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Abstract 

Inverse (or identification) problems involve decid­
ing whether or not an explicitly given set of data 
points have an implicit description, for instance, 
in the form of a constraint network. Such prob­
lems provide insight into the relationships among 
various representations of knowledge, which may 
have differing computational properties. This pa­
per formalizes and studies the inverse circumscrip­
tion problem, which (roughly speaking) is to de­
cide, given a set of models, if there exists a formula 
whose circumscription describes the input set. 

1 Introduction 
The relationship between implicit and explicit descriptions 
of information is a central theme in knowledge representa­
tion and reasoning. For example, the core reasoning task of 
propositional satisfiability is to decide, given a propositional 
formula, whether or not the explicit set of models described 
implicitly by the formula is non-empty. 

Recently, Kavvadias and Sideri [1998] studied a comple­
mentary task, which they called inverse satisfiability, given 
a set of models, is there a propositional formula with exactly 
the given set as its satisfying assignments? Without any re­
strictions on the class of formulas considered, the question is 
trivial, since for a given set of models M, it is always possible 
to create a formula in disjunctive normal form (DNF) captur­
ing exactly M. Kavvadias and Sideri consider this question 
with respect to the class of formulas expressible by a pre-
specified constraint language - a set of relations which can 
be used to express constraints. Their intriguing main result 
is that the complexity of the inverse satisfiability problem re­
flects exactly that of the classical satisfiability problem: for a 
fixed constraint language, inverse satisfiability is intractable if 
and only if satisfiability is intractable! For instance, INVERSE 
3-SAT is intractable, as 3-SAT is intractable; but, INVERSE 
2-SAT is tractable, as 2-SAT is tractable. 

The inverse satisfiability problem is akin to the identifica-
tion problems studied by Dechter and Pearl [1992], which 
involve deciding whether or not explicitly given relational 
data in the form of tuples has an implicit description as a 
constraint network with particular features. Studying such 

inverse or identification problems is valuable for a vari­
ety of reasons, as articulated in [Dechter and Pearl, 1992; 
Kavvadias and Sideri, 1998]. First, certain restricted forms 
of propositional formulas, such as Horn formulas, facilitate 
efficient reasoning. Hence, the ability to decide when an ex­
plicitly given set of models can be represented in such a re­
stricted form, is desirable. Second, model-based represen­
tations of information have been proposed as a viable alter­
native to formula-based representations [Kautz et a/., 1995; 
Khardon and Roth, 1996]; inverse problems address the rel­
ative expressibility of these two types of representations. 
Third, discovering structure in empirical data is a crucial 
component of scientific activity, and so understanding when 
structure discovery is computationally feasible sheds light on 
the nature of such activity. 

In this paper, we further investigate the relationship be­
tween implicit and explicit descriptions of data by consid­
ering the complexity of inverse circumscription, an analog 
of the inverse satisfiability problem for circumscription. Cir­
cumscription is a well-studied non-monotonic reasoning for­
malism intended to embody common sense, and provides an 
alternative semantics for propositional formulas [McCarthy, 
1980]. Intuitively, the models of the circumscription of a for­
mula are those models of the original formula which make as 
few "assumptions" as necessary. The inverse circumscription 
problem addresses the expressiveness of circumscription: this 
problem involves deciding, roughly speaking, if a set of mod­
els can be described by a circumscribed formula (over some 
constraint language). Studying the complexity of this prob­
lem is natural not only for the aforementioned reasons, but 
also because circumscribed formulas are more space-efficient 
than uncircumscribed formulas: knowledge can be repre­
sented more succinctly with the former than with the latter, 
in a sense made precise in [Cadoli et a/., 1997]. 

