
Inverse Circumscription

Hubie Chen
Department of Computer Science

Cornell University
Ithaca, NY 14853, USA
hubes@cs.cornell.edu

Abstract

Inverse (or identification) problems involve decid­
ing whether or not an explicitly given set of data
points have an implicit description, for instance,
in the form of a constraint network. Such prob­
lems provide insight into the relationships among
various representations of knowledge, which may
have differing computational properties. This pa­
per formalizes and studies the inverse circumscrip­
tion problem, which (roughly speaking) is to de­
cide, given a set of models, if there exists a formula
whose circumscription describes the input set.

1 Introduction
The relationship between implicit and explicit descriptions
of information is a central theme in knowledge representa­
tion and reasoning. For example, the core reasoning task of
propositional satisfiability is to decide, given a propositional
formula, whether or not the explicit set of models described
implicitly by the formula is non-empty.

Recently, Kavvadias and Sideri [1998] studied a comple­
mentary task, which they called inverse satisfiability, given
a set of models, is there a propositional formula with exactly
the given set as its satisfying assignments? Without any re­
strictions on the class of formulas considered, the question is
trivial, since for a given set of models M, it is always possible
to create a formula in disjunctive normal form (DNF) captur­
ing exactly M. Kavvadias and Sideri consider this question
with respect to the class of formulas expressible by a pre-
specified constraint language - a set of relations which can
be used to express constraints. Their intriguing main result
is that the complexity of the inverse satisfiability problem re­
flects exactly that of the classical satisfiability problem: for a
fixed constraint language, inverse satisfiability is intractable if
and only if satisfiability is intractable! For instance, INVERSE
3-SAT is intractable, as 3-SAT is intractable; but, INVERSE
2-SAT is tractable, as 2-SAT is tractable.

The inverse satisfiability problem is akin to the identifica-
tion problems studied by Dechter and Pearl [1992], which
involve deciding whether or not explicitly given relational
data in the form of tuples has an implicit description as a
constraint network with particular features. Studying such

inverse or identification problems is valuable for a vari­
ety of reasons, as articulated in [Dechter and Pearl, 1992;
Kavvadias and Sideri, 1998]. First, certain restricted forms
of propositional formulas, such as Horn formulas, facilitate
efficient reasoning. Hence, the ability to decide when an ex­
plicitly given set of models can be represented in such a re­
stricted form, is desirable. Second, model-based represen­
tations of information have been proposed as a viable alter­
native to formula-based representations [Kautz et a/., 1995;
Khardon and Roth, 1996]; inverse problems address the rel­
ative expressibility of these two types of representations.
Third, discovering structure in empirical data is a crucial
component of scientific activity, and so understanding when
structure discovery is computationally feasible sheds light on
the nature of such activity.

In this paper, we further investigate the relationship be­
tween implicit and explicit descriptions of data by consid­
ering the complexity of inverse circumscription, an analog
of the inverse satisfiability problem for circumscription. Cir­
cumscription is a well-studied non-monotonic reasoning for­
malism intended to embody common sense, and provides an
alternative semantics for propositional formulas [McCarthy,
1980]. Intuitively, the models of the circumscription of a for­
mula are those models of the original formula which make as
few "assumptions" as necessary. The inverse circumscription
problem addresses the expressiveness of circumscription: this
problem involves deciding, roughly speaking, if a set of mod­
els can be described by a circumscribed formula (over some
constraint language). Studying the complexity of this prob­
lem is natural not only for the aforementioned reasons, but
also because circumscribed formulas are more space-efficient
than uncircumscribed formulas: knowledge can be repre­
sented more succinctly with the former than with the latter,
in a sense made precise in [Cadoli et a/., 1997].

