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Abstract 

Information extraction (IE) aims at extracting spe­
cific information from a collection of documents. 
A lot of previous work on 10 from semi-structured 
documents (in XML or HTML) uses learning tech­
niques based on strings. Some recent work con­
verts the document to a ranked tree and uses tree 
automaton induction. This paper introduces an al­
gorithm that uses unranked trees to induce an auto­
maton. Experiments show that this gives the best 
results obtained so far for IE from semi-structured 
documents based on learning. 

1 Introduction 
Information extraction aims at extracting specific information 
from a collection of documents. One can distinguish between 
IE from unstructured and from (semi-) structured texts [Mus-
lea, 1999]. Extracting information from web documents be­
longs to the latter category and gains importance [Levy et al, 
1998]. These documents are not written in natural language, 
but rather involve explicit annotations such as HTML/XML 
tags to convey the structure of the information, making the 
methods tuned towards natural language unusable. 

While special query languages exist [Bry and Schaffert, 
2002; XQL, 2002], their use is time consuming and re­
quires nontrivial skill. As argued in [Muslea et al, 2001; 
Kushmerick, 2000], there is a need for systems that learn to 
extract information from a few annotated examples {wrap­
per induction). Several machine learning techniques for in­
ducing wrappers have been proposed. Examples are multi-
strategy approaches [Freitag, 2000] and various grammatical 
inference techniques that induce a kind of delimiter-based 
patterns [Muslea et al, 2001; Freitag and McCallum, 1999; 
Freitag and Kushmerick, 2000; Soderland, 1999; Freitag, 
1997; Hsu and Dung, 1998; Chidlovskii et a/., 2000]. All 
these methods treat the document as a string of characters. 

Structured documents such as HTML and XML docu­
ments, however, have an explicit tree structure. In [Kosala 
et al, 2002b; 2002a], it is argued that one can better exploit 
this tree structure and use tree automata [Comon et al, 1999]. 
The document tree is converted in a ranked binary tree and k-
testable tree automata [Rico-Juan et al., 2000] are induced 
and then used for the extraction task. Typically in a IE task 

from structured documents, there is some structural context 
close to the target. After linearisation in a string, this context 
can be arbitrarily far away, making the learning task very dif­
ficult for string based methods. While binarisation may also 
increase the distance between the context and the target, they 
remain closer, and the learning task should be easier. This 
is confirmed by the experiments in [Kosala et al, 2002b; 
2002a]. If distance between the relevant context and the 
target is indeed a main factor determining the ability to 
learn an appropriate automaton, then an algorithm inducing 
a wrapper directly from the unranked tree should perform 
even better. This path is pursued in the current paper. As 
in [Kosala et al. , 2002b; 2002a] user intervention is lim­
ited to annotating the field to be extracted in a few rep­
resentative examples. String based methods require sub­
stantially more user intervention, such as splitting the doc­
ument into small fragments, and selecting some of them 
for use as a training example, e.g. [Soderland, 1999]; the 
manual specification of the length of a window for the pre­
fix, suffix and target fragments [Freitag and McCallum, 1999; 
Freitag and Kushmerick, 2000], and of the special tokens or 
landmarks such as ''>" or'' [Freitag and Kushmerick, 2000; 
Muslea et al., 2001]. 

The rest of the paper is organized as follows. Section 2 
provides some background on unranked tree automata and 
their use for IE. Section 3 describes our methodology and 
introduces our unranked tree inference algorithm. Results are 
described in Section 4, related work in Section 5. Section 6 
concludes. 

2 Preliminaries 
Grammatical inference and information extraction. 
Grammatical inference (also called automata induction, 
grammar induction, or automatic language acquisition) refers 
to the process of learning rules from a set of labeled ex­
amples. The target domain is a formal language (a set of 
strings over some alphabet and the hypothesis space is 
a family of grammars. The inference process aims at find­
ing a minimum automaton (the canonical automaton) that is 
compatible with the examples. There is a large body of work 
on grammar induction, for a survey see e.g. [Murphy, 1996; 
Parekh and Honavar, 1998]. 