There are at least two generalizations of the inverse satis­
fiability problem to the context of circumscription. One gen­
eralization is the problem of deciding, given a set of models, 
whether or not there exists a circumscribed formula (over a 
specified constraint language) with exactly the input set as its 
models. A second generalization is the problem of deciding, 
given a set of models, whether or not there exists a formula 
such that all models of the input set are models of the circum­
scribed formula - in other words, the problem is to decide the 
existence of an approximating formula whose circumscribed 
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models covers the input set of models. We note that the tight­
ness of the approximating formula is not what is at stake. In 
our formulation of this problem, it is possible to efficiently 
compute a candidate formula such that if there is any for­
mula covering the input set of models, then also covers 
the input set and has fewer models than , (that is, the model 
set of is a subset of the model set of 

As we will show, the complexity of the first generaliza­
tion, for almost all constraint languages, can be characterized 
fairly easily using previous results. Consequently, the focus 
of this paper is on the complexity of the second generaliza­
tion, which we call the inverse circumscription problem. Our 
main result is a dichotomy theorem in the complexity of in­
verse circumscription, which states that for all constraint lan­
guages, inverse circumscription is either in P, or is co-NP-
complete. 

Complexity dichotomy theorems arc important because 
they demonstrate a full understanding of the complexity of 
a problem, with respect to a particular form of problem re­
striction (in our case, a restriction on the constraint language). 
The first dichotomy theorem was obtained by Schaefer, who 
showed that the propositional satisfiability problem over a 
fixed constraint language is either in P, or is NP-complcte. 
The non-trivial tractable cases of satisfiability given by this 
result are 2-SAT, HORN SAT, and XOR-SAT (where each 
constraint is a linear equation in the field with two elements). 
Since Schaefcr's result, many other dichotomy theorems have 
been established [Creignou et al, 2001 J. 

Kirousis and Kolaitis [2001a] very recently established a 
dichotomy theorem in the complexity of model checking for 
circumscription. The model checking problem is to decide, 
given an assignment and a formula, whether or not the assign­
ment is a model of the circumscribed formula. Their theorem 
states that, for any constraint language, the model checking 
problem is either in P or is co-NP-complete. Interestingly, 
we show that (for any constraint language) the complexity 
of inverse circumscription is exactly the complexity of this 
model checking problem, giving a correspondence analogous 
to that between the complexity of inverse satisfiability and 
the complexity of satisfiability. In fact, to establish hardness 
of inverse circumscription, we will reduce from the model 
checking problem. 

2 Preliminaries 
In this section, we present the definitions and notation that 
will be used throughout the paper. We first introduce the no­
tation of a constraint; constraints will be the building blocks 
of the propositional formulas we consider. 

Definition 2.1/4 subset of (for some is called 
a logical relation, and is said to have arity k. 

A constraint over variable set V is a logical relation R 
paired with a list of v a r i a b l e s w h e r e k is the 
arity of R, and is written 

A constraint with constants over variable set V is a logical 
relation R and a list of variables or constants y\,..., y^ € 

where k is the arity of R, and is written 

We next introduce the notion of a 5-formula, which is a 
propositional formula built using the relations of a constraint 
language S as "templates." 

Definition 2.2 A constraint language S is a finite set of log­
ical relations (which may contain relations of different ar-
ities).' The maximum arity of S is the maximum over the 
arities of the relations in S. 

An 5-formula over variable set V is a set of constraints 
(over V) where the logical relation of each constraint is in 5. 

An 5-formula with constants over variable set V is a set of 
constraints with constants (over V) where the logical relation 
of each constraint is in S. 

We move on to describe the set of models associated with 
a formula. Intuitively, a model of a formula is an assignment 
to the variable set which obeys all constraints. 

Definition 2.3 Let be an S-formula (possibly with con­
stants) over variable set V. 

An assignment to is a function When W 
is a subset of V, f \w denotes the restriction off to W; and, 

denotes the extension of f where 
. , , for all 

The assignment f satisfies a constraint . . . , x^) of 
if the tuple is in R. 

