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Abstract 
Decomposition methods are used to convert general 
constraint satisfaction problems into an equivalent 
tree-structured problem that can be solved more ef­
fectively. Recently, diagnosis algorithms for tree-
structured systems have been introduced, but the 
prerequisites of coupling these algorithms to the 
outcome of decomposition methods have not been 
analyzed in detail, thus limiting their diagnostic ap­
plicability. In this paper we generalize the TREE* 
algorithm and show how to use hypertree decom­
position outcomes as input to the algorithm to com­
pute the diagnoses of a general diagnosis problem. 

1 Introduction 
The development of effective algorithms for diagnosing large 
and complex systems remains one of the key issues in model-
based reasoning. Nonetheless, apart from various additional 
optimizations and control strategies (e.g., [de Kleer, 1991]) 
the main architectures for consistency-based diagnosis sys­
tems, TMS [de Kleer and Williams, 1987] and hitting sets 
computation [Reiter, 1987], have remained remarkably sta­
ble since the late 1980s. Over the last years though, a num­
ber of algorithms were published that exploited advantageous 
structural properties of the systems to be diagnosed for sig­
nificant computational speedups [Fattah and Dechter, 1995; 
Stumptner and Wotawa, 2001 ], enabling the very fast diagno­
sis of large tree-structured systems. 

It was recognized early on that the combination of tree-
oriented algorithms could in principle be combined with a 
second class of algorithms aiming at the decomposition of 
cyclic problems to equivalent tree-structured problems so that 
the faster solution algorithms could be brought to bear [Fat­
tah and Dechter, 1995;Darwiche, 1998]. Again, this direction 
profits from recent new results relating the different decom­
position algorithms [Gottlob et al., 2000] and analyzing their 
performance [Gottlob et al. , 2002]. This paper joins the two 
strands by tying the link between the recent work on prob­
lem decomposition and the TREE* algorithm [Stumptner and 
Wotawa, 2001]. 
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This combination is aided by the fact that both subar-
eas tend to use Constraint Satisfaction Problems (CSPs) as 
their representation of choice. The diagnosis computation 
work [Fattah and Dechter, 1995; Stumptner and Wotawa, 
2001; Mauss and Tatar, 2002] focuses on the relational com­
bination of the different constraint relations, while the prob­
lem reformulation work views CSPs as (often cyclic) hyper-
graphs that are broken down into tree structures. 

A CSP (V, D, C) comprises a set of variables V, their do­
mains D, and a set of constraints C. A constraint Ci is tuple 
(St,Ti) where is its scope and Ti is a set of tuples of 
values for the variables in Si. We assume two functions tpl 
and scope on constraints that return the set of tuples and the 
scope respectively. Each constraint Ci restricts the possible 
values of the variables with respect to values of other vari­
ables in the same scope.For example, the digital circuit from 
Figure 1 can be represented by the following constraints': 

A solution of a CSP is an assignment of values to all vari­
ables that satisfy the given constraints. Al l values must be 
elements of their variable's domain. The variable assignment 
b = l , a = 0,c = 0 , / = 0,g = 0,h = l,i = 0 , j = 1 isa 
solution for the above CSP whereas b = l ,a = 0,c = 0,f = 
0, y = 0, h = 1,i = 0,j = 0 is not because constraint N4 is 
not satisfied. 

A standard approach for computing solutions for CSPs are 
backtracking algorithms, which are in the worst case expo­
nential in the number of variables. However, for a specific 

'Note that not all constraints arc components, N1 is the tabular 
representation of an equality constraint between connections). 
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Figure 2: A hypergraph representing the constraints 

class of CSPs a solution can be computed in polynomial time. 
This class comprises all CSPs that have an acyclic corre­
sponding hypergraph2. A hypergraph of a CSP can be eas­
ily constructed by mapping all variables of the CSP to ver­
tices and the constraint scopes to hyperedges. A CSP with an 
acyclic hypergraph can be solved effectively in a backtrack-
free manner by first traversing the graph from the leafs to 
the root and computing possible value tuples and secondly, 
traversing the graph from the root to the leafs and selecting 
one tuple of a node as a solution. The hypergraph correspond­
ing to Fig. 1 is cyclic (see Figure 2). 