There are at least two generalizations of the inverse satis­
fiability problem to the context of circumscription. One gen­
eralization is the problem of deciding, given a set of models,
whether or not there exists a circumscribed formula (over a
specified constraint language) with exactly the input set as its
models. A second generalization is the problem of deciding,
given a set of models, whether or not there exists a formula
such that all models of the input set are models of the circum­
scribed formula - in other words, the problem is to decide the
existence of an approximating formula whose circumscribed

KNOWLEDGE REPRESENTATION 449

models covers the input set of models. We note that the tight­
ness of the approximating formula is not what is at stake. In
our formulation of this problem, it is possible to efficiently
compute a candidate formula such that if there is any for­
mula covering the input set of models, then also covers
the input set and has fewer models than , (that is, the model
set of is a subset of the model set of

As we will show, the complexity of the first generaliza­
tion, for almost all constraint languages, can be characterized
fairly easily using previous results. Consequently, the focus
of this paper is on the complexity of the second generaliza­
tion, which we call the inverse circumscription problem. Our
main result is a dichotomy theorem in the complexity of in­
verse circumscription, which states that for all constraint lan­
guages, inverse circumscription is either in P, or is co-NP-
complete.

Complexity dichotomy theorems arc important because
they demonstrate a full understanding of the complexity of
a problem, with respect to a particular form of problem re­
striction (in our case, a restriction on the constraint language).
The first dichotomy theorem was obtained by Schaefer, who
showed that the propositional satisfiability problem over a
fixed constraint language is either in P, or is NP-complcte.
The non-trivial tractable cases of satisfiability given by this
result are 2-SAT, HORN SAT, and XOR-SAT (where each
constraint is a linear equation in the field with two elements).
Since Schaefcr's result, many other dichotomy theorems have
been established [Creignou et al, 2001 J.

Kirousis and Kolaitis [2001a] very recently established a
dichotomy theorem in the complexity of model checking for
circumscription. The model checking problem is to decide,
given an assignment and a formula, whether or not the assign­
ment is a model of the circumscribed formula. Their theorem
states that, for any constraint language, the model checking
problem is either in P or is co-NP-complete. Interestingly,
we show that (for any constraint language) the complexity
of inverse circumscription is exactly the complexity of this
model checking problem, giving a correspondence analogous
to that between the complexity of inverse satisfiability and
the complexity of satisfiability. In fact, to establish hardness
of inverse circumscription, we will reduce from the model
checking problem.

2 Preliminaries
In this section, we present the definitions and notation that
will be used throughout the paper. We first introduce the no­
tation of a constraint; constraints will be the building blocks
of the propositional formulas we consider.

Definition 2.1/4 subset of (for some is called
a logical relation, and is said to have arity k.

A constraint over variable set V is a logical relation R
paired with a list of v a r i a b l e s w h e r e k is the
arity of R, and is written

A constraint with constants over variable set V is a logical
relation R and a list of variables or constants y\,..., y^ €

where k is the arity of R, and is written

We next introduce the notion of a 5-formula, which is a
propositional formula built using the relations of a constraint
language S as "templates."

Definition 2.2 A constraint language S is a finite set of log­
ical relations (which may contain relations of different ar-
ities).' The maximum arity of S is the maximum over the
arities of the relations in S.

An 5-formula over variable set V is a set of constraints
(over V) where the logical relation of each constraint is in 5.

An 5-formula with constants over variable set V is a set of
constraints with constants (over V) where the logical relation
of each constraint is in S.

We move on to describe the set of models associated with
a formula. Intuitively, a model of a formula is an assignment
to the variable set which obeys all constraints.

Definition 2.3 Let be an S-formula (possibly with con­
stants) over variable set V.

An assignment to is a function When W
is a subset of V, f \w denotes the restriction off to W; and,

denotes the extension of f where
. , , for all

The assignment f satisfies a constraint . . . , x^) of
if the tuple is in R.

The assignment f satisfies //" it satisfies all constraints
in in this case, it is said to be a satisfying assignment or
model of*

Define Models to be the set containing all models of

For a fixed 5, the problem of deciding whether or not an in­
put 5-formula has a satisfying assignment is in NP, since in
non-deterministic polynomial time, a satisfying assignment
can be guessed and verified. The following example demon­
strates that there is an S for which this satisfiability problem
is equivalent to that for 3-SAT, and hence NP-complete.

3-SATformula can be efficiently converted into a S3-formula
with exactly the same set of satisfying assignments, and vice-
versa. For example, the 3-SAT formula

is equivalent to the

We generalize the definition of S3 in Example 2.4 as fol­
lows.

Definition 2.5 Let be the set of relations
where and

is the tuple with 1 in the first i coordinates, and
0 in the remaining k - i coordinates.

Throughout this paper, we assume that all logical relations and
constraint languages are non-empty.

