
Automatic Abstraction in Component-Based Diagnosis
Driven by System Observability

Gianluca Torta, Pietro Torasso
Dipartimento di Informatica, Universita di Torino (Italy)

e-mail: {torta,torasso}@di.unito.it

Abstract

The paper addresses the problem of automatic
abstraction of component variables in the con-
text of Model Based Diagnosis, in order to pro-
duce models capable of deriving fewer and more
general diagnoses when the current observabil­
ity of the system is reduced. The notion of in-
discriminability among faults of a set of compo­
nents is introduced and constitutes the basis for
a formal definition of admissible abstractions
which preserve all the distinctions that are rel­
evant for diagnosis given the current observabil­
ity of the system. The automatic synthesis of
abstract models further restricts abstractions
such that the behavior of abstract components
is expressed in terms of a simple and intuitive
combination of the behavior of their subcom­
ponents. As a validation of our proposal, we
present experimental results which show the re­
duction in the number of diagnoses returned by
a diagnostic agent for a space robotic arm.

1 Introduction
System model abstraction has been successfully ex­
ploited in many approaches to model-based diagnosis
(MBD). The pioneer work of [Mozetic, 1991] and re­
cent improvements proposed e.g. by [Provan, 2001] and
[Chittaro and Ranon, 2001] mostly use abstraction in or­
der to focus the diagnostic process and thus improve its
efficiency. However, (flexible) abstraction has another
main benefit, namely to provide fewer and more concise
abstract diagnoses when it is not possible to discriminate
among detailed diagnoses. The works by [Console and
Theseider Dupre, 1994] and [Friedrich, 1993] accomplish
this goal by including abstraction axioms in the Domain
Theory and using preference criteria based on the ab­
straction level of diagnoses.

Recently, some authors have aimed at the same goal
in a different way, namely automatic abstraction of the
system model ([Sachenbacher and Struss, 2001], [Torasso
and Torta, 2002]) l. If the available observables and/or

1 Previously an algorithm for automatic abstraction of

their granularity are too coarse to distinguish among two
or more behavioral modes of a component, or the distinc­
tion is not important for the considered system, a system
model is automatically generated where such behavioral
modes are merged into an abstracted behavioral mode.
By using the abstracted model for diagnosis there's no
loss of (important) information, while the number of re­
turned diagnoses is reduced, and such diagnoses, by be­
ing "as abstract as possible", are more understandable
for a human.

The work presented in this paper aims at extending
previous works by introducing automatic abstraction of
variables (i.e. components) in the presence of a reduced
availability of the number and/or granularity of observ­
ables. Abstractions based on system observability are
particularly relevant in the context of on-board diagno­
sis. Indeed, it is likely that when a system is operated on­
board the only available measures are provided by sen­
sors (which can themselves fail) and taking further mea­
sures manually is out of question. Moreover, on-board
diagnosis is usually constrained by strict time and re­
sources requirements: using an abstracted system model
should yield savings in both the time and the space re­
quirements of the diagnostic process.

Our proposal requires that abstractions do not cause
any loss of diagnostic information (e.g. as in the in­
complete abstractions discussed in [Autio and Reiter,
1998]) or loss of efficiency (e.g. due to increased fan-
in as pointed out in [Provan, 2001]); moreover, we re­
strict the mapping from abstract components to their
subcomponents to be enough simple and intuitive. In
order to exclude all the undesired abstractions we intro­
duce a precise definition of admissible abstraction, and
further restrict the computation of abstractions through
cutoff criteria which forbid admissible abstractions that
may lead to computational inefficiencies.

