
A Theory of Average-Case Compilability in Knowledge Representation

Hubie Chen
Department of Computer Science

Cornell University
Ithaca, NY 14853, USA
hubes @ cs.cornell .edu

Abstract

Compilability is a fundamental property of knowl­
edge representation formalisms which captures
how succinctly information can be expressed. A l ­
though many results concerning compilability have
been obtained, they are all "worst-case" results.
We develop a theory of average-case compilability
which allows for the formal comparison and clas­
sification of knowledge representation formalisms
"on average."

1 Introduction
By now, a multitude of knowledge representation formalisms
have been proposed and studied in the literature, for exam­
ple, propositional logic, default logic, and circumscription
- to name a few. The comparison of these formalisms has
been a major research theme over the past decade. In par­
ticular, many results have been obtained on the computa­
tional complexity of inference and model checking - core
reasoning tasks associated with each formalism. The funda­
mental property of compilability, which measures how effi­
ciently or succinctly a formalism represents knowledge, has
also been studied.1 There is now a rich body of results
concerning compilability; however, all of these results ad­
dress the "worst-case", and are thus susceptible to the com­
plaint that they do not address "average" or "typical" com­
pilability. The main contribution of this paper is a theoret­
ical framework providing a language and tools for compar­
ing and classifying the compilability of formalisms on aver­
age. Our framework is built on notions and insights from the
theory of compilability clases due to Cadoli et al. 12000a;
2000b] and the theory of average-case time complexity due
to Levin 11986].

1.1 Background

Compilability. Informally, a formalism A is compilable to
a formalism B if for every knowledge base x in formalism
A, there is a knowledge base in formalism D representing
the same information as x with size polynomial in the length

In previous work, compilability has also been called space effi­
ciency and succinctness.

of xr Intuitively, this means that formalism B is at least as
space efficient as formalism A: whatever can be expressed in
formalism A can be expressed, with about the same level of
succinctness, in formalism B.

A number of papers compared the compilability of dif­
ferent formalisms [Kautz et ai, 1995; Gogic el al, 1995;
Khardon and Roth, 1996; Cadoli et al 1996; 1997; 1999;
2000a; 2000b]. In many cases, these papers rigorously prove
that one formalism B is strictly more succinct than another
formalism A - that is, A is compilable to B, but B is not
compilable to A. This means that there is no way to trans­
late knowledge bases in B to knowledge bases in A, unless
the translation is allowed to increase the size of knowledge
bases by a super-polynomial amount. In other words, any
translation of knowledge bases in B to knowledge bases in
A is inherently exponential in size.3 Observe that this state­
ment has the same flavor as the famous "P does not equal NP"
conjecture from classical complexity theory. This conjecture
holds that no algorithm can solve an NP-complete problem,
unless the algorithm is allowed to take super-polynomial time
on some inputs - or, put differently, any algorithm solving a
NP-complete problem is inherently exponential in time.

Notice that the above definition of "formalism A is com­
pilable to formalism B" docs not take into account the dif­
ficulty or complexity of computing the translation between
knowledge bases in A and knowledge bases in B. This non-
uniformity is a key feature of the definition: the existence of
a succinct translation is sufficient; an efficiently computable
translation is not necessary. It turns out that many proofs of
non-compilability - that is, proofs of statements of the form
"formalism B is not compilable to formalism A" - rely on re­
sults from non-uniform complexity theory. Such proofs often
are not unconditional, but are contingent upon the widely be­
lieved complexity-theoretic assumption that the polynomial
hierarchy does not collapse.4

2ln the technical portion of this paper, this definition will be cap­
tured formally by the rcducibility.

3Here, by "exponential" we mean exceeding every polynomial
infinitely often.

4The polynomial hierarchy is a collection of complexity classes
which includes P, NP, co-NP, and other classes which are in essence
generalizations of these three classes. For the intents and purposes
of this paper, this assumption can be thought of as being similar to
the (perhaps better known) assumption that P does not equal NP (In