450 KNOWLEDGE REPRESENTATION

Having defined the notion of a model of a formula, we now
define what it means for a model to be minimal . The circum­
scription of a formula is considered to have, as its models, the
minimal models of the original formula [McCarthy, 19801.
We consider minimal i ty wi th respect to a subset P of the vari­
able set: a model is minimal if there is no model "be low" it
in a comparison based on the variables in P.

Def in i t ion 2.6 Let be an S-formula (possibly with con-
stants) over variable set V, and let P be a subset of V. Let <
denote the standard total ordering o n w h e r e 0 < 1.

Suppose that a n d , a r e both
assignments over the same variable set V. We write a —p B
if for all . We write if for all

W e w r i t e a n d i t i s
not the ease that We write if neither
nor holds. When the set P is equal to V (the entire
domain of we sometimes omit it when writing the
above relations.

We say that is a minimal satisfying assignment (or min­
imal model) of with respect to P if is a model of : and,
for all m o d e l s i m p l i e s

Define MinModels to be the set containing all mini­
mal models of with respect to P.

We now introduce some terminology that can be used to
describe constraint languages; this terminology w i l l prove
to be quite wieldy in describing many of the complexity d i ­
chotomy theorems presented in the next section. As usual, we
define a CNF-SAT formula over variable set V to be a con­
junct ion of clauses, where each clause is the disjunction of
literals from V. (A literal f rom variable set V is either a vari­
able u V itself, or the negation of a variable Literals of
the former type are called positive, whereas those of the latter
type are called negative.) An assignment / : V —> { 0 , 1 }
satisfies a CNF-SAT formula if every clause of contains
a literal evaluating to true under /.

Def in i t ion 2.7 A Injunctive formula is a CNF-SAT formula
where each clause contains exactly two literals.

A (dual) Horn formula is a CNF-SAT formula where each
clause contains at most one positive (negative) literal.

An affine formula is a conjunction of equations of the form
where the xi are variables and { 0 , 1 }

is a constant. (The symbol < denotes the logical "exclusive
or/')

Def in i t ion 2.8 Let R, be a logical relation of arity n, and S
be a constraint language.

The relation R is 0-valid if it contains the all-zeroes tuple
(0 , . . . , 0) of arity n, and is 1-valid if it contains the all-ones
tuple (1 , . . . , 1) ofarity n.

The relation R is bijunctive (Horn, dual Horn, affine) if
there exists a bijunctive (respectively Horn, dual Horn, affine)
formula o v e r w i t h the same set o f satisfying as­
signments as the -formula

The constraint language S is 0-valid (l-valid, bijunctive,
Horn, dual Horn, affine) if every relation contained in S is
0-valid (respectively l-valid, bijunctive, Horn, dual Horn,
affine).

The constraint language S is Schaefer if at least one of the
following four conditions hold: S is bijunctive, S is Horn, S

is dual Horn, S is affine. The constraint language S is non-
Schaefer if it is not Schaefer.

3 Related Work

This section reviews relevant work done previously; through­
out, S is used to denote a constraint language. We first men­
tion the seminal work of Schaefer, who proved a complex­
ity dichotomy theorem on the satisfiability problem for S-
formulas.

Def in i t ion 3.1 The S A T (S) decision problem.
Input: An S-formula
Question: Is satisjiable?
The SATQ(S) decision problem is identical, except the in­

put S-formula can have constants.

In other words, the S A T (S) problem is to decide, for a
given S-formula , if the set Models is non-empty. Re­
markably, Schaefer proved that for any constraint language
S, S A T (S) is either in P or is NP-complete; in addition, he
gave a precise description of which constraint languages yield
a tractable satisfiability problem, and which do not.

Theorem 3.2 [Schaefer, 1978] Let S be a constraint lan­
guage.

If S is 0-valid, l-valid, or Schaefer, then S A T (S) is in P;
otherwise, S A T (5) is NP-complete.

If S is Schaefer, then is in P; otherwise, SAT C (S)
is NP-complete.

Kavvadias and Sideri [1998] studied the "inverse satisfia­
bi l i ty problem" (denoted here by I N V E R S E S A T C (S)) . In the
"standard" satisfiability problem the goal is to decide, given a
formula, whether or not there exists a satisfying assignment.
In the "inverse" problem, the given input is a set of assign­
ments, and the goal is to determine whether or not there ex­
ists a formula wi th exactly the given assignments as its set of
satisfying assignments.