The assignment f satisfies //" it satisfies all constraints 
in in this case, it is said to be a satisfying assignment or 
model of* 

Define Models to be the set containing all models of 

For a fixed 5, the problem of deciding whether or not an in­
put 5-formula has a satisfying assignment is in NP, since in 
non-deterministic polynomial time, a satisfying assignment 
can be guessed and verified. The following example demon­
strates that there is an S for which this satisfiability problem 
is equivalent to that for 3-SAT, and hence NP-complete. 

3-SATformula can be efficiently converted into a S3-formula 
with exactly the same set of satisfying assignments, and vice-
versa. For example, the 3-SAT formula 

is equivalent to the 

We generalize the definition of S3 in Example 2.4 as fol­
lows. 

Definition 2.5 Let be the set of relations 
where and 

is the tuple with 1 in the first i coordinates, and 
0 in the remaining k - i coordinates. 

Throughout this paper, we assume that all logical relations and 
constraint languages are non-empty. 
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Having defined the notion of a model of a formula, we now 
define what it means for a model to be minimal . The circum­
scription of a formula is considered to have, as its models, the 
minimal models of the original formula [McCarthy, 19801. 
We consider minimal i ty wi th respect to a subset P of the vari­
able set: a model is minimal if there is no model "be low" it 
in a comparison based on the variables in P. 

Def in i t ion 2.6 Let be an S-formula (possibly with con-
stants) over variable set V, and let P be a subset of V. Let < 
denote the standard total ordering o n w h e r e 0 < 1. 

Suppose that a n d , a r e both 
assignments over the same variable set V. We write a —p B 
if for all . We write if for all 

W e w r i t e a n d i t i s 
not the ease that We write if neither 
nor holds. When the set P is equal to V (the entire 
domain of we sometimes omit it when writing the 
above relations. 

We say that is a minimal satisfying assignment (or min­
imal model) of with respect to P if is a model of : and, 
for all m o d e l s i m p l i e s 

Define MinModels to be the set containing all mini­
mal models of with respect to P. 

We now introduce some terminology that can be used to 
describe constraint languages; this terminology w i l l prove 
to be quite wieldy in describing many of the complexity d i ­
chotomy theorems presented in the next section. As usual, we 
define a CNF-SAT formula over variable set V to be a con­
junct ion of clauses, where each clause is the disjunction of 
literals from V. (A literal f rom variable set V is either a vari­
able u V itself, or the negation of a variable Literals of 
the former type are called positive, whereas those of the latter 
type are called negative.) An assignment / : V —> { 0 , 1 } 
satisfies a CNF-SAT formula if every clause of contains 
a literal evaluating to true under /. 

Def in i t ion 2.7 A Injunctive formula is a CNF-SAT formula 
where each clause contains exactly two literals. 

A (dual) Horn formula is a CNF-SAT formula where each 
clause contains at most one positive (negative) literal. 

An affine formula is a conjunction of equations of the form 
where the xi are variables and { 0 , 1 } 

is a constant. (The symbol < denotes the logical "exclusive 
or/') 

Def in i t ion 2.8 Let R, be a logical relation of arity n, and S 
be a constraint language. 

The relation R is 0-valid if it contains the all-zeroes tuple 
( 0 , . . . , 0) of arity n, and is 1-valid if it contains the all-ones 
tuple ( 1 , . . . , 1) ofarity n. 

The relation R is bijunctive (Horn, dual Horn, affine) if 
there exists a bijunctive (respectively Horn, dual Horn, affine) 
formula o v e r w i t h the same set o f satisfying as­
signments as the -formula 

The constraint language S is 0-valid (l-valid, bijunctive, 
Horn, dual Horn, affine) if every relation contained in S is 
0-valid (respectively l-valid, bijunctive, Horn, dual Horn, 
affine). 

The constraint language S is Schaefer if at least one of the 
following four conditions hold: S is bijunctive, S is Horn, S 

is dual Horn, S is affine. The constraint language S is non-
Schaefer if it is not Schaefer. 

3 Related Work 

This section reviews relevant work done previously; through­
out, S is used to denote a constraint language. We first men­
tion the seminal work of Schaefer, who proved a complex­
ity dichotomy theorem on the satisfiability problem for S-
formulas. 