As a running example to illustrate our definitions and
algorithms, we will use throughout the paper the frag­
ment of hydraulic circuit adapted from [Chittaro and
Ranon, 2001] depicted in figure 1 (a); table 1 reports
its domain theory (valve modes so and sc abbreviate

components had been proposed in [Out et o/., 1994] for sim­
pler models describing only normal behavior of the system

394 DIAGNOSIS

Figure 1: A fragment of an hydraulic circuit at. three
levels of abstraction

Table 1: Model of hydraulic components

stuck open and stuck closed respectively). Two possible
abstractions of such system are shown in figures 1 (b)
(where pipe PI and valve VI have been abstracted into
valve AVI) and 1 (c) (where abstract valve AVI and
pipe P2 have been abstracted into valve AV2). As for
experimental validation of our techniques, however, we
wil l present results collected in a larger domain, namely
the model of the SPIDER space robotic arm used in
[Portinalc and Torasso, 1999].

The paper is structured as follows. In section 2 we
give a formal definition of what we consider an admissible
abstract component. In section 3 we describe how the
declarative notions introduced in 2 can be implemented
computationally. In section 4 we present experimental
results collected in the SPIDER robotic arm domain.
Finally, in section 5 we compare our work to related
papers and make some concluding remarks.

2 Abstract ions Def ined
We first report formal definitions of system model, diag­
nostic problem and diagnosis.

D e f i n i t i o n 2.1 A System Description (SD) is a 3-tuple
where:

V is a set of discrete variables partitioned in the fol-
lowing sorts: CXT (inputs), COMPS (components),
STATES (endogenous variables), OBS (observables);
DOM(v) is the finite domain of variable
DT (Domain Theory) is an acyclic set of Horn clauses

defined over V representing the behavior of the system
(under normal and abnormal conditions); we require
that, given an instantiation of COMPS and CXT, the
DT derives exactly one value for each other variable
G (Causal Graph) is a DAG whose nodes are in V rep-

resenting the causal structure of the system; whenever a
formula appears in
DT, nodes N\ through Nk are parents of M in the graph

It is worth noting that the fact that G is restricted to
be a DAG does not mean that the system model is a tree
in the sense e.g. of [Darwiche, 1998]; since we allow the
existence of multiple directed paths between two nodes
the associated jointree may well be cyclic. The DAG re­
striction just forbids feedback loops in the causal graph,
which is a common assumption in approaches which deal
with dynamic systems only if they are amenable to state-
based diagnosis ([Struss, 1997]).

Examp le 2.1 Note that the System Description for the
running sample system given in table 1 is expressed in
a slightly different formalism than the one described in
our definition, due to the use of equations and disequa-
tions on the right-hand side of formulas. However, it can
be easily mapped to our formalism by modeling inx and
outx as discrete STATES variables by using qualitative
deviations ([Struss et o/., 1996]); thus, for example, for­
mula:

w h e r e m e a n s that variable v has a value
with sign and its deviation from the nominal value
has sign In the rest of the examples we continue
to use the notation of [Chittaro and Ranon, 2001] simply
because it is more compact.

D e f i n i t i o n 2.2 A diagnostic problem is a 3-tuple DP =
(SD, O B S , C X T) where SD is the System Description,
OBS is an instantiation of OBS and C X T 15 an in­
stantiation of CXT

D e f i n i t i o n 2.3 Given a diagnostic problem
L a n instantiation
L o f COMPS i s a di-
a

As noted in the introduction, there are real scenar­
ios where not all the observables OBS are available
and/or their granularity is reduced. We identify the
available observables wi th a set we
also assume that a granularity mapping II is given s.t.
U(M(vol)) maps an instantiation of to a
possibly more abstract instantiation M(aval).

then
there is no loss of granularity at all; in this particu­
lar case we denote II wi th 11^ . For example, in figure

in 1 (b) ,
and in 1 (c), OBSAV = {out};

as for II we may consider a situation where
a n d h a v e been mapped t o a coarser value

The important point about and II
is that these reductions of the observability of the sys­
tem can cause the model to become less discriminant

2This definition of diagnosis is fully abductive; how­
ever results presented in this paper apply equally well to
consistency-based diagnosis

DIAGNOSIS 395

and thus different faults of the same component and/or
of different components to become indiscriminable. The
following definition introduces the notion of indiscrim-
inability among instantiations of subsets of COM PS.