Def in i t ion 3.3 The INVERSE SATc(S) decision problem.
Input: Set A of assignments over the same variable set V.
Question: Is there an S'formula with constants such that

A = Models

A dichotomy theorem was established by Kavvadias and
Sideri, which shows that the inverse satisfiability problem is
always in P, or is CO-NP-complete. Intr iguingly, the com­
plexity of the inverse problem reflects exactly the complexity
of the satisfiability problem: is intractable if and
only i f I N V E R S E S A T C (S) i s intractable!

Theorem 3.4 [Kavvadias and Sideri, 1998] Let S be a con­
straint language.

If S is Schaefer, then INVERSE SATc(S) is in P; other­
wise, I N V E R S E is co-NP-complete.

We now formalize the model checking problem for cir­
cumscription, which was called "min imal satisfiability" in
[Kirousis and Kolait is, 2001a].

Def in i t ion 3.5 The M l N S A T (S) decision problem.
Input: An S-formula over variable set V, an assignment

satisfying and a subset P ofV.

KNOWLEDGE REPRESENTATION 451

Question: Is the assignment a minimal model of with
respect to P?

The MlN SATc(S) decision problem is identical, except
the input S-formula can have constants.

The MlN S A T (S) problem is in CO-NP, as deciding
whether or not a is a minimal model of a formula amounts
to verifying - for all assignments - that if is a model,
then is not strictly below in the ordering Cadoli
[1992] showed that this problem is CO-NP-complete in gen­
eral, and also identified some tractable cases. More recently,
the following full dichotomy theorem was proved concerning
the complexity of MlN S A T (5) .

Theorem 3.6 [Kirousis and Kolaitis, 2001a, Theorem 4.2]2

Let 5 be a constraint language.
If S is Schaefer, then MlN S A T C (5) is in P; otherwise,

MlN SATc(5) is CO-NP-complete.
If S is 0-valid or Schaefer, then MlN S A T (S) is in P; oth­

erwise, MlN S A T (S) is CO-NP-complete.

4 The Inverse Circumscription Problem
The inverse satisfiability problem (defined formally in the
previous section) is to decide, given a set of assignments,
whether or not there is a formula with precisely the given
input set as its models. The inverse circumscription problem,
denoted by INVERSE MlN S A T (5) , is similar in that the input
is also a set of assignments and the task is to decide whether
or not there is a formula describing the input set. However, in
the inverse circumscription problem, the question is whether
there exists a formula such that all of the given assignments
are minimal models of .

Definition 4.1 The INVERSE MlN S A T (S) decision prob­
lem.

Input: Set A of assignments over the same variable set V,
and a subset P of V.

Question: Is there an S-formula (f) such that A
MinModels

The INVERSE MlN SATC{S) decision problem is identi­
cal, except the question is to decide if there is an S-formula
with constants satisfying the stated condition.

As mentioned in the introduction, there is a natural variant
of the INVERSE M I N S A T C (5) problem which has an iden­
tical description, except the symbol is replaced with an
= symbol in the "question." Let us denote this variant by
INVERSE E X A C T M I N S A T C (5) . We have the following re­
sults concerning this question.

Theorem 4.2 Let S be a constraint language.
If S is bijunctive or Horn, then

INVERSE E X A C T M I N S A T C (5) is in P.

2Wc note that the notation of [Kirousis and Kolaitis, 2001a]
is different from ours. In particular, their decision problem
M I N SAT(S) involves checking, given an assignment and formula,
if the assignment is minimal with respect to all variables. It is eas­
ily verified that our definition of MlN S ATc (5) is equivalent to their
(P; Q; Z) - MlN S AT(5) , and that our definition of MlN S AT(5) is
equivalent to their - MlN SAT(5) . The theorem is stated
here with respect to our notation.

IfS is non-Schaefer, then INVERSE EXACT MlN SATC(5)
is CO-NP-complete.

