
Abstract 
Recent years have seen a proliferation of em­
bedded systems that combine a digital (discrete) 
supervisory controller with an analog (continu­
ous) plant. Diagnosing faults in such hybrid sys­
tems, require techniques that are different from 
those used for discrete and continuous systems. 
In addition, these algorithms have to be deployed 
online to meet the real time requirements of em­
bedded systems. This paper presents a method­
ology for online tracking and diagnosis of hybrid 
systems. We demonstrate the effectiveness of the 
approach with experiments conducted on the fuel 
transfer system of fighter aircraft. 

1 Introduction 
This paper addresses the problem of designing and im­
plementing online monitoring and diagnosis systems for 
complex systems whose behavior is hybrid (discrete + 
continuous) in nature. Hybrid modeling covers naturally 
occurring systems, such as cell-cycle control systems in 
biology. They also capture the behavior of embedded 
systems that are common in the avionics, automotive, and 
robotics domains. This wide applicability of hybrid sys­
tems has inspired a great deal of research from both con­
trol theory and theoretical computer science. 

We focus on a special class of embedded hybrid sys­
tems, characterized by continuous plant dynamics and a 
discrete supervisory controller. The plant dynamics are 
defined by continuous state variables associated with the 
components of the plant. The controller generates actua­
tor signals at discrete time points that can change the 
plant configuration by turning components ON and OFF, 
and changing component parameter values and the set 
points of regulators. Therefore, hybrid system models 
have to seamlessly integrate discrete and continuous be­
havior analyses using multiple system models. As a re­
sult, tasks like monitoring, fault diagnosis, and control 
require appropriate model selection and switching to be 
performed online as system behavior evolves. 

This paper discusses methodologies for the model-
based diagnosis (MBD) of hybrid systems. Current tech­
niques in MBD apply well to dynamic systems whose 
behavior is modeled with discrete event [9, 17], or con­

tinuous models [5, 14]. Discrete event approaches to hy­
brid system diagnosis are based on abstractions of nomi­
nal and faulty behavior system behavior into event trajec­
tories. This process may result in loss of information 
critical for fault isolation and control. Our work in con­
tinuous diagnosis has demonstrated that behavior tran­
sients are the key to quick diagnosis of abrupt faults[10]. 
It may also be computationally expensive to pre-
enumerate all possible nominal and faulty behavior tra­
jectories. Traditional algorithms for continuous diagnosis 
use a single model that does not accommodate discrete 
changes. Therefore, discrete effects of mode changes 
have to be modeled by complex continuous non-linear 
functions that are hard to analyze online in real time. 

Recent work on diagnosis of hybrid systems [3, 6, 8] 
has focused on discrete faults, and requires the pre-
enumeration of the model in all modes to perform diag­
nosis. We present an online model-based diagnosis meth­
odology for parametric faults in hybrid systems that is 
based on tracking hybrid behaviors (continuous behaviors 
interspersed with discrete changes), but unlike hybrid 
automata models [1] pre-enumeration of all system 
modes is avoided by generating models at runtime as 
mode switches occur. 

The fault isolation task has to take into account possi­
ble mode changes during diagnostic analysis. The occur­
rence of a fault necessarily implies that one no longer has 
a correct model of system behavior; therefore, mode 
changes cannot be correctly predicted. To address this, 
the fault isolation task incorporates a search process, 
where mode changes may have to be hypothesized and 
incorporated into the consistency-based diagnosis 
scheme. The fault isolation process becomes even more 
complicated if fault detection is delayed, and the diagno­
sis algorithm has to roll back modes to identify the mode 
in which the fault occurred. We have developed a generic 
tracking, fault detection, and fault isolation scheme, 
which address all of the issues we have outlined above. 
The rest of the paper presents our hybrid modeling, track­
ing, and diagnosis scheme for solving the hybrid diagno­
sis problem. 

2 Unified Modeling Framework 
We use a unified modeling framework called hybrid bond 
graphs that extends continuous bond graph modeling [7] 
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Figure 1: Fuel System Schematic 

to provide compact representations for hybrid models. Its 
component based and hierarchical representation is ex­
pressed as topological structures that facilitate causal 
analysis of system dynamics. It also provides standard 
techniques for deriving state space and input output equa­
tion formulations that are suitable for tracking and esti­
mation tasks [15]. 