Def in i t i on 2.4 Let SCO MPS be a subset of COMPS,
OBSAV the set of available observables and II a
granularity mapping. We say that two instan­
tiations S C O M P S l , S C O M P S 2 of SCOMPS are
(OBS^v^n^indiscriminable iff for any instantiation
C X T of CXT and any instantiation O T H E R S of
COMPS\SCOMPS the following holds 3:
II {tclosureobsAV (O T H E R S U SCOMPS1)) =

U(tclosure0bsAV (O T H E R S U SCOMPS2))

Note that t h e - i n d i s c r i m i n a b i l i t y relation
induces a partit ion into -indiscriminability
classes of the set of possible instantiations of SCOMPS.
Also note that, when , indiscriminabil­
ity coincides with the indistinguishability among behav­
ioral modes introduced in [Torasso and Torta, 2002].

Examp le 2.2 In the abstraction example of figure 1
(b) , under context and = open indiscriminable in­
stances of P\,V\ are grouped in the following sets:

set C\ is further split in two distinct sets:
{{ok, ok)} (which derives in,
(which derives in2 = in). If in a specific diagnostic prob­
lem we observe, for instance, in2 — 0 given and = open,
the set of diagnoses is given by

For now, just note how this notion of indiscriminabil­
i ty is the basis for any potential abstraction. If, in­
deed, two instantiations S C O M P S l and S C O M P S 2 of
SCOMPS COM PS are indiscriminable, this means
that whenever S C O M P S l O T H E R S is a diagnosis
for a given DP, S C O M P S 2 O T H E R S is another,
indiscriminable, diagnosis for DP.

We now introduce a weak notion of abstraction where,
as it is common in structural abstractions, abstract com­
ponents are recursively built bottom-up starting with the
primitive components.

De f i n i t i on 2.5 Given a set COMPS =
of component variables, a components abstraction map­
ping AM of COMPS defines a set COMPSA =
{AC\,..., of discrete variables ("abstract compo­
nents,) and associates t o e a c h o n e o r
more (subcomponentsof s.t. each
component in COMPS is the subcomponent of exactly
one abstract component. Moreover, AM associates, to

3Given an instantiation COMPS of COMPS wc denote
with telosurtoBSAV (COMPS) the set of instantiations of
variables in "" derived from

4There are |C3| = 5 indiscriminable diagnoses; 2 of them,
namely (ok, sc) and (br,ok), can be regarded as preferred
diagnoses since they involve only one fault

each abstract component AC a definition defAc> which
is a characterization of the behavioral modes of AC
in terms of the behavioral modes of its subcomponents.
More precisely, an abstract component and its definition
are built hierarchically as follows:

- if C COMPS, AC is a simple abstract compo­
nent if its definition defAc associates to each abm
DOM {AC) a formula
C{bmk) s.t. in the tr iv­
ial case, AC has the same domain as C and
DOM{C) :

- if AC, AC" are abstract components with dis­
joint sets of subcomponents SCOMPS',SCOMPS"
then AC is an abstract component with subcompo­
nents S C O M P S ' SCOMPS" if defAC associates
to each abm DOM {AC) a definition defabm

which is a logical formula built by connecting def­
initions defbm'ibm1 DOM {AC) with definitions
defbm»,bm" DOM {AC") through

The definition defAc of AC thus specifies a relation
between instantiations of the subcomponents of AC and
instantiations (i.e. behavioral modes) of AC itself. How­
ever we need to put some restrictions on these relations
in order to match our intuitions about what is an "ad­
missible" abstraction.