For non-Schaefer constraint languages 5, hardness of
INVERSE E X A C T can be shown by first es­
tablishing the hardness of INVERSE E X A C T M I N S A T C (5 3)
by reduction from INVERSE , and then re­
ducing from INVERSE E X A C T M I N S A T C (5 3) to
INVERSE E X A C T M I N , using a technique in
[Kavvadias and Sideri, 1998]. For Schaefer constraint
languages 5, the existence of an output polynomial time
algorithm for computing minimal models of a 5-formula
implies the tractability of INVERSE E X A C T M I N S A T C (5) ;
see iKavvadias et al. , 2000] for such algorithms in the case
of constraint languages S that are bijunctive or Horn.

For the remainder of this paper, we focus on the
INVERSE M I N S A T (S) decision problem. Given an input set
A of this problem, it is possible to efficiently compute a "can­
didate formula" having the property that if there is any for­
mula containing A in its set of minimal models, then the can­
didate formula is such a formula. That is, the candidate for­
mula serves to witness that "yes" is the answer to the decision
question of Definition 4.1 - so long as some formula does.

Definition 4.3 Suppose that S is a constraint language and
that A is a set of assignments over the same variable set V.
Define the candidate 5-formula for A to be the set containing
all constraints (over V and with relation in S) that are satis­
fied by every assignment in A. Similarly, define the candidate
5-formula for A with constants to be the set containing all
constraints with constants (over V and with relation in S)
that are satisfied by every assignment in A.

Lemma 4.4 Suppose that 5 is a constraint language and
that A is a set of assignments over a variable set V. Let
P be a subset of V, and let be the candidate S-formula
(with constants) for A. There exists an S-formula (with con­
stants) such that MinModels(if and only if
A MinModels

For a fixed constraint language 5, the candidate 5-
formula for a set of assignments A can be computed in
polynomial time (measured with respect to the size of the
representation of A). By the key property of the candidate
formula (Lemma 4.4), it follows that INVERSE M I N S A T (S)
is in CO-NP: an assignment which is not included in
A, satisfies the 5-candidate formula of A, and is strictly
below an assignment in A (with respect to , serves as
a succinct and efficiently checkable proof that A is a "no"
instance of INVERSE M I N S A T (5) . (By similar reasoning,
INVERSE and INVERSE E X A C T M I N S A T C (S)
can be shown to be in CO-NP, as discussed in IKavvadias and
Sideri, 1998].)

Whenever the model checking problem M I N SAT(5) is
in P, the inverse problem INVERSE M I N S A T (5) will be in
P. This is because deciding whether or not an input set A
to the INVERSE M I N S A T (5) problem is a "yes" instance
amounts to verifying that every assignment in A is a min­
imal model of the candidate formula for A\ clearly, this
can be done in polynomial time when MlN S A T (5) is in
P. To prove a full dichotomy theorem on the complexity of

452 KNOWLEDGE REPRESENTATION

INVERSE M I N S A T (S) , it remains to describe the complex­
ity of INVERSE M I N SAT(S') for the constraint languages S
such that M I N S A T (S) is not in P.

5 Dichotomy Theorem
In this section, we describe completely the complexity pro-
tile of the "inverse circumscription problem." In partic­
ular, we show that for those constraint languages S such
that M I N S A T (S) i s co-NP-hard, INVERSE M I N S A T (S)
is also CO-NP-hard (and similarly for M I N SATc(S) and
INVERSE M I N S A T C (S)) .

Our first step is to prove hardness of the
INVERSE M I N S A T (5) problem for 9-SAT formulas,
where the circumscription is performed with respect to all
of the variables. This initial hardness result is then used to
establish the hardness of INVERSE M I N S A T (S) for other
constraint languages S.

Theorem 5.1 The problem INVERSE MlN S A T (5 9) is
CO-NP-hard, even with the restriction that the subset P must
be equal to the entire variable set.

The proof of this theorem is sketched in Appendix A; the
hardness result claimed by the theorem is achieved by re­
duction from the MlN S A T (S) problem. The hardness of
INVERSE M I N S A T (S 9) can then be leveraged to establish
the hardness of INVERSE MlN S A T C (£) , for the remaining
constraint languages S.

Theorem 5.2 Let S be a constraint language. If S is non-
Schaefer, then INVERSE MlN SATC(S) is CO-NP-hard.