Def in i t ion 3.1 The S A T ( S ) decision problem. 
Input: An S-formula 
Question: Is satisjiable? 
The SATQ(S) decision problem is identical, except the in­

put S-formula can have constants. 

In other words, the S A T ( S ) problem is to decide, for a 
given S-formula , if the set Models is non-empty. Re­
markably, Schaefer proved that for any constraint language 
S, S A T ( S ) is either in P or is NP-complete; in addition, he 
gave a precise description of which constraint languages yield 
a tractable satisfiability problem, and which do not. 

Theorem 3.2 [Schaefer, 1978] Let S be a constraint lan­
guage. 

If S is 0-valid, l-valid, or Schaefer, then S A T ( S ) is in P; 
otherwise, S A T ( 5 ) is NP-complete. 

If S is Schaefer, then is in P; otherwise, SAT C (S) 
is NP-complete. 

Kavvadias and Sideri [1998] studied the "inverse satisfia­
bi l i ty problem" (denoted here by I N V E R S E S A T C ( S ) ) . In the 
"standard" satisfiability problem the goal is to decide, given a 
formula, whether or not there exists a satisfying assignment. 
In the "inverse" problem, the given input is a set of assign­
ments, and the goal is to determine whether or not there ex­
ists a formula wi th exactly the given assignments as its set of 
satisfying assignments. 

Def in i t ion 3.3 The INVERSE SATc(S) decision problem. 
Input: Set A of assignments over the same variable set V. 
Question: Is there an S'formula with constants such that 

A = Models 

A dichotomy theorem was established by Kavvadias and 
Sideri, which shows that the inverse satisfiability problem is 
always in P, or is CO-NP-complete. Intr iguingly, the com­
plexity of the inverse problem reflects exactly the complexity 
of the satisfiability problem: is intractable if and 
only i f I N V E R S E S A T C ( S ) i s intractable! 

Theorem 3.4 [Kavvadias and Sideri, 1998] Let S be a con­
straint language. 

If S is Schaefer, then INVERSE SATc(S) is in P; other­
wise, I N V E R S E is co-NP-complete. 

We now formalize the model checking problem for cir­
cumscription, which was called "min imal satisfiability" in 
[Kirousis and Kolait is, 2001a]. 

Def in i t ion 3.5 The M l N S A T ( S ) decision problem. 
Input: An S-formula over variable set V, an assignment 

satisfying and a subset P ofV. 
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Question: Is the assignment a minimal model of with 
respect to P? 

The MlN SATc(S) decision problem is identical, except 
the input S-formula can have constants. 

The MlN S A T ( S ) problem is in CO-NP, as deciding 
whether or not a is a minimal model of a formula amounts 
to verifying - for all assignments - that if is a model, 
then is not strictly below in the ordering Cadoli 
[1992] showed that this problem is CO-NP-complete in gen­
eral, and also identified some tractable cases. More recently, 
the following full dichotomy theorem was proved concerning 
the complexity of MlN S A T ( 5 ) . 

Theorem 3.6 [Kirousis and Kolaitis, 2001a, Theorem 4.2]2 

Let 5 be a constraint language. 
If S is Schaefer, then MlN S A T C ( 5 ) is in P; otherwise, 

MlN SATc(5) is CO-NP-complete. 
If S is 0-valid or Schaefer, then MlN S A T ( S ) is in P; oth­

erwise, MlN S A T ( S ) is CO-NP-complete. 

4 The Inverse Circumscription Problem 
The inverse satisfiability problem (defined formally in the 
previous section) is to decide, given a set of assignments, 
whether or not there is a formula with precisely the given 
input set as its models. The inverse circumscription problem, 
denoted by INVERSE MlN S A T ( 5 ) , is similar in that the input 
is also a set of assignments and the task is to decide whether 
or not there is a formula describing the input set. However, in 
the inverse circumscription problem, the question is whether 
there exists a formula such that all of the given assignments 
are minimal models of . 

