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Abstract 

The paper addresses the problem of automatic 
abstraction of component variables in the con-
text of Model Based Diagnosis, in order to pro-
duce models capable of deriving fewer and more 
general diagnoses when the current observabil­
ity of the system is reduced. The notion of in-
discriminability among faults of a set of compo­
nents is introduced and constitutes the basis for 
a formal definition of admissible abstractions 
which preserve all the distinctions that are rel­
evant for diagnosis given the current observabil­
ity of the system. The automatic synthesis of 
abstract models further restricts abstractions 
such that the behavior of abstract components 
is expressed in terms of a simple and intuitive 
combination of the behavior of their subcom­
ponents. As a validation of our proposal, we 
present experimental results which show the re­
duction in the number of diagnoses returned by 
a diagnostic agent for a space robotic arm. 

1 Introduction 
System model abstraction has been successfully ex­
ploited in many approaches to model-based diagnosis 
(MBD). The pioneer work of [Mozetic, 1991] and re­
cent improvements proposed e.g. by [Provan, 2001] and 
[Chittaro and Ranon, 2001] mostly use abstraction in or­
der to focus the diagnostic process and thus improve its 
efficiency. However, (flexible) abstraction has another 
main benefit, namely to provide fewer and more concise 
abstract diagnoses when it is not possible to discriminate 
among detailed diagnoses. The works by [Console and 
Theseider Dupre, 1994] and [Friedrich, 1993] accomplish 
this goal by including abstraction axioms in the Domain 
Theory and using preference criteria based on the ab­
straction level of diagnoses. 

Recently, some authors have aimed at the same goal 
in a different way, namely automatic abstraction of the 
system model ([Sachenbacher and Struss, 2001], [Torasso 
and Torta, 2002]) l. If the available observables and/or 

1 Previously an algorithm for automatic abstraction of 

their granularity are too coarse to distinguish among two 
or more behavioral modes of a component, or the distinc­
tion is not important for the considered system, a system 
model is automatically generated where such behavioral 
modes are merged into an abstracted behavioral mode. 
By using the abstracted model for diagnosis there's no 
loss of (important) information, while the number of re­
turned diagnoses is reduced, and such diagnoses, by be­
ing "as abstract as possible", are more understandable 
for a human. 

The work presented in this paper aims at extending 
previous works by introducing automatic abstraction of 
variables (i.e. components) in the presence of a reduced 
availability of the number and/or granularity of observ­
ables. Abstractions based on system observability are 
particularly relevant in the context of on-board diagno­
sis. Indeed, it is likely that when a system is operated on­
board the only available measures are provided by sen­
sors (which can themselves fail) and taking further mea­
sures manually is out of question. Moreover, on-board 
diagnosis is usually constrained by strict time and re­
sources requirements: using an abstracted system model 
should yield savings in both the time and the space re­
quirements of the diagnostic process. 

Our proposal requires that abstractions do not cause 
any loss of diagnostic information (e.g. as in the in­
complete abstractions discussed in [Autio and Reiter, 
1998]) or loss of efficiency (e.g. due to increased fan-
in as pointed out in [Provan, 2001]); moreover, we re­
strict the mapping from abstract components to their 
subcomponents to be enough simple and intuitive. In 
order to exclude all the undesired abstractions we intro­
duce a precise definition of admissible abstraction, and 
further restrict the computation of abstractions through 
cutoff criteria which forbid admissible abstractions that 
may lead to computational inefficiencies. 

As a running example to illustrate our definitions and 
algorithms, we will use throughout the paper the frag­
ment of hydraulic circuit adapted from [Chittaro and 
Ranon, 2001] depicted in figure 1 (a); table 1 reports 
its domain theory (valve modes so and sc abbreviate 

components had been proposed in [Out et o/., 1994] for sim­
pler models describing only normal behavior of the system 
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Figure 1: A fragment of an hydraulic circuit at. three 
levels of abstraction 

Table 1: Model of hydraulic components 

stuck open and stuck closed respectively). Two possible 
abstractions of such system are shown in figures 1 (b) 
(where pipe PI and valve VI have been abstracted into 
valve AVI) and 1 (c) (where abstract valve AVI and 
pipe P2 have been abstracted into valve AV2). As for 
experimental validation of our techniques, however, we 
wil l present results collected in a larger domain, namely 
the model of the SPIDER space robotic arm used in 
[Portinalc and Torasso, 1999]. 