2.1 Bond Graphs 
A bond graph (BG) is a domain-independent topological 
representation that captures energy-based interactions 
among the different physical processes that make up the 
system. The vertices in the graph represent subsystems 
modeled as generic physical processes: capacities, iner­
tias, and dissipators that can have linear and non-linear 
behaviors. Bonds are energy pathways by which subsys­
tems/processes exchange energy in the system. Two addi­
tional types of vertices (0 and 1 junctions) represent do­
main independent generalizations of Kirchoff s laws and 
are used as connection points between the sub-systems. 
There exist systematic techniques to construct the bond 
graph from the system description [2]. 

2.2 H y b r i d Bond Graphs 
Additional mechanisms are introduced into the continu­
ous BG language to include discrete transitions and 
model switching. We use switched junctions proposed by 
Mosterman and Biswas [13], where each junction in the 
bond graph may be switched on (activated) and off (de­
activated). An activated junction behaves like a conven­
tional BG junction. A l l the bonds incident on a junction 
turned off are made inactive, and hence do not play any 
part in the system dynamics. Note that activating or de­
activating junctions affect the behavior of adjoining junc­
tions. 

A Finite State Automaton (FSA) implements the junc­
tion switching function. The FSA may have several 
states, and each state maps to either the off mode (i.e., it 
causes the junction to turn off) or the on mode (i.e., the 
junction turns on) of the junction. Mode transitions de­
fined solely by external controller signals define con­
trolled switching, and those expressed by internal vari­
ables crossing boundary values define autonomous 
switching. For controlled switching the control signal is 
provided as input to the FSA. For autonomous switching, 
the function determining the transition condition is pro­

vided as input to the FSA. The overall mode of the sys­
tem is determined by a parallel composition of modes of 
modes of the individual switched junctions. 

Formally, hybrid bond graphs can be defined as a tri­
ple: HBG = {BG, M. a}, where BG is the bond graph 
model, M = {M1 M2, ..., Mkf is a set of finite state of 
automata, and a is the mapping between each M, and a 
junction in the bond graph. Each M, is a finite state 
automaton of the type described above, with an output 
function that maps each state of M, to either on or off. A 
system mode change is defined by one or more junction 
automata changing state, and this results in a new bond 
graph model. 
Figure 1 illustrates the fuel transfer system that we use 
for our experiments. The fuel system is designed to pro­
vide an uninterrupted supply of fuel at a constant rate to 
the aircraft engines, and at the same time to maintain the 
center of gravity of the aircraft. The system is symmetri­
cally divided into the left and right parts (top and bottom 
in the schematic). The four supply tanks (Left Wing 
(LWT), Right Wing (RWT), Left Transfer (LTT), and 
Right Transfer (RTT)) are full initially. During engine 
operation, fuel is transferred from the supply tanks to the 
receiving tanks (Left Feed (LFT) and Right Feed (RFT)) 
based on a pre-defined sequence. The fuel transfer se­
quence is controlled by valves on pipes at the outlet of 
the supply tanks and the inlet to the feed tanks. The hy­
brid bond graph segment for the connection between a 
wing tank and a feed tank, shown in Figure 2, illustrates 
the component-oriented modeling approach for the HBG. 
An element called switching implements the finite state 
automata discussed earlier. The HBG framework also 
associates one or more parameters with system compo­
nents. We exploit this in defining a component-based 
diagnosis methodology, where faults in components are 
represented as deviations in their parameter values. For 
example, there are six potential fault candidates in the 
fuel transfer subsystem in Figure 2. (Pump, Efficiency, 
Wing Tank, Pipe, Switched, and Feed). In earlier work, 
we have shown the equivalence between the HBG 
framework and the hybrid automata representation [16]. 

2.3 A l t e r n a t e M o d e l Representat ions 
The bond graph can be used to systematically derive al­
ternate model representations. Three representations are 
used to solve different sub-tasks in the diagnosis scheme: 
(i) state space equations, for tracking of continuous be­
havior, (ii) temporal causal graphs for qualitative fault 
isolation, and (i i i) input output equations, for parameter 
estimation and refinement of the fault isolation results. A 
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detailed description of temporal causal graphs (TCG) can 
be found in[14, 15] and is not repeated here. Essentially 
the TCG captures causal and temporal relations between 
variables in the system. The vertices in the graph repre­
sent variables of the system and the edges (with labels) 
represent the types of relations between the variables. 

3 M B D Arch i tec tu re 
Our diagnosis architecture implements a scheme to track 
the nominal system dynamics using an observer that is 
robust to model uncertainties and noise in the measure­
ments. It uses a fault detection scheme to trigger the fault 
isolation scheme when discrepancies are detected be­
tween the observed and predicted measurements, tracks 
and analyzes the fault transients using fault signatures to 
isolate the fault, and then employs a quantitative parame­
ter estimation scheme to determine the magnitude of the 
fault. Our work focuses on component parameter faults, 
which are multiplicative, i.e., faults directly affect the 
system dynamics models. As discussed earlier, the hybrid 
nature of the system complicates the tracking and diagno­
sis tasks, because mode transitions cause model switch­
ing, which has to be included in the online behavior 
tracking and fault isolation algorithms. For pragmatic 
reasons we simplify our algorithms by making the single 
fault assumption. 