De f i n i t i on 2.6 Given a simple abstract component the
definitions associated to its behavioral modes are said
to be admissible. For a non-simple abstract compo­
nent AC which is the composition of abstract compo­
nents AC, AC", an admissible definition for abm
DOM {AC) is defined as follows:

Admissible definitions capture common abstractions,
such as the case where the abstract component is OK if
all its subcomponents are OK (conjunction) and faulty
if at least one of its subcomponents is faulty (canoni­
cal OR). Moreover, since we address the case of compo­
nents with multiple behavioral modes, we extend canon­
ical OR with exceptions (generalized OR); clearly, the
maximum number of exceptions allowed in a generalized
OR should be a configurable parameter of the abstrac­
tion algorithm.
It is worth noting that the proposed operators, although
chosen according to the rationale just exposed, are meant
by no means to be the only possible choice in order to

5This case has the purpose of including behavioral modes
abstraction as described in [Torasso and Torta, 2002] in our
framework: are abstracted in the single behav­
ioral mode abm

396 DIAGNOSIS

make our approach to abstraction applicable; if more
operators or a different set of operators would fit better
particular systems or families of systems, new operators
could simply be plugged-in and replace the ones we have
defined.
Example 2.3 In the abstraction example of figure 1
(b) , the behavioral modes of the abstract component
AVI can be expressed as admissible definitions over
primitive components P I , V I :

Armed with the admissible definitions for behavioral
modes we can now formally identify the abstraction map­
pings we are interested in.
Definition 2.7 Given a system model SD, a compo­
nents abstraction mapping AM of COMPS, a set

and a granularity mapping , we say
that AM is admissible w.r.t. SD, OBSAV, iff for each
abstract component AC with subcomponents SCOMPS:

1. admissible behavioral modes; each is
admissible in the sense of definition 2.6

2. mutual exclusion: for any two distinct
defAC, and any instantiation C O M P S of
COMPS:

3.completeness: for any instantiation C O M P S of

4- correctness: given the set of in-
stantiations of SCOMPS which satisfy defk is a

-indiscriminability class 6

Example 2.4 The abstraction example of figure 1 (b),
is admissible w.r.t.
if the behavioral modes definitions of example 2.3 are
used. Such definitions are admissible, moreover there is
a 1 : 1 mapping between them and the (OBSAV,ty-
indiscriminability classes shown in example 2.2; in par­
ticular corresponds to C l l , defabm2 to C2,
defabrn3 to CYl and defabm to C3. It follows that the
mutual exclusion, completeness and correctness condi­
tions are also satisfied

Note that given an admissible components abstrac­
tion mapping AM, to each instantiation C O M P S
of COMPS corresponds exactly one instantiation
C O M P S A of COMPSA consistent with COMPS
given the definitions of elements in COMPSA- We say
that C O M P S A is the abstraction of C O M P S accord­
ing to AM.

3 Computing Abstractions
The hierarchical way abstract components are defined
in section 2 suggests that, after an initial step of be­
havioral modes abstraction, the computational process

6Note that this guarantees that the behavioral modes of
the abstract component are all distinguishable in the sense
of [Torasso and Torta, 2002]

can produce new abstract components incrementally, by
merging only two components at each iteration. After
some finite number of iterations, arbitrarily complex ab­
stract components can be produced.
As already mentioned in section 1, however, the admissi­
bility of a component abstraction is not enough in order
to produce useful and meaningful abstractions. We thus
introduce some cutoff criteria on abstractions over two
components (i.e. single iterations), to be enforced by the
computational process.
First, we don't want to have a different behavioral mode
of the abstract component for each combination of the
behavioral modes of its subcomponents (limited-domain
criterion); a proliferation of behavioral modes in the ab­
stract component has negative effects on both the effi­
ciency of diagnosis and the understandability of abstract
diagnoses. We chose to impose the not too-restrictive
limit
Second, we must be able to control the fan-in of the ab­
stract components; indeed, if a structure-based diagnos­
tic algorithm is used ([Darwiche, 1998]), introducing an
abstract component that has a fan-in (much) larger than
that of all its subcomponents leads to computational in­
efficiencies as pointed out in [Provan, 2001]. The limit
imposed on the fan-in of the abstract component (fan-in
criterion) can vary from the maximum among the fan-
ins of its subcomponents to the sum of such fan-ins; the
choice should be driven by the type of diagnostic algo­
rithm to be used with the abstracted model as well as
by specific characteristics of the model under considera­
tion. In the experiments reported in section 4 we have
obtained significant results by restricting the fan-in of
abstract components to be at most the maximum fan-in
among their subcomponents.
The following is an high-level description of the compu­
tational process:

Return SD
EndFunction

The invocation of function BM Abstractf) builds simple
abstract components by abstracting behavioral modes
that result indistinguishable given the current observ­
ability expressed by ,11; then a while loop is en­
tered.
Function Oracle() selects the next two candidates C,, C,
for abstraction according to the strategies outlined in the
next paragraph. Then LocalDT, i.e. the portion of DT
relevant for computing the influence of over the
values of observables in , is isolated by calling

. The causal graph associated to LocalDT
essentially contains the paths from to nodes in

; all the parents of the nodes on such paths are

DIAGNOSIS 397

also added. It is easy to see that, given the nodes in Gloc,
the remaining nodes in the original G do not play any
role in the way Ci, Cj influence the variables in OBSAV-
Function MergeComps() (see paragraph 3.2) then tries
to compute the definition of the new abstract component
given LocalDT and in case it succeeds, SD is updated
accordingly by function ReviseDT (). Intuitively, the
formulas in LocalDT are replaced with a set of formulas
whose antecedents mention the new abstract component
AC. Given the antecedent of a formula mentioning AC
the consequent is computed according to the definition
de fAC- For example, considering again figure 1 (b) , we
introduce the formula

The whole process terminates when function Oracle ()
has no new suggestions for further abstractions.

3 .1 T h e O r a c l e
Function Oracle() must choose, at each iteration, a pair
of candidate components for abstraction. Since a search
over the entire space of potential abstractions would be
prohibitive, the function is based on a greedy heuristic
that tries to achieve a good overall abstraction with­
out doing any backtracking. It is worth noting that
the greedy approach reduces the worst-case search per­
formed by OracleQ to the evaluation of all the possible
pairs of components before returning the chosen pair;
this can happen at most \COMPS\ times since every
time an abstraction takes place the number of compo­
nents is reduced by one and thus the search space size is
clearly polynomial in \COMPS\.

In our experience it turned out that the heuristic HA

based on the following two principles could achieve sig­
nificant results. First, HA follows a locality principle for
choosing . Manually written structural abstrac­
tions, indeed, tend to consist in hierarchies such that at
each level of the hierarchy the new abstractions involve
components that are structurally close to one another.
This usually has the advantage of building abstract com­
ponents that have a fan-in comparable to that of their
subcomponents and have a limited and meaningful set
of behavioral modes. Two good examples of structural
patterns that follow this principle are components con­
nected in sequence and in parallel 8.
Second, the heuristic prefers pairs of components that
are connected to the same observables in ; this
follows from the fact that if at least one of the two com­
ponents is observable separately from the other, it is
more unlikely to find indiscriminable instantiations of
the two components.

7 I t is easy to see that, by interpreting abm1, abm 2, abm 3,
abm4 as ok, leak, so, sc respectively, AVI behavior is exactly
that of a valve

8Note that the structural notions of vicinity, sequential­
ly and parallelism can be naturally transposed in terms of
relationships in the causal graph G

While evaluating a pair of candidates, OracleQ im­
mediately enforces the fan-in criterion (this check can
be easily performed at this stage). As for the limited-
domain cutoff criterion and the actual feasibility of an
admissible abstraction, Oracle() just "trusts" the heuris­
tic HA, and defers to MergeCompsQ the actual enforce­
ment. There's thus no warranty that the components
selected by OracleQ wil l end up being merged but just
a good chance of it to happen.

In the current implementation, OracleQ terminates
when it can't find any pair of components which meet
the limited fan-in criterion, are connected in sequence or
parallel and influence the same set of observables.