KNOWLEDGE REPRESENTATION 455

Compilability classes. The initial papers that demonstrated
non-compilability results [Kautz et at., 1995; Gogic et al,
1995; Khardon and Roth, 1996; Cadoli et al., 1996; 1997;
1999] were based on ad hoc proofs, each of which iso­
lated two particular formalisms and then demonstrated non-
compilability of one to the other. In [Cadoli et al, 2000a;
2000b], new complexity classes measuring compilability,
called compilability classes, were introduced; for every clas­
sical complexity class C, it is possible to define a compil­
ability class analog of C. The theory of compilability classes
made it possible to systematize proofs of non-compilability
much in the way classical complexity theory makes it pos­
sible to systematize proofs of intractability. A proof that a
language is NP-complete is demonstration that there is no
polynomial-time algorithm for the language, and that the lan­
guage has the same time complexity (up to a polynomial) as
all other NP-complete languages. Likewise, a proof that a for­
malism is complete for the compilability class analog of NP
is demonstration that it is not compilable to any formalism in
the compilability class analog of P, and that the language is
compilable to and from all other formalisms complete for the
compilability class analog of NP.5 (More generally, when C
is a class from the polynomial hierarchy, a proof that a for­
malism is complete for the compilability class analog of C is
demonstration that it is not compilable to any formalism in
the compilability class analog of C", if C" is below C in the
polynomial hierarchy.)

In addition to providing a methodology for comparing
formalisms with respect to compilability, the compilability
classes capture formally the notion of off-line preprocessing.
Preprocessing a knowledge base off-line can be of great util­
ity if the resulting, processed knowledge base is in a form
that allows for quick, on-line response to queries (and if many
queries are expected). Membership of a formalism A in the
compilability class analog of P will mean that any knowledge
base x of A can be preprocessed into a form that does not un­
reasonably increase the size of x, but permits queries to x to
be processed efficiently (that is, in polynomial time).

The compilability classes are part of a formal framework
for discussing compilability, which includes robust notions
of reduction and completeness. Not only is this framework
extremely appealing from a theoretical point of view, but the
compilability classes are rife with natural complete problems
- the sine qua non of complexity classes purporting to be use­
ful in performing problem classification. Indeed, there do not
appear to be any knowledge representation formalisms which
defy classification as complete for a compilability class. On
the downside, many of the existing classification results are
quite negative, showing that a formalism is complete for (the
compilability class analog of) NP, coNP, or a higher level of
the polynomial hierarchy.

fact, if the polynomial hierarchy does not collapse, then P does not
equal NP.)

5Our discussion presumes that the polynomial hierarchy does not
collapse.

1.2 Motivations and Approach
Worst-case versus average-case. Although crisp theo­
retical results can be obtained concerning compilability
and non-compilability, these are worst-case notions: non-
compilability of formalism B to formalism A implies that
there is an infinite family of knowledge bases in B that can­
not be succinctly translated into knowledge bases in A. Non-
compilability does not say anything about the density or fre­
quency of instances from the family of untranslatable knowl­
edge bases. This observation calls into question the real-
world utility of studying compilability (as defined above);
if formalism B is compilable to formalism A for all but a
pathological family of knowledge bases arising infrequently
in practice, then formalism B is, for pragmatic purposes,
compilable to formalism A. Therefore, a theory which per­
mits formal results of compilability on average is necessary.
This paper lays the foundations for a theory of average-case
compilability.

Notice that our objection to the worst-case nature of non-
compilability is not truly novel. It has long been observed
that NP-completeness of a language L does not imply hard­
ness of L on typical or real-world instances. Our objection is
really this old observation, masquerading in the new context
of compilability.

One theory that was developed in response to this old
observation is the theory of average-case time complexity
(ACTC), initiated by Levin [1986]. Our theory of average-
case compilability will be built on a key notion of ACTC -
that of "polynomial on average." Moreover, there are useful
analogies between our theory and the theory of ACTC. Con­
sequently, we provide a brief overview of ACTC.

Average-case time complexity. By definition, a language
L (consisting of strings) is in P if there is an algorithm decid­
ing membership for L in polynomial time. The idea behind
ACTC is to relax the requirement in this definition that a suit­
able algorithm is one that always runs in polynomial time;
this is done by placing a probability distribution on all strings
and allowing an algorithm to take super-polynomial times on
unlikely strings.

A language paired with a probability distribution over all
strings is called a distributional language. While languages
are the objects classified by classical complexity theory, dis­
tributional languages are the objects classified by ACTC. A
distributional language is in the average-case version
of P, average-P, if there is an algorithm deciding member­
ship for L in time polynomial on - a concept to be
discussed formally later in this paper.

There is a vast literature on ACTC; for more information,
we recommend the overviews/surveys [Johnson, 1984; Gure-
vich, 1989; 1991a; 1991b; Impagliazzo, 1995; Wang, 1997;
Goldreich, 1997] as starting points.