In grammar induction, we have a finite alphabet and a 
formal language . Given a set of examples in 
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and a (possibly empty) set of examples not in , the 
task is to infer a deterministic finite automaton (DFA) that ac­
cepts the examples in and rejects those in . In [Freitag, 
1997], an IE task is mapped into a grammar induction task. 
A document is converted into a sequence of tokens (from 
Examples are transformed by replacing the token to be ex­
tracted by the special token x. Then a DFA is inferred that 
accepts all the transformed examples. In our case, a docu­
ment is converted into a tree and the token to be extracted (at 
a leaf) is replaced by the special token x. Then a tree auto­
maton is inferred that accepts all the transformed examples. 
When using the learned automaton, a similar transformation 
is done. Each token that is a candidate for extraction is in 
turn replaced by x. The token replaced by x is extracted iff 
the transformed document is accepted by the automaton. 

Unranked tree automata. Some existing algorithms for 
string automaton induction have been upgraded to ranked tree 
automaton induction (e.g. [Rico-Juan et al, 2000; Abe and 
Mamitsuka, 1997])1. By converting documents (which are 
unranked) into binary trees (which are ranked), tree auto­
maton induction can be used for IE as shown in [Kosala et 
al, 2002b]. The present work avoids binarisation and uses 
unranked trees. Unranked tree automata have been studied 
since the late 60's, see e.g. [Bruggemann-Klein et al, 2001] 
for a survey. To our knowledge, algorithms for inducing them 
do not yet exist. This paper is a first step in this direction. 

An unranked label is a label with a variable rank (arity). 
Thus the number of children is not fixed by the label. Given 
a set V of labels in an unranked alphabet, we can define , 
the set of all (unranked) trees, as follows: 

• a is a tree where 
• a(u1,..., un) is a tree, where and each is a 

tree. 
An unranked tree automaton (UTA) is a quadruple 

, where V is a set of unranked labels, Q is a 
finite set of states, is a set of final (accepting) states, 
and is a set of transitions where each transition is of the 
form and e is a regular 
expression over Q. 

A bottom up UTA processes trees bottom up. When a leaf 
node is labeled v and there is a transition such that 
e matches the empty string, then the node is assigned state 
q. When an internal node is labeled v, its children have been 
assigned states qi,..., qn, and there is a transition 
such that the string matches the regular expression 
e, then the node is assigned state q. A tree is accepted if the 
state of its root is assigned an accepting state 

3 Approach and algorithm 
Preprocessing. Fig. 1 shows a representative task. For 
dealing with text nodes, we follow the approach described 
in [Kosala et al., 2002b]: we replace most text nodes by 
CDATA2, making an exception for so-called distinguishing 
context, specific text that is useful for the identification of the 

field of interest. E.g., the text "Organization:" may be relev­
ant for the extraction, hence this text should not be changed 
into CDATA. In each data set, at most one text field is identi­
fied as distinguishing context. It is found automatically using 
the approach described in [Kosala et al., 2002b]. 

Figure 1: The fields to be extracted are the fields following 
the A l t . N a m e and O r g a n i z a t i o n fields. A document 
consists of a variable number of records. The number of oc­
currences of the fields to be extracted is variable (from zero 
to many). Also the position is not fixed. 

'Ranked: the label determines the number of children. 
2 See Fig. 2 for an example. 

Figure 2: The left figure is an HTML tree. The right one is 
the same tree after abstracting the text nodes 

Approach. Our approach for information extraction has the 
following characteristics: 

• Strings stored at the text nodes are treated as single la­
bels. If extracted, the whole string is returned. 

• One automaton is learned for one type of field to be ex­
tracted, e.g., the field following "Organization". 

• In examples used during learning, one target field (a text 
node) is replaced by x. A document gives rise to several 
examples when several targets occur. 

The learning phase proceeds as follows: 
• Replace in the examples the target by "a:", the distin­

guishing context(s) ( i f present) by and all other 
text fields by CDATA. 

• Map examples to trees and learn a tree automaton. 
The extraction phase repeats for all candidate targets: 

• Map the document to a tree and replace the candidate 
target by u z " , the distinguishing context(s) (if present) 
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by "ctx" and all other text fields by CDATA. 
• Run the tree automaton; if the tree is accepted, then out­

put the original text of the node labeled with x. 