Definition 4.1 The INVERSE MlN S A T ( S ) decision prob­
lem. 

Input: Set A of assignments over the same variable set V, 
and a subset P of V. 

Question: Is there an S-formula (f) such that A 
MinModels 

The INVERSE MlN SATC{S) decision problem is identi­
cal, except the question is to decide if there is an S-formula 
with constants satisfying the stated condition. 

As mentioned in the introduction, there is a natural variant 
of the INVERSE M I N S A T C ( 5 ) problem which has an iden­
tical description, except the symbol is replaced with an 
= symbol in the "question." Let us denote this variant by 
INVERSE E X A C T M I N S A T C ( 5 ) . We have the following re­
sults concerning this question. 

Theorem 4.2 Let S be a constraint language. 
If S is bijunctive or Horn, then 

INVERSE E X A C T M I N S A T C ( 5 ) is in P. 

2Wc note that the notation of [Kirousis and Kolaitis, 2001a] 
is different from ours. In particular, their decision problem 
M I N SAT(S) involves checking, given an assignment and formula, 
if the assignment is minimal with respect to all variables. It is eas­
ily verified that our definition of MlN S ATc (5) is equivalent to their 
(P; Q; Z) - MlN S AT(5) , and that our definition of MlN S AT(5) is 
equivalent to their - MlN SAT(5) . The theorem is stated 
here with respect to our notation. 

IfS is non-Schaefer, then INVERSE EXACT MlN SATC(5) 
is CO-NP-complete. 

For non-Schaefer constraint languages 5, hardness of 
INVERSE E X A C T can be shown by first es­
tablishing the hardness of INVERSE E X A C T M I N S A T C ( 5 3 ) 
by reduction from INVERSE , and then re­
ducing from INVERSE E X A C T M I N S A T C ( 5 3 ) to 
INVERSE E X A C T M I N , using a technique in 
[Kavvadias and Sideri, 1998]. For Schaefer constraint 
languages 5, the existence of an output polynomial time 
algorithm for computing minimal models of a 5-formula 
implies the tractability of INVERSE E X A C T M I N S A T C ( 5 ) ; 
see iKavvadias et al. , 2000] for such algorithms in the case 
of constraint languages S that are bijunctive or Horn. 

For the remainder of this paper, we focus on the 
INVERSE M I N S A T ( S ) decision problem. Given an input set 
A of this problem, it is possible to efficiently compute a "can­
didate formula" having the property that if there is any for­
mula containing A in its set of minimal models, then the can­
didate formula is such a formula. That is, the candidate for­
mula serves to witness that "yes" is the answer to the decision 
question of Definition 4.1 - so long as some formula does. 

Definition 4.3 Suppose that S is a constraint language and 
that A is a set of assignments over the same variable set V. 
Define the candidate 5-formula for A to be the set containing 
all constraints (over V and with relation in S) that are satis­
fied by every assignment in A. Similarly, define the candidate 
5-formula for A with constants to be the set containing all 
constraints with constants (over V and with relation in S) 
that are satisfied by every assignment in A. 

Lemma 4.4 Suppose that 5 is a constraint language and 
that A is a set of assignments over a variable set V. Let 
P be a subset of V, and let be the candidate S-formula 
(with constants) for A. There exists an S-formula (with con­
stants) such that MinModels(if and only if 
A MinModels 

For a fixed constraint language 5, the candidate 5-
formula for a set of assignments A can be computed in 
polynomial time (measured with respect to the size of the 
representation of A). By the key property of the candidate 
formula (Lemma 4.4), it follows that INVERSE M I N S A T ( S ) 
is in CO-NP: an assignment which is not included in 
A, satisfies the 5-candidate formula of A, and is strictly 
below an assignment in A (with respect to , serves as 
a succinct and efficiently checkable proof that A is a "no" 
instance of INVERSE M I N S A T ( 5 ) . (By similar reasoning, 
INVERSE and INVERSE E X A C T M I N S A T C ( S ) 
can be shown to be in CO-NP, as discussed in IKavvadias and 
Sideri, 1998].) 