In the rest of the paper, we recapitulate decomposition 
methods, present a version of TREE* that fits these meth­
ods, show the interaction of decomposition and TREE*, and 
present an extension to the algorithm that can be used with 
extended domains as presented in [Mauss and Tatar, 2002]. 

2 Decomposition methods 
Several different decomposition methods have been pub­
lished, most recently the hypertree decomposition method 
[Gottlob et al., 1999a]. This and other structure-based de­
composition methods make compute a tree-structured sys­
tems from general CSPs by elimination of cycles from the 
CSP. A cycle can be eliminated by applying the relational al­
gebra join operation to the constraints on the cycle. However, 
blindly joining all constraints in the cycle can result in expo­
nential costs for computing the tuples of the joined constraint, 
and a key property of the different decomposition methods is 
the different techniques they use to select the constraints to 
be joined. Gottlob et al. [2000] compared different decompo­
sition methods with respect to their width, i.e., the maximum 
number of constraints to be joined, and found that hypertree 
decomposition is superior with respect to the width. Since hy­
pertree decomposition can be seen as a generalization of the 

other techniques, we restrict our examination here to hyper­
tree decomposition. Note that the result of a decomposition 
method is always a hypertree. 

In [Gottlob et al., 2000] hypertree decomposition is char­
acterized as follows. A hypertree of a hypergraph if is a triple 

I is a rooted tree with vertices N 
and edges E, are labeling functions which associate 
to each vertex a set of variables _ and a 
set of constraints edges(H). We further define for 
a s u b t r e e o f T a s a n d 
for any denotes the subtree of T rooted at p. We 
denote the root of a hypertree by root(T) . 

Based on the above definitions, the hypertree decompo­
sition of a hypergraph H is defined as a hypertree HD — 

where T — (TV, E) which satisfies the following 
conditions: 

1. For each edge edges(H), there exists a such 
that var(h) 

2. For each variable 
\ (p ) } induces a connected subtree of T. 

3. For each 

4. For each 

Moreover, we say that h edges(H) is strongly covered 
in HD if there exists a vertex p N such that var(h) (p) 
and . A hypertree decomposition HD of a hyper­
graph H is a complete decomposition of H if every edge of ff 
is strongly covered in HD. Note that it is always possible to 
make an incomplete decomposition complete by adding new 
vertices to the decomposition. Gottlob et al. [1999b] gave 
an algorithm for computing (complete) hypertree decomposi­
tions. 

Note that unlike other decomposition methods such as bi-
connected component decomposition and hinge decomposi­
tion, there is in general no unique hypertree decomposition 
of a given CSP. Figure 3 shows four possible hypertree de­
compositions for the hypergraph depicted in Figure 2. 

3 Diagnosis with TREE* 

To be self contained we briefly recapitulate the TREE* algo­
rithm. Stumptner and Wotawa [2001] introduced the TREE* 
algorithm as an extension of the TREE algorithm. Both al­
gorithms work on tree-structured constraint systems. As op­
posed to TREE which requires the constraints to be mathe­
matical functions, TREE* imposes no limitations on the con­
straints. TREE* uses the following auxiliary functions asso­
ciated to constraints: constr denotes all tuples of the con­
straint, val denotes the tuples remaining after the application 
of TREE*, diags denotes the diagnoses that correspond to 
a given tuple. Accordingly, a CSP that is to be used for di­
agnosis purpose has to represent not only the tuples for each 
constraint but also the diagnoses that correspond to each tu­
ple. For example, the small circuit from Figure 1 can be rep­
resented by the following CSP: 
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(a) (b) (c) (d) 

Figure 3: Alternate hypertree decompositions of Figure 2 

The tuples of form <x x.. . x> in the above tables are in­
tended to match all tuples that are not explicitly given in the 
table. Note that the constraint N\ represents a connection and 
is therefore assumed to be always correct. Hence, it always 
returns the empty set as a diagnosis. 