Then, constants can be "removed" in such a way that
allows the hardness of INVERSE M I N S A T (S) to be estab­
lished, based on the hardness of INVERSE M I N S A T C (S) .

Theorem 5.3 Let S be a constraint language. If S is neither
0-valid nor Schaefer, then INVERSE MlN S A T (S) is CO-NP-
hard.

Collecting together the theorems of this section as well as
the discussion at the end of Section 4, we have the following
dichotomy theorem.

Theorem 5.4 Let S be a constraint language.
IfS is Schaefer, then INVERSE MlN SATc(S) is in P; oth­

erwise, INVERSE M I N S A T C (S) is co-NP-complete.
If S is 0-valid or Schaefer, then INVERSE MlN S A T (S) is

in P; otherwise, INVERSE MlN SAT(S) is CO-NP-complete.

6 Conclusions and Future Work
In this paper, we formalized and studied inverse circumscrip­
tion. We established a full dichotomy theorem in the com­
plexity of this problem (Theorem 5.4). A fascinating phe­
nomenon is that the complexity of inverse circumscription
reflects exactly the complexity of model checking for circum­
scription (Theorem 3.6). This correspondence in complex­
ity parallels the intimate relationship between the complexity
of inverse satisfiability (Theorem 3.4) and that of satisfiabil­
ity (Theorem 3.2). The resemblance between the results on
circumscription and those on propositional logic seems quite

strong, as the hardness of inverse circumscription is estab­
lished by reduction from model checking for circumscription
- just as the hardness of inverse satisfiability is established by
reduction from satisfiability [Kavvadias and Sideri, 19981.

It would be of great interest to investigate further the re­
lationship between "inverse" problems (mapping an explicit
description to an implicit description) and more classical "for­
ward" problems (mapping an implicit description to an ex­
plicit description). A concrete goal for future work is to
study inverse problems for other non-monotonic reasoning
formalisms.

Acknowledgements. The author wishes to thank Bart Sel-
man for useful discussions and suggestions, and Joe Halpern
for his advice on the preparation of the final version of this
paper.

A P r o o f Ske tch o f T h e o r e m 5.1

Definition A . l Let A be a set of assignments over the vari­
able set V. For , we say that an assignment b : V
{(), 1} is k-compatible with A if for every size k subset W of
V, there exists an assignment a A such that

Lemma A.2 Let S be a constraint language with maximum
arity k, and let A be a set of assignments over the variable set
V. Suppose that is the candidate S-formula for A (with

, If b is r-compatible with A for all r = 1 , . . . , fc, then
b satisfies Moreover, the converse holds if

Definition A.3 Let S be a constraint language. For r 1,
an r-pattern of an S-formula over V is a pair (W, T) such
that —► {0,1} is an assignment
to the variables of W, and for all clauses

if T is defined on the variables R(x1
........,x

k (that is,
, then T satisfies

In other words, an r-pattern for a formula is a subset W
of the variable set of of size r along with an assignment to
W which does not falsify any clause of

Before giving the proof, we introduce the following nota­
tion. A vector x of length k is an ordered list of variables
(x 1 , . . . , Xk). If is a bit vector and f
is a vector of length fc, we let ^ j denote the function map­
ping xt to bi for all , . . . , fc. If and
v : are assignments with disjoint domains (that
is, by we denote the function with do­
main equal to on V\, and equal to v on When
z is a vector of variables and / is an assignment defined on
the variables of we let denote the restriction of / to the
variables of For a positive integer fc, we let denote the
set { 1 , . . .,fc}.
Proof. By [Kirousis and Kolaitis, 2001a, Theorem 3.8], the
version of MlN where the variable set P is promised
to be the entire variable set is CO-NP-complete. To prove
hardness o f I N V E R S E w e give a reduction
from this version of ,. In particular, given a S3-
formula , and an assignment a satisfying , we create a set
of assignments A over a variable set X such that there is an
S9 formula with A MinModels if and only if a is

KNOWLEDGE REPRESENTATION 453

Let (W 1 , T 1) , . . . , (VVm,Trr i) be all of the 9-patterns of 0.
Our set of assignments A will be of size m + 1: it will have
one assignment a1 : X —► {0,1} for each of the 9-patterns
(Wl,Tl), as well as one assignment a : X —> {0,1} encoding
the assignment o : V —> {0,1}. The partial assignments

, and will be used as building blocks to define
the assignments in A.