Examp le 3.1 Given the system in figure 1 (a) and
, OracleQ selects P I , VI as candi­

dates according to heuristic e.g., are further
away and there's also an observable point between them,
namely in2. Since the inputs to the potential abstract
component AVI would be in,cmd and the inputs to VI
are outl,cmd there is no increase in the fan-in of the
abstract component. Thus P I , VI are returned □

3.2 A b s t r a c t i o n o f T w o C o m p o n e n t s
Once two candidate components have been se­
lected, function MergeCompsQ tries to merge them into
a single abstract component. The following is a sketch
of the function:
Function MergeComps(LocalDT,

V = FindIndiscriminable(Local

ForEach

Return
EndFunction

First, the set is par-
tioned into indiscriminability classes by function
FindlndiscriminableQ. Such function considers in turn
each observable M reachable from Ci,Cj and computes
the set SN(M) of source nodes (i.e. nodes without par­
ents) in Gloc connected to M (excluding C i C j) ; instan­
tiations of the source nodes represent the contexts un­
der which influence the value of M. For each
instantiation of SN(M) then FindlndiscriminableQ
computes the transitive closure of each pair of behav­
ioral modes in and gradually re­
fines the partit ion by putt ing into separate classes pairs
that cause different values for M. It is easy to see
that after FindlndismiminableQ has looped over each

and each instantiation of SN(M), the re­
sulting partit ion V of consists
exactly in the indiscriminability classes of definition 2.4.
Indiscriminability classes of V form the basis for build­
ing abstract behavioral modes definitions: associating
exactly one abstract behavioral mode to each of them,
guarantees that the mutual exclusion, completeness and

398 DIAGNOSIS

correctness conditions given in definition 2.7 are auto­
matically satisfied. Since the number of classes in the
partit ion V corresponds to the number of abstract be­
havioral modes to be eventually generated, the limited-
domain cutoff criterion is applied to
If the check is passed successfully, the generation of the
definitions for the abstract behavioral modes starts, by
considering an indiscriminability class p at a time and
calling function MakeABMDefinitionQ. Such func­
tion tries to build an admissible behavioral mode defi­
nition by considering the admissible forms in the same
order as given in definition 2.6; if it does not succeed, it
returns NULL and the abstraction of fails.

Examp le 3.2 Given that OraclcQ has selected P I , VI
as candidates for abstraction, the admissible ab­
straction described in example 2.4 is computed
by MergeCornpsQ in the following way: function
FindlndiscriminableQ computes a partit ion V whose
indiscriminability classes are the ones mentioned in ex­
ample

the cutoff check is passed; then, func­
tion Make ABM Definition () builds, for each indiscrim­
inability class, the corresponding admissible definition
shown in example 2.3

3.3 C o r r e c t n e s s
We now state two correctness results concerning algo­
r i thm AbstractQ. Their validity follows intuitively by
the description of the algorithm given in the previous
paragraphs; because of lack of space we omit the formal
proofs. The first property just states that the algorithm
builds abstractions according to definitions in section 2.

P r o p e r t y 3.1 Function AbstractQ builds an admissible
components abstraction mapping

The second property makes explicit the correspon­
dence between detailed and abstract diagnoses.

P r o p e r t y 3.2 Let SDA be the system description ob­
tained from SD,OBSAV,TI by applying AbstractQ and
AM the associated admissible abstraction mapping.
Given a diagnostic problem DP = (S D , O B S , C X T)
and the corresponding abstract diagnostic problem
DPA = {SDA, O B S A V , C X T) , D is a diagnosis for DP
iff its abstraction DA according to AM is a diagnosis for
DPA

4 Exper imenta l Results
For testing the approach described above we have used
the model of the space robotic arm SPIDER ([Portinale
and Torasso, 1999]), consisting in 35 components with an
average 3.43 behavioral modes each, 45 observables and
1143 formulas. Al l the tests have been performed using
a Java implementation running on a Sun Sparc Ultra 5
equipped with SunOS 5.8.
Please note that the SPIDER system model expresses
causal relationships among the variables: for example, a
failure in an electrical component can influence the tem­
perature measured at some other physically neighboring