The paper is structured as follows. In section 2 we 
give a formal definition of what we consider an admissible 
abstract component. In section 3 we describe how the 
declarative notions introduced in 2 can be implemented 
computationally. In section 4 we present experimental 
results collected in the SPIDER robotic arm domain. 
Finally, in section 5 we compare our work to related 
papers and make some concluding remarks. 

2 Abstract ions Def ined 
We first report formal definitions of system model, diag­
nostic problem and diagnosis. 

D e f i n i t i o n 2.1 A System Description (SD) is a 3-tuple 
where: 

V is a set of discrete variables partitioned in the fol-
lowing sorts: CXT (inputs), COMPS (components), 
STATES (endogenous variables), OBS (observables); 
DOM(v) is the finite domain of variable 
DT (Domain Theory) is an acyclic set of Horn clauses 

defined over V representing the behavior of the system 
(under normal and abnormal conditions); we require 
that, given an instantiation of COMPS and CXT, the 
DT derives exactly one value for each other variable 
G (Causal Graph) is a DAG whose nodes are in V rep-

resenting the causal structure of the system; whenever a 
formula appears in 
DT, nodes N\ through Nk are parents of M in the graph 

It is worth noting that the fact that G is restricted to 
be a DAG does not mean that the system model is a tree 
in the sense e.g. of [Darwiche, 1998]; since we allow the 
existence of multiple directed paths between two nodes 
the associated jointree may well be cyclic. The DAG re­
striction just forbids feedback loops in the causal graph, 
which is a common assumption in approaches which deal 
with dynamic systems only if they are amenable to state-
based diagnosis ([Struss, 1997]). 

Examp le 2.1 Note that the System Description for the 
running sample system given in table 1 is expressed in 
a slightly different formalism than the one described in 
our definition, due to the use of equations and disequa-
tions on the right-hand side of formulas. However, it can 
be easily mapped to our formalism by modeling inx and 
outx as discrete STATES variables by using qualitative 
deviations ([Struss et o/., 1996]); thus, for example, for­
mula: 

w h e r e m e a n s that variable v has a value 
with sign and its deviation from the nominal value 
has sign In the rest of the examples we continue 
to use the notation of [Chittaro and Ranon, 2001] simply 
because it is more compact. 

D e f i n i t i o n 2.2 A diagnostic problem is a 3-tuple DP = 
(SD, O B S , C X T ) where SD is the System Description, 
OBS is an instantiation of OBS and C X T 15 an in­
stantiation of CXT 

D e f i n i t i o n 2.3 Given a diagnostic problem 
L a n instantiation 
L o f COMPS i s a di-
a 

As noted in the introduction, there are real scenar­
ios where not all the observables OBS are available 
and/or their granularity is reduced. We identify the 
available observables wi th a set we 
also assume that a granularity mapping II is given s.t. 
U(M(vol)) maps an instantiation of to a 
possibly more abstract instantiation M(aval). 

then 
there is no loss of granularity at all; in this particu­
lar case we denote II wi th 11^ . For example, in figure 

in 1 (b) , 
and in 1 (c), OBSAV = {out}; 

as for II we may consider a situation where 
a n d h a v e been mapped t o a coarser value 

The important point about and II 
is that these reductions of the observability of the sys­
tem can cause the model to become less discriminant 

2This definition of diagnosis is fully abductive; how­
ever results presented in this paper apply equally well to 
consistency-based diagnosis 
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and thus different faults of the same component and/or 
of different components to become indiscriminable. The 
following definition introduces the notion of indiscrim-
inability among instantiations of subsets of COM PS. 

Def in i t i on 2.4 Let SCO MPS be a subset of COMPS, 
OBSAV the set of available observables and II a 
granularity mapping. We say that two instan­
tiations S C O M P S l , S C O M P S 2 of SCOMPS are 
(OBS^v^n^indiscriminable iff for any instantiation 
C X T of CXT and any instantiation O T H E R S of 
COMPS\SCOMPS the following holds 3: 
II {tclosureobsAV ( O T H E R S U SCOMPS1) ) = 

U(tclosure0bsAV ( O T H E R S U SCOMPS2) ) 

Note that t h e - i n d i s c r i m i n a b i l i t y relation 
induces a partit ion into -indiscriminability 
classes of the set of possible instantiations of SCOMPS. 
Also note that, when , indiscriminabil­
ity coincides with the indistinguishability among behav­
ioral modes introduced in [Torasso and Torta, 2002]. 