Define

Define
Also, for any assignment / : V —> {0,1} , define

/ : X —> {0,1} to be the assignment

Define A, the output of the reduction, to be the set

Let us say that a pair of assignments (d : X —► {0,1} , c :
X —» {0,1}) is a violating pair if the following four con­
ditions are met: 1) d A, 2) c A, 3) d c, and
4) d is 9-compatible with A. Intuitively, a violating pair
(d, c) is evidence that there is no 59-formula such that
A MinModels

More formally, observe that a violating pair exists if and
only if there exists ad A and A such that d
c and d satisfies the candidate 59-formula for A, by
Lemma A.2. This occurs if and only if it is not the case
that A MinModels since (as is easily verified)
the assignments in A are pairwise incomparable. By Lemma
4.4, it is not the case that A MinModels if and
only if for all S9-formulas it is not the case that A
M i n M o d e l s . Hence, a violating pair exists if and only
if there is no -formula such that A MinModels(ψ, -X").

The remainder of the proof, omitted due to space con­
straints, establishes that a violating pair exists if and only if a

is not a minimal model of , This implies the correctness of
our reduction, as then we have that there exists no -formula

such that A MinModels if and only if a is not a
minimal model of

References
[Cadoli, 1992] Marco Cadoli. The Complexity of Model

Checking for Circumscriptive Formulae. Information Pro­
cessing Letters, 44(3): 113-118, 1992.

[Cadoli etal, 1997] Marco Cadoli, Francesco M. Donini,
Marco Schaerf, and Riccardo Silvestri. On Compact Rep­
resentations of Propositional Circumscription. Theoretical
Computer Science, 182:183-202, 1997.

[Creignou et al., 2001] Nadia Creignou, Sanjeev Khanna,
and Madhu Sudan. Complexity Classifications of Boolean
Constraint Satisfaction Problems. S1AM Monographs on
Discrete Mathematics and Applications, SI AM, 2001.

iDechter and Pearl, 1992] Rina Dechter and Judea Pearl.
Structure identification in relational data. Artificial Intelli­
gence, 58:237'-270, 1992.

[Kautz etal., 1995] Henry Kautz, Michael Kearns, and Bart
Selman. Horn Approximations of Empirical Data. Artifi­
cial Intelligence, 74(1): 129-145, 1995.

[Kavvadias and Sideri, 1998] Dimitris Kavvadias and
Martha Sideri. The Inverse Satisfiability Problem. SIAM
Journal on Computing, 28(1): 152-163, 1998.

[Kavvadias etal, 2000] Dimitris J. Kavvadias, Martha
Sideri and Elias C. Stavropoulos. Generating all maximal
models of a Boolean expression. Information Processing
Letters, 74:157-162,2000.

[Khardon and Roth, 1996] Roni Khardon and Dan Roth.
Reasoning with Models. Artificial Intelligence, 87:187-
243, 1996.

[Kirousis and Kolaitis, 2001a] Lefteris M. Kirousis and
Phokion G. Kolaitis. The Complexity of Minimal
Satisfiability Problems. In Proceedings of the 18th
Annual Symposium on Theoretical Aspects of Computer
Science, volume 2010 of Lecture Notes in Computer
Science, pages 407-418. Springer, 2001. Full version at:
Electronic Colloquium on Computational Complexity -
(www.eccc.uni-trier.de/eccc), Report No. 82, 2000.

[Kirousis and Kolaitis, 2001b] Lefteris M. Kirousis and
Phokion G. Kolaitis. A Dichotomy in the Complexity of
Propositional Circumscription. In Proceedings of the J 6th
Annual IEEE Symposium on Logic in Computer Science -
LICS 2001, pages 71-80,2001.

[McCarthy, 1980] John McCarthy. Circumscription—A
Form of Non-Monotonic Reasoning. Artificial Intelli­
gence, 13:27-39, 1980.

[Schaefer, 1978] Thomas J. Schaefer. The complexity of sat­
isfiability problems. In Proc. 10th Annual ACM Sympo­
sium on Theory of Computing, pages 216-226,1978.

454 KNOWLEDGE REPRESENTATION

http://www.eccc.uni-trier.de/eccc