DIAGNOSIS

Table 2: Average number of preferred diag. (eonf. 95%)

components.
We have applied the AbstractQ algorithm by consider­
ing as available observables the set of 29 sensorized ob­
servables at their maximum granularity. The resulting
model, computed in about lsec, was reduced to have 21
components with an average 2.76 behavioral modes and
548 formulas. Table 2 reports the average number of
preferred (i.e. minimum fault cardinality) diagnoses pro­
duced by the diagnostic agent when using respectively
the original model (detailed), the model obtained by per­
forming only behavioral modes abstraction (abstractl)
and the model created by AbstractQ (abstract2). The
three columns report results for three testsets of 250
cases each. The difference between the testsets lies in
the number of faults (1 , 2 and 3 respectively) injected in
each test case.
The average times employed to solve a test case using
the detailed model were, with a 95% confidence, 72 ± 4
msec (testsetl), msec (testset2) and 333 ± 54
msec (ttstsetS)] by using the abstract2 model the aver­
age times dropped to msec (testsetl), 41 ±3 msec
(testset2) and 45 ± 8 msec (tcstset.3).

5 Related W o r k and Conclusions
As noted in the introduction only a few methods
have been proposed for automatic model abstraction in
the context of MBD. In particular, [Sachenbacher and
Struss, 2001] and [Torasso and Torta, 2002] aim at the
abstraction of the values of variables in the model while
the present work aims also at automatically abstracting
component variables. In [Out et a/., 1994J the authors
introduce the notion of ID-hierarchies of abstract com­
ponents which, as our admissible abstraction mappings,
preserve a strict correspondence between an abstract di­
agnosis and the set of detailed diagnoses consistent with
i t . However, their work deals with models which repre­
sent only normal behavior of the system, which results
in a significant simplification of the synthesis of behav­
ioral modes definitions for the abstract components. In
particular, the parti t ion of the instantiations of the sub­
components is always reduced to two indiscriminability
classes: a singleton OK-class (containing the unique in­
stance where all subcomponents are OK) and an AB-
class (containing all the remaining instances, where at
least one subcomponent is AB). Since there's no fault
model, the only instance which predicts values for the
observables is the one in the OK-class; instances in the
AB-class do not predict anything about observable val­
ues, stnd thus can be safely put in the same indiscrim­
inability class without computing any transitive closure.

Among the methods based on manual abstraction,

399

[Friedrich, 1993] proposes a notion of diagnosis (theory
diagnoses) which exploits ab-clauses explicitly added to
the domain theory in order to compute abstract diag­
noses. Similarly, in [Console and Theseider Dupre, 1994]
the model is augmented with abstraction axioms which
model is-a relationships; in such model also observables
can be expressed at different levels of abstraction. In
both works the level of abstraction of diagnoses is flexi­
ble (i.e. a diagnosis can mix elements at different levels of
abstraction) and is driven by the specific diagnostic cause
at hand (i.e. values of the observables and contexts).
Our abstraction algorithm automatically synthesizes a
single abstract level given the knowledge of which vari­
ables are observable at which granularity; we assume
that the changes in the availability of observables are
rare, so that the produced models are reused for many
diagnostic cases. Moreover, the kinds of relationships
that we allow among abstract component behavior and
its subcomponents behavior are less restrictive than ab-
clauses and is-a relationships.

The definition of admissible components abstractions
given in this paper aims at building abstract models that
can completely replace the detailed models without any
loss of discriminability. This is different from the goal
of [Mozetic, 1991] and its improvements, where the ab­
stract model is viewed as a focusing mechanism, and is
used in conjunction with the detailed model in order to
improve efficiency. Our notion of indiscriminability en­
forces abstractions where a diagnosis Da at the abstract
level corresponds exactly to the set of detailed diagnoses
whose abstraction is Da (property 3.2). As shown by
[Autio and Reiter, 1998] this is not the case for some
common abstractions: in the example of the abstract
NOR gate consisting of an OR and a NOT gates, the
ab-dause AB(NOR) = AB(OR) V AD(NOT) does not
correspond to an indiscriminability class, since the case
where both OR and NOT are faulty has a different be­
havior than the cases where only one fault is present.
Our algorithm does not synthesize such ab-clause, thus
avoiding the consequent loss of diagnostic information.