Examp le 2.2 In the abstraction example of figure 1 
(b) , under context and = open indiscriminable in­
stances of P\,V\ are grouped in the following sets: 

set C\ is further split in two distinct sets: 
{{ok, ok)} (which derives in, 
(which derives in2 = in). If in a specific diagnostic prob­
lem we observe, for instance, in2 — 0 given and = open, 
the set of diagnoses is given by 

For now, just note how this notion of indiscriminabil­
i ty is the basis for any potential abstraction. If, in­
deed, two instantiations S C O M P S l and S C O M P S 2 of 
SCOMPS COM PS are indiscriminable, this means 
that whenever S C O M P S l O T H E R S is a diagnosis 
for a given DP, S C O M P S 2 O T H E R S is another, 
indiscriminable, diagnosis for DP. 

We now introduce a weak notion of abstraction where, 
as it is common in structural abstractions, abstract com­
ponents are recursively built bottom-up starting with the 
primitive components. 

De f i n i t i on 2.5 Given a set COMPS = 
of component variables, a components abstraction map­
ping AM of COMPS defines a set COMPSA = 
{AC\,..., of discrete variables ("abstract compo­
nents,) and associates t o e a c h o n e o r 
more (subcomponentsof s.t. each 
component in COMPS is the subcomponent of exactly 
one abstract component. Moreover, AM associates, to 

3Given an instantiation COMPS of COMPS wc denote 
with telosurtoBSAV (COMPS) the set of instantiations of 
variables in "" derived from 

4There are |C3| = 5 indiscriminable diagnoses; 2 of them, 
namely (ok, sc) and (br,ok), can be regarded as preferred 
diagnoses since they involve only one fault 

each abstract component AC a definition defAc> which 
is a characterization of the behavioral modes of AC 
in terms of the behavioral modes of its subcomponents. 
More precisely, an abstract component and its definition 
are built hierarchically as follows: 

- if C COMPS, AC is a simple abstract compo­
nent if its definition defAc associates to each abm 
DOM {AC) a formula 
C{bmk) s.t. in the tr iv­
ial case, AC has the same domain as C and 
DOM{C) : 

- if AC, AC" are abstract components with dis­
joint sets of subcomponents SCOMPS',SCOMPS" 
then AC is an abstract component with subcompo­
nents S C O M P S ' SCOMPS" if defAC associates 
to each abm DOM {AC) a definition defabm 

which is a logical formula built by connecting def­
initions defbm'ibm1 DOM {AC) with definitions 
defbm»,bm" DOM {AC") through 

The definition defAc of AC thus specifies a relation 
between instantiations of the subcomponents of AC and 
instantiations (i.e. behavioral modes) of AC itself. How­
ever we need to put some restrictions on these relations 
in order to match our intuitions about what is an "ad­
missible" abstraction. 

De f i n i t i on 2.6 Given a simple abstract component the 
definitions associated to its behavioral modes are said 
to be admissible. For a non-simple abstract compo­
nent AC which is the composition of abstract compo­
nents AC, AC", an admissible definition for abm 
DOM {AC) is defined as follows: 

Admissible definitions capture common abstractions, 
such as the case where the abstract component is OK if 
all its subcomponents are OK (conjunction) and faulty 
if at least one of its subcomponents is faulty (canoni­
cal OR). Moreover, since we address the case of compo­
nents with multiple behavioral modes, we extend canon­
ical OR with exceptions (generalized OR); clearly, the 
maximum number of exceptions allowed in a generalized 
OR should be a configurable parameter of the abstrac­
tion algorithm. 
It is worth noting that the proposed operators, although 
chosen according to the rationale just exposed, are meant 
by no means to be the only possible choice in order to 

5This case has the purpose of including behavioral modes 
abstraction as described in [Torasso and Torta, 2002] in our 
framework: are abstracted in the single behav­
ioral mode abm 
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make our approach to abstraction applicable; if more 
operators or a different set of operators would fit better 
particular systems or families of systems, new operators 
could simply be plugged-in and replace the ones we have 
defined. 
Example 2.3 In the abstraction example of figure 1 
(b) , the behavioral modes of the abstract component 
AVI can be expressed as admissible definitions over 
primitive components P I , V I : 