3.1 Local unranked tree automaton inference 
a lgor i thm 

Preliminaries. A partition of a set 5 is a set of dis­
joint nonempty subsets of S such that the union of 
the subsets is S. The height of a tree is defined 
a s : 1 + 

then 
the ti are called subtrees o f t , and subtrees of ti are also sub­
trees of t. When a tree t is "cut off" at level k, this means all 
subtrees at level k become leaves. Thus the height of the cut-
off tree can be at most k. Given a tree t, the set of roots 
is the singleton containing t cut off at A;; the set of forks 
contains all subtrees of t of height at least k, cut off at k\ and 
the set ofsubtrees contains all subtrees oft of height at 
most k. Roughly, these sets respectively collect all subtrees 
of height k at the top, in the middle, and at the bottom o f t . 
See [Rico-Juan et al., 2000] for a formal definition. 

The algorithm. We have designed a procedure, which is 
shown in Algorithm 1, to learn an unranked tree automaton 
from a set T of positive examples. The inferred automaton is 
"local" in the sense that it identifies a tree with its 2-forks as 
defined above. Note that DTDs for XML do the same [Murata 
et al,, 2001], In addition to the input T, it takes as additional 
parameter a positive integer which is the parameter 
for the k.contextual subroutine that it calls. 

In a first for-loop, our algorithm collects all 2-forks, 1-
subtreesand 1-roots. The latter become final states. However, 

before these steps, the node labels of each input tree t are re­
written using the function convert Jabels(t). This function 
(Algorithm 2) rewrites node labels. The label v of the root of 
a subtree is changed into vx if that subtree contains a " x " and 
into vctx i f that subtree contains a "ctx". The effect is that the 
special labels are remembered up to the root3. 

Next, the states are collected (the 1-root, the 1-subtrees, 
and the 1-roots of the forks) in Q, the transitions are initial­
ized with one transition for each 1-subtree and the 2-forks 
are partitioned according to the label of the forks' root. The 
latter results in a set of pairs (v, Str) with Str a set of se­
quences, each sequence being the children of a fork. E.g., 
{a, {(b,c), (b,c, c)}} represents two forks with root label a. 

In the second for-loop, the k.contextual algorithm (Al­
gorithm 3) [Muggleton, 1990; Ahonen, 1996] is used to learn 
a deterministic finite automaton (DFA) that can be used as the 
representation of the regular expressions e to be used in the 
transitions v(e) -> q of the UTA. As an illustration, consider 
an input string ab for k = 3. The value of ind 
one obtains -¥ 

, where # is a distinguished label that is not 
in . It is capable of identifying in the limit any k-contextual 
string automaton, a subset of the finite automata, from posit­
ive examples only. In principle, we could use any string auto­
maton inference algorithm for this purpose (see e.g. [Murphy, 
1996; Parekh and Honavar, 1998] for others). We choose 
the k.contextual algorithm because it is efficient, simple, and 
works well in practice. 

As a result, the tree automaton is not purely local. 
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4 Experimental results 
We evaluated our method on two semi-structured data 
sets commonly used in IE research (available online from 
http://www.isi. edu/-muslea/RISE/): a collection of web pages 
containing people's contact addresses (the Internet Address 
Finder (IAF) database) and a collection of web pages about 
stock quotes (the Quote Server (QS) database). For each 
dataset, there are two tasks; they are the extraction of al­
ternative and organization fields in the IAF dataset and of 
the date and volume fields in the QS dataset. Each data-
set consists of 10 documents. The number of fields to be 
extracted is respectively 94 (IAF-organization), 12 (IAF-
alt.name), 24 (QS-date), and 25 (QS-vol). We choose these 
datasets because they are benchmark datasets that are com­
monly used for research in IE; hence they allow us to com­
pare results. In order to provide a close comparison, we 
use the same train and test splits as in [Freitag and Kush-
merick, 2000]. In addition, they require the extraction of a 
whole leaf node (our algorithms are designed for that task). 