The original description of the TREE* algorithm was 
based on the underlying assumption that the leaf vertices of 
the tree correspond only to one diagnosis component. This as­
sumption has an impact on the description of the algorithm, 
but not on the empirical results. If the constraints given to 
the algorithm do not satisfy this requirement, diagnoses of a 
size (i.e., number of faulty components) larger than specified 
might be returned because there is no way to remove these 
diagnoses from the set of tuples. The requirement did not 
constitute a hindrance since [Stumptner and Wotawa, 2001] 
did not deal with CSPs resulting from decomposition. To 
explicitly generalize TREE* to interact with decomposition 
algorithms, we here present a modified version that removes 
this requirement. 

The following operations are used by TREE*: semi-join 
for constraints, Cartesian product ( x ) for combining 

two sets of diagnoses, i.e., 
and cardinality restriction (|) for remov­

ing diagnoses from a set of diagnoses with a size greater than 
the given value, i.e., 

Algorithm TREE* (HD, p, diagSize) 
Computes all diagnoses up to a pre-specified size for a given 
tree-structured diagnosis system. 
Input: A decomposition HD with edges E, the root vertex p, 
and the pre-specified diagnosis size diagSize. 
Output: The diagnoses for each value tuple. 

The TREE* algorithm is called using the root p of the hy­
pertree, i.e., the result of a decomposition, as argument. After 
execution, the computed diagnoses can be found in the diay 
column of the tuples associated with the root p. 

The TREE* algorithm correctly computes all diagnoses up 
to the given size if the following requirements arc fulfilled: 

1. Every constraint is at least used in one of tree vertices. 
2. The induced subtree for every variable is connected. 

Theorem 1 (Correctness) The TREE* algorithm correctly 
computes diagnoses up to the pre-specified size. 

Proof. The proof is by induction over the size of the tree. 
Base step For each leaf of the tree only lines (l)-(7) and 

(18) of TREE* are executed. In these lines, all tu­
ples that contradict the given observations and all diag­
noses larger than the specified size are removed. Tuples 
with no corresponding diagnoses are removed. These 
steps do not prevent TREE* from computing a diagno­
sis. Hence, all diagnoses (up to the pre-specified size) 
are computed for leafs. 
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Hypothesis We assume that TREE* correctly computes di­
agnoses for trees of size smaller than n. 

Induction step We now prove that TREE* correctly com­
putes the diagnoses for trees of size n. The steps (l)-(7) 
only reduce the number of diagnoses. Tuples that con­
tradict the observations are removed. Diagnoses that are 
larger than the pre-specified values are removed and tu­
ples with a corresponding empty diagnosis set are also 
removed because they have no influence on the result. In 
step (9) the TREE* algorithm is called recursively. Be­
cause of our induction hypothesis, the algorithm returns 
correct diagnoses for each tuple. It remains to prove that 
the combination of these tuples with the tuple of the cur­
rent node is done correctly. Since every tuple that joins 
(line (11)) is considered and since that every diagnosis is 
combined with every diagnosis of the child vertices (line 
(12)), this process must lead to a correct result. Hence, 
TREE* correctly computes the diagnoses in step n as 
well. 

Using the same arguments as above we can show that 
TREE* allows for computing all diagnoses providing that all 
the diagnoses for each vertex of the hypertree are computed. 
We omit the actual proof here. 

Theorem 2 (Completeness) The TREE* algorithm com­
putes all diagnoses up to the pre-specified size. 

The remaining issue now is to determine the conditions that 
a decomposition method must satisfy in order to be used with 
TREE*. Moreover, we examine the computation of the join 
relation for those tree vertices that comprise more than one 
constraint. 

4 Decomposition and Joining of Constraints 
As an example we take the hypertree decomposition result 
from Figure 3(b). In order to apply TREE*, we first have 
to compute the tuples for the constraints that occur in one 
vertex, e.g., {N2, N3}. The tuples can be computed by first 
joining the constraints, and second computing the diagnoses 
diags for each tuple of the joined constraint by combining 
the diagnoses associated with the corresponding tuples of the 
original constraints. The following algorithm computes the 
join relation for the constraint of a hypertree vertex p. 

Algorithm JoinRelation (p) 
Computes the join for a hypertree vertex 
Input: A hypertree vertex p. 
Output: The coiistr and diags function of the vertex p. 

