificial Intelligence, 103(1-
2):5-48, August 1998.

[Pecheur and Simmons, 2000] Charles Pecheur and Reid
Simmons. From Livingstone to SMV: Formal verifica­
tion for autonomous spacecrafts. In Proc. First Goddard
Workshop on Formal Approaches to Agent-Based Systems,
2000.

[Sampath et al., 1995] M. Sampath, R. Sengupta, S. Lafor-
tune, K. Sinnamohideen, and D. Teneketzis. Diagnosabil­
ity of discrete-event systems. IEEE Transactions on Auto­
matic Control, 40(9): 1555-1575, September 1995.

[Sampath et al., 1996] M. Sampath, R. Sengupta, S. Lafor-
tune, K. Sinnamohideen, and D. Teneketzis. Failure diag­
nosis using discrete event models. IEEE Transactions on
Control Systems, 4(2): 105-124, March 1996.

[Sampath et al, 1998] M. Sampath, S. Lafortune, and
D. Teneketzis. Active diagnosis of discrete event systems.
IEEE Transactions on Automatic Control, 43(7):908-929,
July 1998.

[Simmons etal, 2001] R. Simmons, R. Goodwin, K. Zita
Haigh, S. Koenig, J. CVSullivan, and M. Veloso. Xavier:
Experience with a layered robot architecture. Intelligence,
2001.

[Williams and Nayak, 1996] B. C. Williams and P. P. Nayak.
A model-based approach to reactive self-configuring sys­
tems. In Proceedings of AAA 1-96, 1996.

[Yung et al, 1999] B. Yang, R. Simmons, R. E. Bryant, and
D.R. O'Hallaron. Optimizing symbolic model checking
for contraint-rich models. In Proc. CAV'99, number 1633
in LNCS, pages 328-340. Springer-Verlag, 1999.

DIAGNOSIS 369