Moreover, the results obtained so far [Muslea et al., 1999; 
Hsu and Chang, 1999] indicate that they are difficult tasks. In 
fact one of the authors in [Muslea et al., 1999] has tried to 
build a hand-crafted extractor given all available documents 
from the QS dataset and achieved only 88% accuracy (or re­
call in our criteria below). We also test our method on a signi­
ficantly reduced Shakespeare X M L dataset (available online 
from http://www.ibiblio.org/bosak/). We use the same train­
ing and test set as in [Kosala et al., 2002b]. The task on this 
dataset is to extract the second scene from one act in a partic­
ular play. 

We apply the commonly used criteria of IE research for 
evaluating our method. Precision P is the number of cor­
rectly extracted objects divided by the total number of extrac­
tions, while recall R is the number of correct extractions di­
vided by the total number of objects present in the answer 
template. The Fl score is defined as 2PR/(P + R), the 
harmonic mean of P and R. Table 1 shows the results we 
obtained as well as those obtained by some current state-of-
the-art string-based methods: an algorithm based on Hidden 
Markov Models (HMMs) [Freitag and McCallum, 1999], the 
Stalker wrapper induction algorithm [Muslea et al., 2001 ] and 
BWI [Freitag and Kushmcrick, 2000]. We also include the 
results of the k-testable algorithm in [Kosala et al., 2002b] 
which works on ranked trees. The results of 11MM, Stalker 
and BWI are taken from [Freitag and Kushmerick, 2000]. Al l 
tests are performed with 10-fold cross validation following 
the splits used in [Freitag and Kushmerick, 2000], except in 
the small Shakespeare dataset which uses 2-fold cross valida­
tion. Each split has 5 documents for training and 5 for testing. 
We refer to Section 5 for a description of these methods. 

Table 1 shows the best results of the unranked method with 
a certain kc (cross-validation on one fold of 50% random 
training and test examples.) As can be seen, our method is 
the only one giving optimal results. 

Table 2 shows the value of k and kc used respectively 
by the k-testable and the unranked algorithm. It is well-
known that when learning from positive examples only, there 
is a problem of over-generalization. Our algorithm re­
quires a cross-validation on the value of to avoid over-
generalization. 

Algorithm 1 runs in time , where n is the total num­
ber of nodes in the training examples and c is a constant. It 
takes an average time between 19 and 26 ms in a 1.7 Ghz 
Pentium 4 PC for Algorithm 1 to learn an example in the IAF 
and QS datasets. 

5 Related work 
The IE work for (semi-) structured texts can be divided into 
systems built manually using a knowledge engineering ap­
proach, e.g. [Hammer et al., 1997] and systems built (semi-) 
automatically using machine learning techniques or other al­
gorithms. The latter are called wrapper induction methods. 
We briefly survey them. 

The three systems referred to in Table 1 learn wrappers 
based on regular expressions. BWI [Freitag and Kushmerick, 
2000] uses a boosting approach in which the weak learner 
learns a simple regular expression with high precision but low 
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An element (v, Str) of the partition gives all positive ex­
amples for a particular label v. The regular expression e cap­
tures the regularity in these examples (the document content 
model in XML terminology). To obtain sufficient generaliz­
ation, we decided, after some experimentation, to distinguish 
three cases. If all children of a vx node are long enough, 
we construct a DFA using the k-contextual algorithm with 
k-value kc, otherwise with value 2. For other labels (either 
a Vetx label or an original label), we ignore the content of 
the children and accept any sequence (the regular expression 

Using a result of [Muggleton, 1990], it is quite straight-
forward to make an incremental version of Algorithm 1. We 
omit it here due to lack of space. Using a basic result of 
[Angluin, 1980], we can prove: 
Theorem 1 Every unranked tree language that is definable 
by a local unranked tree automaton with k-contextual regular 
expressions is identifiable in the limit, from positive examples 
only, by our algorithm. 

http://www.isi


recall. The HMM approach [Freitag and McCallum, 1999] 
learns a hidden Markov model; it solves the problem of es­
timating probabilities from sparse data by using a statistical 
technique called shrinkage. This model has been shown to 
achieve state-of-the-art performance on a range of IE tasks. 
Stalker [Muslea et al, 2001] induces extraction rules that 
are expressed as simple landmark grammars, a class of fi­
nite automata; it performs hierarchical extraction guided by a 
manually built embedded catalog tree that describes the struc­
ture of the fields to be extracted. 