Armed with the admissible definitions for behavioral 
modes we can now formally identify the abstraction map­
pings we are interested in. 
Definition 2.7 Given a system model SD, a compo­
nents abstraction mapping AM of COMPS, a set 

and a granularity mapping , we say 
that AM is admissible w.r.t. SD, OBSAV, iff for each 
abstract component AC with subcomponents SCOMPS: 

1. admissible behavioral modes; each is 
admissible in the sense of definition 2.6 

2. mutual exclusion: for any two distinct 
defAC, and any instantiation C O M P S of 
COMPS: 

3.completeness: for any instantiation C O M P S of 

4- correctness: given the set of in-
stantiations of SCOMPS which satisfy defk is a 

-indiscriminability class 6 

Example 2.4 The abstraction example of figure 1 (b), 
is admissible w.r.t. 
if the behavioral modes definitions of example 2.3 are 
used. Such definitions are admissible, moreover there is 
a 1 : 1 mapping between them and the (OBSAV,ty-
indiscriminability classes shown in example 2.2; in par­
ticular corresponds to C l l , defabm2 to C2, 
defabrn3 to CYl and defabm to C3. It follows that the 
mutual exclusion, completeness and correctness condi­
tions are also satisfied 

Note that given an admissible components abstrac­
tion mapping AM, to each instantiation C O M P S 
of COMPS corresponds exactly one instantiation 
C O M P S A of COMPSA consistent with COMPS 
given the definitions of elements in COMPSA- We say 
that C O M P S A is the abstraction of C O M P S accord­
ing to AM. 

3 Computing Abstractions 
The hierarchical way abstract components are defined 
in section 2 suggests that, after an initial step of be­
havioral modes abstraction, the computational process 

6Note that this guarantees that the behavioral modes of 
the abstract component are all distinguishable in the sense 
of [Torasso and Torta, 2002] 

can produce new abstract components incrementally, by 
merging only two components at each iteration. After 
some finite number of iterations, arbitrarily complex ab­
stract components can be produced. 
As already mentioned in section 1, however, the admissi­
bility of a component abstraction is not enough in order 
to produce useful and meaningful abstractions. We thus 
introduce some cutoff criteria on abstractions over two 
components (i.e. single iterations), to be enforced by the 
computational process. 
First, we don't want to have a different behavioral mode 
of the abstract component for each combination of the 
behavioral modes of its subcomponents (limited-domain 
criterion); a proliferation of behavioral modes in the ab­
stract component has negative effects on both the effi­
ciency of diagnosis and the understandability of abstract 
diagnoses. We chose to impose the not too-restrictive 
limit 
Second, we must be able to control the fan-in of the ab­
stract components; indeed, if a structure-based diagnos­
tic algorithm is used ([Darwiche, 1998]), introducing an 
abstract component that has a fan-in (much) larger than 
that of all its subcomponents leads to computational in­
efficiencies as pointed out in [Provan, 2001]. The limit 
imposed on the fan-in of the abstract component (fan-in 
criterion) can vary from the maximum among the fan-
ins of its subcomponents to the sum of such fan-ins; the 
choice should be driven by the type of diagnostic algo­
rithm to be used with the abstracted model as well as 
by specific characteristics of the model under considera­
tion. In the experiments reported in section 4 we have 
obtained significant results by restricting the fan-in of 
abstract components to be at most the maximum fan-in 
among their subcomponents. 
The following is an high-level description of the compu­
tational process: 

Return SD 
EndFunction 

The invocation of function BM Abstractf) builds simple 
abstract components by abstracting behavioral modes 
that result indistinguishable given the current observ­
ability expressed by ,11; then a while loop is en­
tered. 
Function Oracle() selects the next two candidates C,, C, 
for abstraction according to the strategies outlined in the 
next paragraph. Then LocalDT, i.e. the portion of DT 
relevant for computing the influence of over the 
values of observables in , is isolated by calling 

. The causal graph associated to LocalDT 
essentially contains the paths from to nodes in 