Whenever the model checking problem M I N SAT(5) is 
in P, the inverse problem INVERSE M I N S A T ( 5 ) will be in 
P. This is because deciding whether or not an input set A 
to the INVERSE M I N S A T ( 5 ) problem is a "yes" instance 
amounts to verifying that every assignment in A is a min­
imal model of the candidate formula for A\ clearly, this 
can be done in polynomial time when MlN S A T ( 5 ) is in 
P. To prove a full dichotomy theorem on the complexity of 
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INVERSE M I N S A T ( S ) , it remains to describe the complex­
ity of INVERSE M I N SAT(S' ) for the constraint languages S 
such that M I N S A T ( S ) is not in P. 

5 Dichotomy Theorem 
In this section, we describe completely the complexity pro-
tile of the "inverse circumscription problem." In partic­
ular, we show that for those constraint languages S such 
that M I N S A T ( S ) i s co-NP-hard, INVERSE M I N S A T ( S ) 
is also CO-NP-hard (and similarly for M I N SATc(S) and 
INVERSE M I N S A T C ( S ) ) . 

Our first step is to prove hardness of the 
INVERSE M I N S A T ( 5 ) problem for 9-SAT formulas, 
where the circumscription is performed with respect to all 
of the variables. This initial hardness result is then used to 
establish the hardness of INVERSE M I N S A T ( S ) for other 
constraint languages S. 

Theorem 5.1 The problem INVERSE MlN S A T ( 5 9 ) is 
CO-NP-hard, even with the restriction that the subset P must 
be equal to the entire variable set. 

The proof of this theorem is sketched in Appendix A; the 
hardness result claimed by the theorem is achieved by re­
duction from the MlN S A T ( S ) problem. The hardness of 
INVERSE M I N S A T ( S 9 ) can then be leveraged to establish 
the hardness of INVERSE MlN S A T C ( £ ) , for the remaining 
constraint languages S. 

Theorem 5.2 Let S be a constraint language. If S is non-
Schaefer, then INVERSE MlN SATC(S) is CO-NP-hard. 

Then, constants can be "removed" in such a way that 
allows the hardness of INVERSE M I N S A T ( S ) to be estab­
lished, based on the hardness of INVERSE M I N S A T C ( S ) . 

Theorem 5.3 Let S be a constraint language. If S is neither 
0-valid nor Schaefer, then INVERSE MlN S A T ( S ) is CO-NP-
hard. 

Collecting together the theorems of this section as well as 
the discussion at the end of Section 4, we have the following 
dichotomy theorem. 

Theorem 5.4 Let S be a constraint language. 
IfS is Schaefer, then INVERSE MlN SATc(S) is in P; oth­

erwise, INVERSE M I N S A T C ( S ) is co-NP-complete. 
If S is 0-valid or Schaefer, then INVERSE MlN S A T ( S ) is 

in P; otherwise, INVERSE MlN SAT(S) is CO-NP-complete. 

6 Conclusions and Future Work 
In this paper, we formalized and studied inverse circumscrip­
tion. We established a full dichotomy theorem in the com­
plexity of this problem (Theorem 5.4). A fascinating phe­
nomenon is that the complexity of inverse circumscription 
reflects exactly the complexity of model checking for circum­
scription (Theorem 3.6). This correspondence in complex­
ity parallels the intimate relationship between the complexity 
of inverse satisfiability (Theorem 3.4) and that of satisfiabil­
ity (Theorem 3.2). The resemblance between the results on 
circumscription and those on propositional logic seems quite 

strong, as the hardness of inverse circumscription is estab­
lished by reduction from model checking for circumscription 
- just as the hardness of inverse satisfiability is established by 
reduction from satisfiability [Kavvadias and Sideri, 19981. 