In the above algorithm the diags function is indexed with 
the corresponding vertex of the hypertree or the correspond­
ing constraint. The function stands for relational join and 

for relational projection. Diagnoses are only combined if a 
constraint is fully captured by the given vertex of the hyper­
tree. Otherwise, it is not considered. Since every constraint 
must be fully captured by at least one hypertree vertex, no 
information is lost by this procedure. 

For example, the join of constraints N2 and N3 would lead 
to the following constraint with 25 tuples (when re­
taining the V constants, and of course 64 otherwise): 

If, as in this example, the join operation is a Cartesian Prod­
uct, the resulting relation is of course very large. However, 
during the computation of diagnoses using TREE*, many tu­
ples can generally be eliminated because of the given obser­
vations and the pre-specificd maximum diagnosis size. 

To illustrate this, assume now that we have a set of obser­
vations and that we arc 
searching only for single diagnoses, i.e., diagSize — 1. Us­
ing the decomposition from Figure 3(b) TREE* is first called 
with the vertex (constraint) [N1]. After executing lines (1)-
(7) (including the semijoin that results in the removal of tu­
ples that do not fit the operations) the constraint of [N1] is 
given by: 

TREE* is then recursively called on vertex 
resulting in the following relation, which is substantially 
smaller than the computed join relation for this vertex, even 
after ail x entries of the original tables have been replaced 
by either 0 or 1, while avoiding duplicated entries (first ta­
ble), then we again recursively call TREE* which leads to the 
computation of the following relation for vertex (second 
table): 
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In the next step TREE* continues the computation at line 
(10) for vertex [N2, N3]. After combining the diagnoses and 
removing the tuples with diagnoses larger than diagSize we 
get the following relation for [N 2 , N3]: 

Hence, only the diagnosis {N4} is a single diagnosis for 
our example. 

5 Putting it all together 
In order to make use of TREE* for general CSPs, we first 
apply a decomposition method and then apply the algorithm 
to the resulting acyclic problem. In this section we summarize 
the requirements placed on the decomposition method. 

Theorem 3 TREE* computes all consistent diagnoses for a 
given (possibly cyclic) CSP (V,D, C), if it is applied to the 
decomposition HDof(V,D,C) that was produced by a de­
composition method h with the following properties: 

1. The decomposition result, i.e., a hypertree HD, must be 
complete. 

2. The vertices that use a given variable must form 
a connected subtree of the hypertree HD. 

Proof (sketch): We consider each condition in turn. As 
discussed in the previous section, the decomposition method 
must produce a complete decomposition, i.e., every constraint 
must be strongly covered, as this is a prerequisite for the cor­
rect working of the join algorithm. Concerning condition 2, 
assume that this condition were not satisfied, i.e., that for 
some Y, does not induce a connected 
subtree. This implies either that ( i f we have no sub-tree of the 

resulting hypertree) the decomposition is not cyclic, or that 
there exists a variable that is used in both sub-trees but not 
in the parent. In the latter case, the process that computes a 
solution cannot view the sub-trees as independent problems 
any more, and TREE* wil l fail to compute a correct out­
come. The other conditions of the hypertree decomposition 
can be relaxed without affecting the result. If condition 3 is 
not obeyed, that means some nodes contain variables that are 
not constrained. This may affect the efficiency of the algo­
rithm (because the node relations include a cartesian product 
with the values of those variables) but not the correctness. If 
condition 4 is not obeyed, this means that some variable z 
such that is not contained in the 
constraint associated with p, i.e. in relational terms z has been 
projected away. This means that some subtree of T is going 
to be less restrictive in execution, leading to excess tuples. 
However, since the decomposition is required to be complete, 
all constraints that contain z must exist in unprojected form 
somewhere in T. 

These two conditions are true for hypertree decomposition 
[Gottlob et ai, 1999a], biconnected components [Freuder, 
1985], hinge decomposition [Gyssens et al., 1994], and tree 
clustering [Dechter and Pearl, 1989]. 