; all the parents of the nodes on such paths are 
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also added. It is easy to see that, given the nodes in Gloc, 
the remaining nodes in the original G do not play any 
role in the way Ci, Cj influence the variables in OBSAV-
Function MergeComps() (see paragraph 3.2) then tries 
to compute the definition of the new abstract component 
given LocalDT and in case it succeeds, SD is updated 
accordingly by function ReviseDT (). Intuitively, the 
formulas in LocalDT are replaced with a set of formulas 
whose antecedents mention the new abstract component 
AC. Given the antecedent of a formula mentioning AC 
the consequent is computed according to the definition 
de fAC- For example, considering again figure 1 (b) , we 
introduce the formula 

The whole process terminates when function Oracle () 
has no new suggestions for further abstractions. 

3 .1 T h e O r a c l e 
Function Oracle() must choose, at each iteration, a pair 
of candidate components for abstraction. Since a search 
over the entire space of potential abstractions would be 
prohibitive, the function is based on a greedy heuristic 
that tries to achieve a good overall abstraction with­
out doing any backtracking. It is worth noting that 
the greedy approach reduces the worst-case search per­
formed by OracleQ to the evaluation of all the possible 
pairs of components before returning the chosen pair; 
this can happen at most \COMPS\ times since every 
time an abstraction takes place the number of compo­
nents is reduced by one and thus the search space size is 
clearly polynomial in \COMPS\. 

In our experience it turned out that the heuristic HA 

based on the following two principles could achieve sig­
nificant results. First, HA follows a locality principle for 
choosing . Manually written structural abstrac­
tions, indeed, tend to consist in hierarchies such that at 
each level of the hierarchy the new abstractions involve 
components that are structurally close to one another. 
This usually has the advantage of building abstract com­
ponents that have a fan-in comparable to that of their 
subcomponents and have a limited and meaningful set 
of behavioral modes. Two good examples of structural 
patterns that follow this principle are components con­
nected in sequence and in parallel 8. 
Second, the heuristic prefers pairs of components that 
are connected to the same observables in ; this 
follows from the fact that if at least one of the two com­
ponents is observable separately from the other, it is 
more unlikely to find indiscriminable instantiations of 
the two components. 

7 I t is easy to see that, by interpreting abm1, abm 2, abm 3, 
abm4 as ok, leak, so, sc respectively, AVI behavior is exactly 
that of a valve 

8Note that the structural notions of vicinity, sequential­
ly and parallelism can be naturally transposed in terms of 
relationships in the causal graph G 

While evaluating a pair of candidates, OracleQ im­
mediately enforces the fan-in criterion (this check can 
be easily performed at this stage). As for the limited-
domain cutoff criterion and the actual feasibility of an 
admissible abstraction, Oracle() just "trusts" the heuris­
tic HA, and defers to MergeCompsQ the actual enforce­
ment. There's thus no warranty that the components 
selected by OracleQ wil l end up being merged but just 
a good chance of it to happen. 

In the current implementation, OracleQ terminates 
when it can't find any pair of components which meet 
the limited fan-in criterion, are connected in sequence or 
parallel and influence the same set of observables. 

Examp le 3.1 Given the system in figure 1 (a) and 
, OracleQ selects P I , VI as candi­

dates according to heuristic e.g., are further 
away and there's also an observable point between them, 
namely in2. Since the inputs to the potential abstract 
component AVI would be in,cmd and the inputs to VI 
are outl,cmd there is no increase in the fan-in of the 
abstract component. Thus P I , VI are returned □ 

3.2 A b s t r a c t i o n o f T w o C o m p o n e n t s 
Once two candidate components have been se­
lected, function MergeCompsQ tries to merge them into 
a single abstract component. The following is a sketch 
of the function: 
Function MergeComps(LocalDT, 