We have developed a novel approach that combines 
qualitative and quantitative algorithms for fault isolation. 
This extends our earlier work [12] on fault isolation in 
continuous systems. The qualitative approach overcomes 
limitations of quantitative schemes, such as convergence 
and accuracy problems in dealing with complex non-
linearities and lack of precision of parameter values in 
system models. It plays a significant role in cutting down 
on computational complexity, enabling online algorithms 
for fault isolation in the hybrid framework. The qualita­
tive reasoning scheme is fast and effective, but it has l im­
ited discriminatory ability. To uniquely identify the true 
fault candidate, we employ a quantitative parameter esti­
mation scheme, which also returns the magnitude of the 
deviated parameter. 

3.1 T r a c k i n g and Fau l t De tec t ion 
Our hybrid observer is implemented as a combination of 
an extended Kalman filter (EKF) and a hybrid automaton 
to track continuous behavior in individual modes of op­
eration, and discrete mode changes (controlled and 
autonomous), respectively. At mode changes, the new 
state space model and the initial state of the system are 
recomputed. Model uncertainty and measurement noise 
are implemented as white, uncorrected Gaussian distri­
butions with zero mean. The state space model in mode q 
is defined as: 

where w is distributed N(O,Q) and v is distributed N(0,R), 
and Q and R are process and measurement noise covari-

ance matrices. It is assumed that wk incorporates the 
term that captures modeling errors in the system. 

In our work, the Q and R matrices were determined em­
pirically. The extended Kalman filter algorithm follows 
the methodology presented in [4]. 

Mode change calculations are based on the system 
mode at time step k, and the continuous state of the 
system, . The discrete controller signals to the plant are 
assumed known. For controlled transitions, we assume 
such a signal is input at time step k, and the appropriate 
mode transition is made at time step k+1 to qk_1. For 
autonomous transitions, the estimated state vector, xk is 
used to compute the Boolean functions that signal mode 
transitions. Note that several transition functions may be 
triggered simultaneously. They are combined to derive 
the new system mode. A mode transition results in a new 
state equation model, i.e., the matrices Fq, Gq, Cv, and DH 
are recalculated online. We have developed an efficient 
symbolic solver that can construct state equation models 
from equation fragments. The equation fragments corre­
spond to constituent equations defining component be­
havior, and the junction relations. When switching oc­
curs, sets of equation fragments are de-activated, and 
others are activated. The new state equations are then 
derived incrementally. To simplify analysis, we assume 
that mode changes and faults occur only after the Kalman 
filter state estimate has converged to its optimal behav­
ior. Further details of the observer implementation are 
presented in [15]. 

Fault detection is performed by first computing esti­
mates of the output variables yk from the state estimates 
xk. We then compute a smoothed estimate yk using an FIR 
filter. Finally we compute the residual (yk-ok), where ok 
are the observations at time step k. If this residual rk is 
above a threshold e for a pre-defined number of time 
steps, then a fault is signaled. 

3.2 Fault Isolat ion and Ident i f icat ion 
Once a fault has been detected, fault isolation and identi­
fication is performed to uniquely isolate the fault and 
determine its magnitude. Our fault isolation and identifi­
cation architecture is presented in Figure 4 involves three 
steps: (i) qualitative roll-back, (i i) qualitative roll-
forward, and (i i i ) quantitative parameter estimation. 
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For hybrid systems, discontinuous changes in meas­
ured variables can only occur at the point of failure or at 
points at which discrete mode changes occur in the plant 
behavior. At all other time points the plant behavior is 
continuously differentiate. We take advantage of this 
fact for qualitative analyses of all measured variables, yk. 
The residual (rk) for any variable is defined as the differ­
ence between the measure plant output and the nominal 
expected plant output. Since both of these are continu­
ously differentiable after the fault occurrence, and after 
each mode change, the residual can be approximated by 
the Taylor scries expansion: 

-•* 
We can then represent the residual as the coefficients 

of the magnitude and higher order derivative terms of the 
residual. Instead of representing them in quantitative 
form, qualitative values (-, 0, and +) are used to indicate 
if the coefficient is below, at, or above zero. 