The following algorithm summarizes the combined use of 
TREE* and a decomposition method to compute the diag­
noses for any CSP C of the form described in Section 3. Given 
a CSP C, using any decomposition method that fulfills the 
properties of Theorem 3. 
(1) apply decomposition to C, i.e., compute a 

hypertree (TV, E) for the corresponding hypergraph of C 
(2) for do JoinRelation(f) end for; 
(3) TREE*(root(T)); 
(4) return diags(roof(T')); 

The pre-compilation performance of the overall algorithm 
is that of the decomposition algorithm (examined in [Gottlob 
et al., 2002]) together with the required costs for joining con­
straints using the JoinRelation algorithm. The diagnosis time 
is the running time of TREE*. Performance and scalability 
TREE* have been studied in [Stumptner and Wotawa, 2001 ]. 
Note that the TREE* run time depends on the size of the rela­
tions that are stored in the vertices of the resulting hypertree. 
This size depends on the number of constraints that must be 
joined, and this in turn corresponds to the width of the de­
composed system. Hence, using a decomposition method that 
provides a smaller width leads to hypertrees where TREE* 
performs better. 

6 Extension to Intensional Relations 
In [Stumptner and Wotawa, 2001], we mentioned the pos­
sibility to use other than extensional relations for constraint 
specifications for the TREE and TREE* algorithm, e.g., com­
puted functions or equations with infinite domains. Such do­
mains require a different interpretation of the operators that 
are used for joining the relations associated with nodes in 
the tree. Conceptually, however, nothing is changed since, 
as we wil l show, the definition of the TREE* algorithm fits 
the requirements. We show this by adopting the notation 
used for the basic computational operations of the aggrega­
tion paradigm described in [Mauss and Tatar, 2002]. 
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The Rich Constraint Languages approach described 
in [Mauss and Tatar, 2002] consists of three inference pro­
cedures, which are applied to a set of constraints It. The pro­
cedure i s C o n s i s t e n t produces a proof tree (called ag-
gregation tree) that derives consistency or inconsistency. If 
consistent, then, applied to the root of this tree, the proce­
dure s o l v e computes (nondetcrministically) a solution that 
assigns a value to every variable in R. If not, the procedure 
XC1 (and its extension XE1) computes the set of minimal 
conflicts for A. 

The aggregation operation that gives the tree its name con­
sists of joining two constraints A and B (expressed as rela­
tions or equations) and then projecting out all variables except 
the set of variables X needed for joining to other constraints: 

, this can be written using the 
semijoin operator that we have used above: . Thus, 
the TREE* algorithm can be changed to approximate the ag­
gregation paradigm purely by letting s and / refer to tuples 
(for extensional constraints) or equations, and changing line 

The JoinRelation Algorithm is changed by replacing the 
first line by 

In terms of algorithmic structure, the approach of [Mauss 
and Tatar, 2002] bears many resemblances to the decompose-
and-diagnose paradigm used in LFattah and Dechter, 1995; 
Darwiche, 1998; Stumptner and Wotawa, 2001]. Computa­
tionally, there are however significant differences. The out­
come of i s C o n s i s t e n t is a proof tree whose leaves are 
the base constraints of the original CSP, not a hypertree whose 
nodes arc the constraints of a backtrack-free CSP equivalent 
to the original CSP. The search for a diagnosis consists of 
running i s C o n s i s t e n t , computing minimal conflicts, and 
the hitting sets. In our case, we compute the decomposition 
hypertree, then apply the JoinRelation algorithm and finally 
apply TREE* to compute the diagnoses directly. 

While the nondeterministic selection of arbitrary con­
straints from the given CSP to produce a proof tree is quite ef­
fective in general, as indicated by the authors, there are cases 
where the "width" of the generated problem leads to a drastic 
growth in intermediate relations. It is this situation where an 
approach based on hypertree decomposition (which is gener­
ally the method with lowest widths) fits best to the strengths 
of the TREE* algorithm. 

7 Conclusion 

In this paper we introduced a framework that allows for com­
bining various structure decomposition methods and algo­
rithms for solving tree-structured diagnosis problems. The 
framework comprises two parts. In the first part, we show 
how to construct a tree-shaped constraint system that can be 
used directly by TREE* for computing diagnoses. For this 
purpose we introduced the join relation of constraints. In 
the second part, we state the properties of a decomposition 
method so that it can be combined with TREE*. Finally, 
we show the suitability of the TREE* framework for the ex­
tension to infinite domains and intensional constraints (e.g., 
equations), by adopting a basic operation from another, not 
hypertree based framework. 
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