V = FindIndiscriminable(Local 

ForEach 

Return 
EndFunction 

First, the set is par-
tioned into indiscriminability classes by function 
FindlndiscriminableQ. Such function considers in turn 
each observable M reachable from Ci,Cj and computes 
the set SN(M) of source nodes (i.e. nodes without par­
ents) in Gloc connected to M (excluding C i C j ) ; instan­
tiations of the source nodes represent the contexts un­
der which influence the value of M. For each 
instantiation of SN(M) then FindlndiscriminableQ 
computes the transitive closure of each pair of behav­
ioral modes in and gradually re­
fines the partit ion by putt ing into separate classes pairs 
that cause different values for M. It is easy to see 
that after FindlndismiminableQ has looped over each 

and each instantiation of SN(M), the re­
sulting partit ion V of consists 
exactly in the indiscriminability classes of definition 2.4. 
Indiscriminability classes of V form the basis for build­
ing abstract behavioral modes definitions: associating 
exactly one abstract behavioral mode to each of them, 
guarantees that the mutual exclusion, completeness and 
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correctness conditions given in definition 2.7 are auto­
matically satisfied. Since the number of classes in the 
partit ion V corresponds to the number of abstract be­
havioral modes to be eventually generated, the limited-
domain cutoff criterion is applied to 
If the check is passed successfully, the generation of the 
definitions for the abstract behavioral modes starts, by 
considering an indiscriminability class p at a time and 
calling function MakeABMDefinitionQ. Such func­
tion tries to build an admissible behavioral mode defi­
nition by considering the admissible forms in the same 
order as given in definition 2.6; if it does not succeed, it 
returns NULL and the abstraction of fails. 

Examp le 3.2 Given that OraclcQ has selected P I , VI 
as candidates for abstraction, the admissible ab­
straction described in example 2.4 is computed 
by MergeCornpsQ in the following way: function 
FindlndiscriminableQ computes a partit ion V whose 
indiscriminability classes are the ones mentioned in ex­
ample 

the cutoff check is passed; then, func­
tion Make ABM Definition () builds, for each indiscrim­
inability class, the corresponding admissible definition 
shown in example 2.3 

3.3 C o r r e c t n e s s 
We now state two correctness results concerning algo­
r i thm AbstractQ. Their validity follows intuitively by 
the description of the algorithm given in the previous 
paragraphs; because of lack of space we omit the formal 
proofs. The first property just states that the algorithm 
builds abstractions according to definitions in section 2. 

P r o p e r t y 3.1 Function AbstractQ builds an admissible 
components abstraction mapping 

The second property makes explicit the correspon­
dence between detailed and abstract diagnoses. 

P r o p e r t y 3.2 Let SDA be the system description ob­
tained from SD,OBSAV,TI by applying AbstractQ and 
AM the associated admissible abstraction mapping. 
Given a diagnostic problem DP = ( S D , O B S , C X T ) 
and the corresponding abstract diagnostic problem 
DPA = {SDA, O B S A V , C X T ) , D is a diagnosis for DP 
iff its abstraction DA according to AM is a diagnosis for 
DPA 

4 Exper imenta l Results 
For testing the approach described above we have used 
the model of the space robotic arm SPIDER ([Portinale 
and Torasso, 1999]), consisting in 35 components with an 
average 3.43 behavioral modes each, 45 observables and 
1143 formulas. Al l the tests have been performed using 
a Java implementation running on a Sun Sparc Ultra 5 
equipped with SunOS 5.8. 
Please note that the SPIDER system model expresses 
causal relationships among the variables: for example, a 
failure in an electrical component can influence the tem­
perature measured at some other physically neighboring 
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Table 2: Average number of preferred diag. (eonf. 95%) 

components. 
We have applied the AbstractQ algorithm by consider­
ing as available observables the set of 29 sensorized ob­
servables at their maximum granularity. The resulting 
model, computed in about lsec, was reduced to have 21 
components with an average 2.76 behavioral modes and 
548 formulas. Table 2 reports the average number of 
preferred (i.e. minimum fault cardinality) diagnoses pro­
duced by the diagnostic agent when using respectively 
the original model (detailed), the model obtained by per­
forming only behavioral modes abstraction (abstractl) 
and the model created by AbstractQ (abstract2). The 
three columns report results for three testsets of 250 
cases each. The difference between the testsets lies in 
the number of faults (1 , 2 and 3 respectively) injected in 
each test case. 
The average times employed to solve a test case using 
the detailed model were, with a 95% confidence, 72 ± 4 
msec (testsetl), msec (testset2) and 333 ± 54 
msec (ttstsetS)] by using the abstract2 model the aver­
age times dropped to msec (testsetl), 41 ±3 msec 
(testset2) and 45 ± 8 msec (tcstset.3). 