Most of the computational effort of our approach is
devoted to the computation of the indiscriminability
classes; once they have been identified, the generation of
behavioral modes definitions from each of them is cheap
and straightforward. An alternative approach that could
be worth exploring is constructive inductive learning,
where techniques have been developed for the automatic
synthesis of complex attributes (see e.g. [Pagallo and
Haussler, 1990]).
Another interesting point to explore would be to study
more sophisticated versions of the Oracle () function,
able to recognize a wider variety of patterns in the causal
graph and possibly to look ahead one or more steps in or­
der to select the candidate pair of components; in order
to keep the complexity of the search manageable we be­
lieve that such extended versions of OracleQ should be
supported by additional domain-specific knowledge (for
instance, whether certain kinds of components are likely
to be connected in ways that form admissible abstract

components).
In conclusion, performing components abstraction led

to dramatic reductions in the number of returned di­
agnoses in the experimental domain, outperforming the
application of behavioral modes abstraction alone (see
section 4). The reduction in the model size also resulted
in significant time savings for the diagnostic process.

References
[Autio and Reiter, 1998] K. Autio and R. Reiter. Struc­

tural abstraction in model-based diagnosis. In Proc.
ECAI98, pages 269-273, 1998.

[Chittaro and Ranon, 2001] L. Chittaro and R. Ranon.
Hierarchical diagnosis guided by observations. In
Proc. IJCAI01, pages 573-578, 2001.

[Console and Theseider Dupre, 1994] L. Console and
D. Theseider Dupre. Abductive reasoning with ab­
straction axioms. LNCS, 810:98-112, 1994.

[Darwiche, 1998] A. Darwiche. Model-based diagnosis
using structured system descriptions. Journal of Ar­
tificial Intelligence Research, 8:165-222, 1998.

[Friedrich, 1993] G. Friedrich. Theory diagnoses: A con­
cise characterization of faulty systems. In Proc. IJ-
CAI93, pages 1466-1471, 1993.

[Mozetic, 1991] I. Mozetic. Hierarchical model-based
diagnosis. Int. Journal of Man-Machine Studies,
35(3):329 362, 1991.

[Out et a/., 1994] D.J. Out, R. van Rikxoort, and
R. Bakker. On the construction of hierarchic mod­
els. Annals of Mathematics and AI, 11:283-296,1994.

[Pagallo and Haussler, 1990] G. Pagallo and D. Haus­
sler. Boolean feature discovery in empirical learning.
Machine Learning, 5:71-99, 1990.

[Portinale and Torasso, 1999] L. Portinale and
P. Torasso. Diagnosis as a variable assignment
problem: a case study in a space robot fault
diagnosis. In Proc. IJCAI99, pages 1087 1093, 1999.

[Provan, 2001] G. Provan. Hierarchical model-based di­
agnosis. In Proc. DX01, pages 329-362, 2001.

[Sachenbacher and Struss, 2001] M. Sachenbacher and
P. Struss. Aqua: A framework for automated qual­
itative abstraction. In Proc. QR01, 2001.

[Struss et a/., 1996] P. Struss, A. Malik, and M. Sachen­
bacher. Qualitative modeling is the key to automated
diagnosis. In Proc. IFAC96, 1996.

[Struss, 1997] P. Struss. Fundamentals of model-based
diagnosis of dynamic systems. In Proc. IJCAI97,1997.

[Torasso and Torta, 2002] P. Torasso and G. Torta.
Merging indiscriminable diagnoses: an approach
based on automatic domains abstraction. In Proc.
DX02, pages 43-50, 2002.

400 DIAGNOSIS