The qualitative analyses that comprise of the roll-back 
and roll-forward steps work on these qualitative coeffi­
cients. After detection of the fault, the signal to symbol 
generator is responsible for converting the measured ob­
servations to symbolic form at each time step. The dis­
cussion of the computation of the residual and the con­
verting it to symbolic form is presented in [11], and not 
repeated here. 

The roll-back algorithm can be summarized as follows. 
Given the observer estimated mode trajectory Q = {q1.q2, 

we first use the back propagation algorithm [14] 
to generate hypotheses in mode The deviated symbols 
at the time of fault detection are back propagated 
through the temporal causal graph in mode qk to identify 
causes for the deviations. Since the fault may have oc­
curred in previous modes, we then go back in the mode 
trajectory and create hypotheses in each of the previous 
modes where n is a number deter­
mined externally by diagnosability studies. During the 
crossover from a mode to a previous mode, the symbols 
need to be propagated back across the mode change. This 
is done by using the inverse of the reset functions (y1) 
associated with the mode transition. For example, the 
symbols to be propagated in mode qk.t is obtained as y 

The hybrid hypotheses generation algorithm 
returns a hypotheses set, , where each 
hypothesis h, is a three-tuple {q,p,k}, where q represents 
the mode in which the fault is hypothesized to have oc­
curred, p is the parameter whose deviation corresponds to 
the fault, is the direction of deviation of parameter P. 

The occurrence of the fault may change the parameters 
of the functions that determine autonomous transitions 
leading the observer to incorrectly predict (or not predict) 
an autonomous transition. Hence the current mode esti­
mated by the hybrid observer may not be the actual mode 
of system under hypothesized fault conditions. We need 
to estimate the current mode of the system for each hy­
pothesis. However, we still do not have the quantitative 
value for the faulty parameter, implying that we cannot 
accurately determine the current mode of the system. To 

Fig. 4: Fault Isolation and Identification Architecture 

solve this problem we take advantage of the fact that the 
same sequence of mode transitions in any order would 
lead the system to the same end state. This follows from 
the fact that each mode transition essentially changes the 
status of a switched junction in the hybrid bond graph 
representation. Based on this observation, for each hy­
pothesis, we apply all controlled transitions (assuming 
that no autonomous transitions have occurred) that have 
occurred since the hypothesized fault mode to get an es­
timated current mode. This is known as the roll-forward 
process. 

We can now use the model (TCG) to predict the ex­
pected qualitative values for the residuals (signatures) in 
the current estimated mode for each hypothesis. This is 
done through a forward propagation algorithm [14]. The 
fault hypotheses in the estimated current mode are com­
pared with the symbols generated by the signal to symbol 
generator using a progressive monitoring scheme [14]. If 
there is a mismatch, the hypothesis cannot be dropped 
immediately, we assume that an autonomous mode transi­
tion may have caused this mismatch. We apply all possi­
ble autonomous transitions to the current estimated mode 
and derive m new estimated current modes for the hy­
pothesis, where m is the number of possible autonomous 
transitions. For each of these m new modes, we can gen­
erate the qualitative signature using forward propagation 
and compare this against observations. In case of mis­
match we hypothesize occurrence more autonomous tran­
sitions and repeat the process. Once the total number of 
transitions (controlled + hypothesized autonomous) ex­
ceeds the diagnosability l imit, further mismatches in sig­
natures and symbols eliminate hypotheses. 

In other work [12], we have shown the limited dis­
criminatory capabilities of the qualitative progressive 
monitoring scheme. This often leads to multiple fault 
hypotheses being reported as the diagnostic result. Even 
when we are left with only one hypothesis, determining 
the magnitude of the parameter associated with the hy­
pothesis is essential to continue tracking the plant behav­
ior in the faulty situation. We use a parameter estimation 
technique based on the least-squares estimation method 
for further fault isolation and identification. Applying a 
statistical hypothesis testing scheme to the error in the 
fault identification task leads to unique fault isolation, 
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and an estimate of the deviated parameter value. Con­
sider the input output equation form: 

where U arc the inputs, Y are the outputs, a's and b's are 
constant coefficients and q is the forward delay operator. 
The typical parameter estimation task is to estimate the 
a's and b's using measurements, u and y. The optimal 
estimate is given by: where 0 is a vec­
tor of a's and b's, is the regression vector, and Z is 
current output vector. The single fault assumption im­
plies that only one parameter in unknown. So, for each 
remaining hypothesis, we rewrite in terms of the corre­
sponding hypothesized fault parameter p. If we assume a 
first order polynomial relation (it is possible to extend 
this to arbitrary polynomial relations): 
where K1 and K() are matrix constants. Now we can re­
formulate the estimation problem and obtain the optimal 
estimate for/7 as: 