Several techniques based on naive-Bayes, two regular lan­
guage inference algorithms, and their combinations for IE 
from unstructured texts are described in [Freitag, 1997]. 
WHISK fSoderland, 1999] learns extraction rules based on 
a form of regular expression patterns with a top-down rule in­
duction technique. [Chidlovskii et ai, 2000] describe an in­
cremental grammar induction approach; they use a subclass 
of deterministic finite automata that do not contain cyclic pat­
terns. The SoftMcaly system [Hsu and Dung, 1998] learns 
separators that identify the boundaries of the fields of interest. 
iHsu and Chang, 1999] propose two classes of SoftMealy ex­
tractors: single pass, which is biased for tabular documents 
such as QS data (they reach up to 97% recall), and multi 
pass, which is biased for tagged-list document such as IAF 
data (they reach up to 57% recall). We cannot really compare 
results because the experimental setting is different. 

All above methods use algorithms for learning string lan­
guages and require some manual intervention. HMMs and 
BWI require to specify a window length for the prefix, suffix 
and the target fragments. Stalker and BWI require to spe­
cify special tokens or landmarks such as or ";". Soft­
Mcaly extractors in [Hsu and Chang, 1999] requires to choose 
between single and multi pass bias. 

In [Kosala et al, 2002b], the document is converted in a 
ranked (binary) tree and an algorithm is used that induces a 
k-testable tree automaton. However, as binarisation increases 
the distance between target and distinguishing context, large 
k are needed and the resulting automaton is precise but does 
not generalize enough (Table 1). In [Kosala et al, 2002a], 
the same authors generalize the obtained automaton by se­
lectively introducing wild-card labels. This gives some mod­
est improvement in recall but does not solve the problem. Our 
unranked tree automaton induction algorithm does. 

The most apparent limitation of our method is that it can 
only output a whole text node. To overcome this, it could be 
extended with a second step where string based methods are 
used to extract part of the text node. For example, to extract 
the substring "the web" from the whole string "Data on the 
web" (Fig. 2). Another limitation is that our method only 
output a single field (slot) in one run. 

Finally, a disadvantage that is not apparent from the res­
ults reported above, is that when the identification of target 
fields does not require dependencies between nodes in the tree 
but can rely on a local pattern (e.g., the field to be extracted 
is always surrounded by specific delimiters), our tree based 
method needs more examples to learn the same extraction 
rule as methods that automatically focus on local patterns. In­
tuitively, more variations in further-away nodes need to be ob­
served before these variations are considered irrelevant. This 
is simply an instance of the well-known trade-offbetween the 
generality of a hypothesis space and the efficiency with which 
the correct hypothesis can be extracted from it. 

Some other approaches that exploit the structure of the doc­
uments are: WL2 [Cohen et al, 2002], a logic-based wrapper 
learner that uses multiple (string, tree, visual, and geometric) 
representations of the HTML documents. In fact, WL2 is able 
to extract all four tasks in the IAF and QS datasets with 100% 
recall; and wrappers [Sakamoto et al, 2002] that identify a 
field with a path from root to leaf, imposing conditions on 
each node in the path. 

6 Conclusion 
We have presented an algorithm for the inference of a local 
unranked tree automaton with k-contextual regular expres­
sions and have shown that it can be used for IE from struc­
tured documents. Our results confirm the claim of [Kosala et 
al, 2002b] that utilizing the tree structure of the documents is 
worthwhile for structured IE tasks. Whereas the latter work 
transforms the positive examples into binary ranked trees, we 
use them directly as unranked trees. Our results are optimal 
for the previously considered benchmarks, substantially im­
proving upon the published results of other string and tree 
based methods and are a strong indication that unranked tree 
automata are much better suited than ranked ones for struc­
tured IE tasks. 

INFORMATION EXTRACTION 407 



Possible future work includes experiments with larger and 
more diff icult datasets, adapting tree automata for mult i slot 
extraction in one run, and a more formal analysis of the al­
gorithm. 
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