5 Related W o r k and Conclusions 
As noted in the introduction only a few methods 
have been proposed for automatic model abstraction in 
the context of MBD. In particular, [Sachenbacher and 
Struss, 2001] and [Torasso and Torta, 2002] aim at the 
abstraction of the values of variables in the model while 
the present work aims also at automatically abstracting 
component variables. In [Out et a/., 1994J the authors 
introduce the notion of ID-hierarchies of abstract com­
ponents which, as our admissible abstraction mappings, 
preserve a strict correspondence between an abstract di­
agnosis and the set of detailed diagnoses consistent with 
i t . However, their work deals with models which repre­
sent only normal behavior of the system, which results 
in a significant simplification of the synthesis of behav­
ioral modes definitions for the abstract components. In 
particular, the parti t ion of the instantiations of the sub­
components is always reduced to two indiscriminability 
classes: a singleton OK-class (containing the unique in­
stance where all subcomponents are OK) and an AB-
class (containing all the remaining instances, where at 
least one subcomponent is AB). Since there's no fault 
model, the only instance which predicts values for the 
observables is the one in the OK-class; instances in the 
AB-class do not predict anything about observable val­
ues, stnd thus can be safely put in the same indiscrim­
inability class without computing any transitive closure. 

Among the methods based on manual abstraction, 
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[Friedrich, 1993] proposes a notion of diagnosis (theory 
diagnoses) which exploits ab-clauses explicitly added to 
the domain theory in order to compute abstract diag­
noses. Similarly, in [Console and Theseider Dupre, 1994] 
the model is augmented with abstraction axioms which 
model is-a relationships; in such model also observables 
can be expressed at different levels of abstraction. In 
both works the level of abstraction of diagnoses is flexi­
ble (i.e. a diagnosis can mix elements at different levels of 
abstraction) and is driven by the specific diagnostic cause 
at hand (i.e. values of the observables and contexts). 
Our abstraction algorithm automatically synthesizes a 
single abstract level given the knowledge of which vari­
ables are observable at which granularity; we assume 
that the changes in the availability of observables are 
rare, so that the produced models are reused for many 
diagnostic cases. Moreover, the kinds of relationships 
that we allow among abstract component behavior and 
its subcomponents behavior are less restrictive than ab-
clauses and is-a relationships. 

The definition of admissible components abstractions 
given in this paper aims at building abstract models that 
can completely replace the detailed models without any 
loss of discriminability. This is different from the goal 
of [Mozetic, 1991] and its improvements, where the ab­
stract model is viewed as a focusing mechanism, and is 
used in conjunction with the detailed model in order to 
improve efficiency. Our notion of indiscriminability en­
forces abstractions where a diagnosis Da at the abstract 
level corresponds exactly to the set of detailed diagnoses 
whose abstraction is Da (property 3.2). As shown by 
[Autio and Reiter, 1998] this is not the case for some 
common abstractions: in the example of the abstract 
NOR gate consisting of an OR and a NOT gates, the 
ab-dause AB(NOR) = AB(OR) V AD(NOT) does not 
correspond to an indiscriminability class, since the case 
where both OR and NOT are faulty has a different be­
havior than the cases where only one fault is present. 
Our algorithm does not synthesize such ab-clause, thus 
avoiding the consequent loss of diagnostic information. 

Most of the computational effort of our approach is 
devoted to the computation of the indiscriminability 
classes; once they have been identified, the generation of 
behavioral modes definitions from each of them is cheap 
and straightforward. An alternative approach that could 
be worth exploring is constructive inductive learning, 
where techniques have been developed for the automatic 
synthesis of complex attributes (see e.g. [Pagallo and 
Haussler, 1990]). 
Another interesting point to explore would be to study 
more sophisticated versions of the Oracle () function, 
able to recognize a wider variety of patterns in the causal 
graph and possibly to look ahead one or more steps in or­
der to select the candidate pair of components; in order 
to keep the complexity of the search manageable we be­
lieve that such extended versions of OracleQ should be 
supported by additional domain-specific knowledge (for 
instance, whether certain kinds of components are likely 
to be connected in ways that form admissible abstract 

components). 
In conclusion, performing components abstraction led 

to dramatic reductions in the number of returned di­
agnoses in the experimental domain, outperforming the 
application of behavioral modes abstraction alone (see 
section 4). The reduction in the model size also resulted 
in significant time savings for the diagnostic process. 
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