It would be of great interest to investigate further the re­
lationship between "inverse" problems (mapping an explicit 
description to an implicit description) and more classical "for­
ward" problems (mapping an implicit description to an ex­
plicit description). A concrete goal for future work is to 
study inverse problems for other non-monotonic reasoning 
formalisms. 

Acknowledgements. The author wishes to thank Bart Sel-
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A P r o o f Ske tch o f T h e o r e m 5.1 

Definition A . l Let A be a set of assignments over the vari­
able set V. For , we say that an assignment b : V 
{(), 1} is k-compatible with A if for every size k subset W of 
V, there exists an assignment a A such that 

Lemma A.2 Let S be a constraint language with maximum 
arity k, and let A be a set of assignments over the variable set 
V. Suppose that is the candidate S-formula for A (with 

, If b is r-compatible with A for all r = 1 , . . . , fc, then 
b satisfies Moreover, the converse holds if 

Definition A.3 Let S be a constraint language. For r 1, 
an r-pattern of an S-formula over V is a pair (W, T) such 
that —► {0,1} is an assignment 
to the variables of W, and for all clauses 

if T is defined on the variables R(x1
........,x

k (that is, 
, then T satisfies 

In other words, an r-pattern for a formula is a subset W 
of the variable set of of size r along with an assignment to 
W which does not falsify any clause of 

Before giving the proof, we introduce the following nota­
tion. A vector x of length k is an ordered list of variables 
( x 1 , . . . , Xk). If is a bit vector and f 
is a vector of length fc, we let ^ j denote the function map­
ping xt to bi for all , . . . , fc. If and 
v : are assignments with disjoint domains (that 
is, by we denote the function with do­
main equal to on V\, and equal to v on When 
z is a vector of variables and / is an assignment defined on 
the variables of we let denote the restriction of / to the 
variables of For a positive integer fc, we let denote the 
set { 1 , . . .,fc}. 
Proof. By [Kirousis and Kolaitis, 2001a, Theorem 3.8], the 
version of MlN where the variable set P is promised 
to be the entire variable set is CO-NP-complete. To prove 
hardness o f I N V E R S E w e give a reduction 
from this version of ,. In particular, given a S3-
formula , and an assignment a satisfying , we create a set 
of assignments A over a variable set X such that there is an 
S9 formula with A MinModels if and only if a is 
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Let ( W 1 , T 1 ) , . . . , (VVm,Trr i) be all of the 9-patterns of 0. 
Our set of assignments A will be of size m + 1: it will have 
one assignment a1 : X —► {0,1} for each of the 9-patterns 
(Wl,Tl), as well as one assignment a : X —> {0,1} encoding 
the assignment o : V —> {0,1}. The partial assignments 

, and will be used as building blocks to define 
the assignments in A. 

Define 

Define 
Also, for any assignment / : V —> {0,1} , define 

/ : X —> {0,1} to be the assignment 

Define A, the output of the reduction, to be the set 

Let us say that a pair of assignments (d : X —► {0,1} , c : 
X —» {0,1}) is a violating pair if the following four con­
ditions are met: 1) d A, 2) c A, 3) d c, and 
4) d is 9-compatible with A. Intuitively, a violating pair 
(d, c) is evidence that there is no 59-formula such that 
A MinModels 

More formally, observe that a violating pair exists if and 
only if there exists ad A and A such that d 
c and d satisfies the candidate 59-formula for A, by 
Lemma A.2. This occurs if and only if it is not the case 
that A MinModels since (as is easily verified) 
the assignments in A are pairwise incomparable. By Lemma 
4.4, it is not the case that A MinModels if and 
only if for all S9-formulas it is not the case that A 
M i n M o d e l s . Hence, a violating pair exists if and only 
if there is no -formula such that A MinModels(ψ, -X"). 

The remainder of the proof, omitted due to space con­
straints, establishes that a violating pair exists if and only if a 

is not a minimal model of , This implies the correctness of 
our reduction, as then we have that there exists no -formula 

such that A MinModels if and only if a is not a 
minimal model of 
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