For each remaining hypothesis, we compute the input 
output equations of the system in the estimated current 
mode from the bond graph. This can be achieved by 
computing the temporal causal graph from the bond 
graph. The TCG can then be used to compute the signal 
flow graph, which can be used to derive the input output 
equations. Please note that the signal flow graph still 
contains parameters in symbolic form as opposed to ac­
tual numeric values. This gives us a parameterized input 
output equation. We then calculate the K1 and K0 matri­
ces. Finally we accumulate u and y values, and estimate p 
using the above expression. This may also be used for 
fault isolation by plugging back the estimated parameter 
in the state space equations and computing the predicted 
values for the outputs. Hypotheses whose predicted out­
put values are statistically different from actual output 
values are eliminated. Table 1 illustrates an experimental 
run for a left wing tank pump degradation (33% loss) at 
time step 150. The initial change was observed in the 
transfer manifold pressure at time step = 433 (Fig. 5), but 
two mode changes occurred between the fault occurrence 
and its detection. The roll back process was employed, 
and this produced an initial list of 13 candidates. Detect­
ing that the transfer manifold pressure was discontinuous 

reduced the candidate set to 10 faults. As other measure­
ments deviated over time (first left wing tank pressure, 
then left feed tank pressure), the candidate set was fur­
ther refined. Mode changes required the re-derivation of 
the system models, and the computation of new signa­
tures to track system behavior. The qualitative scheme 
reduced the candidate set to 4, and then the parameter 
estimation scheme was invoked. This resulted in generat­
ing the correct fault hypothesis, and a correct estimation 
of the faulty parameter. 

4 E x p e r i m e n t a l Resul ts 
We demonstrate the effectiveness of our diagnosis 
scheme on a real world example, the fuel system of 
fighter aircraft (Fig. 1). The pumps are modeled as a 
source of effort (pressure) with a transformation factor 
that defines its efficiency. The pipes are modeled as 
nonlinear resistances. 

The diagnosis experiments used a controller sequence 
provided by Boeing. The performance of the hybrid ob­
server in tracking the nominal data (with 3% noise) 
through mode transfers is illustrated in Figure 5 for the 
transfer manifold and left wing tank pressure measure­
ments. The dots represent the measured data and the 
black line shows the observer estimates. A number of 
diagnosis experiments were run for different noise values 
and fault magnitudes (see [15] for details). 

Table 2: Fuel System Diagnosability 

Table 2 summarizes the different fault classes that can 
be distinguished by our diagnosis algorithms. The fault 
classes are as follows: (i) Wing Tank Pump (WTP), (ii) 
Wing Tank Resistance (WTR), (i i i) Fuselage Tank Pump 
(TTP), (iv) Fuselage Tank Resistance (TTR), (v) 
Switched Pipe Resistance (SPR), (vi) Feed Tank Pump 
(FTP), and (vii) Feed Tank Resistance (FTR). The V 
mark in row i and column j indicates that fault class i can 
be distinguished from fault class j. The x mark indicates 
that the current controller sequence and set of measure­
ments are not sufficient to distinguish between the pair in 
question. From the table, we see that we cannot distin­
guish between tank pump faults and tank outlet pipe re­
sistance faults. However, this is true only for a pump ef­
ficiency (TF-) decrease and pipe resistance increase (R+). 
Since the pump efficiency cannot increase (no 
pipe resistance decreases, R-, (i.e., leaks) can be uniquely 
identified. A l l other classes of faults can be distinguished 
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Figure 5 : Transfer man i fo ld and Lef t W i n g T a n k 
Pressure 

f rom one another. In sonic cases, the isolation may be 
achieved only after mode changes occur. 

5 S u m m a r y 
In this paper we have presented an integrated approach 

to solv ing the t racking, fault detection, isolat ion, and 
ident i f icat ion tasks for hybr id systems. The novel contr i ­
but ion of the presented work is the extension of cont inu-
ous system model-based diagnosis techniques to hybr id 
systems. These include the hybr id observer that combines 
an extended Kalman f i l ter and hybr id automaton, hybr id 
fault isolation through ro l l back and ro l l forward using 
qual i tat ive analysis, and the single parameter estimation 
for further fault isolat ion and ident i f icat ion. Our work is 
motivated by the requirements of the fault accommoda­
t ion task, where diagnosis has to be performed online for 
embedded systems dur ing their operation. Hybr id diagno­
sis techniques direct ly apply to embedded systems and 
else where [15] . We have also demonstrated through t ime 
and space complexi ty analysis that our algori thms can be 
applied to onl ine analysis in resource constrained envi ­
ronments. 
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