Average-case compilability. In laying down a theory for
average-case compilability, we want to "soften" the definition
of "formalism A is compilable to formalism J3" by relaxing
the requirement that there needs to be a translation of knowl­
edge bases of strictly polynomial size. This is done roughly in

456 KNOWLEDGE REPRESENTATION

analogy to the described development of ACTC. We first de­
fine a distributional formalism to be a formalism paired with
a probability distribution over all knowledge bases. Then, a
distributional formalism is (informally) compilable on
average to a formalism B if there is a translation of knowl­
edge bases of size polynomial on

Using the notion of "compilable on average," we de­
fine average-case analogs of compilability classes. These
average-case analogs contain distributional formalisms, in
contrast to the compilability classes themselves, which con­
tain pure formalisms. Intuitively, membership of a distri­
butional formalism in the average-case compilability
class analog of P wil l mean the following: any knowledge
base x of A can be preprocessed in a way that tends not to in­
crease the size of x by more than a polynomial (with respect
to U), and that allows for rapid processing of queries to x.

2 Preliminaries
In this section, we present notation and assumptions that will
be used throughout the paper.

We assume to be a fixed finite alphabet which is used
to form strings. We will at times assume that pairs of strings
(that is, elements of are represented as strings (that
is, elements of ; when this assumption is made, we as­
sume that the representation is via a pairing function
such that the length of (x, y) is linear in For a string

denote that is, the length of x written
in unary notation.

We assume that the reader has familiarity with basic no­
tions of computational complexity theory - in particular, the
classes of the polynomial hierarchy (P, NP, CO-NP,
etc.) and the polynomial many-one reduction [Balcdzar
et al., 1995]. A language is a subset of , that is, a set of
strings. A complexity class is a set of languages. When C
is a complexity class and is a reduction, we say that C is
compatible with if for all languages A and B, A B and
B C imply that A C. We will assume throughout that
every complexity class C is compatible with the polynomial
many-one reduction We say that a language B is com­
plete for a complexity class C under reductions if B C
and for all

A function is polynomial-size if there exists
a polynomial P such that for all
A function / : is polynomial-time computable if
there exist a polynomial p and a Turing machine M such that
for all , the Turing machine M, on input x, produces
f(x) in time less than

Definition 2.1 A knowledge representation formalism (KRF)
is a subset of When F is a KRF and we let
Fx denote the set

Intuitively, each can be thought of as a knowledge
base (KB), representing the information The following

6In the technical portion of this paper, this definition will be cap­
tured formally by the reducibility.

7Notice that every polynomial-time computable function is
polynomial-size, but not every polynomial-size function is
polynomial-time computable.

are examples of KRFs which capture model checking and in­
ference for 3-SAT formulas.

Propositional-Logic-MC
{ (x, y) : x is a 3-SAT formula and y is a model of x}

Clause-Inference
: x is a 3-SAT formula, y is a 3-clause, and

Notice the generality of the definition of a KRF; the knowl­
edge represented (the various may be models, formulas,
or some altogether different combinatorial structures.

3 Compilability classes and reductions
This section reviews the theory of compilability classes.
There are two different types of compilability classes, uni­
form and non-uniform, but our focus is on the latter, for rea­
sons discussed below. We emphasize that none of the defini­
tions, theorems, or insights in this section are our own, but
rather, are due to [Cadoli et al., 2000a; 2000b], on which our
presentation is based.

The formal definition of non-uniform compilability may
by itself look non-intuitive, so we first attempt to describe
some of the ideas behind this definition, before giving the
actual definition. Intuitively, we want to say that a KRF F
is compilable if membership queries can be decided
efficiently after the KB x is preprocessed into a new KB / (x) .
We want to constrain the size of the new ; otherwise,
it may be prohibitively large to store. We arrive at a candidate
definition of compilability: say that a KRF F is in COmp-C
if for some polynomial-size function / and a second KRF

the property
for all pairs if and only if

holds. Notice that the class C constrains the difficulty of de­
ciding a post-processing query of course, such
queries can be decided efficiently when C = P. However, to
permit fine classification of KRFs, we leave C as a parameter
to the definition of COmp-C.

The above definition misses one important detail - non-
uniformity. If F is a KRF such that Fx is always a finite
set, F can never be complete for comp-C when C is a class
of the polynomial hierarchy above P. At the same time,
there are KRFs with this "finiteness" property that are prov-
ably not in comp-P. As an example, Clause-Inference is
in COmp-CO-NP, but is neither comp-CO-NP-complete nor
in comp-P.8 Hence, the classes comp-C fail to capture the
compilability of some very natural KRFs. (For more informa­
tion on these matters, as well as proofs of the claims, we refer
the reader to [Cadoli et al, 2000a].) To resolve this issue, we
allow the length of a query to be known to the compilation
mapping / .

Definition 3.1 (nu-COmp-C) Let C be a complexity class.
A KRF F belongs to nu-COmp-C if there exists a binary
polynomial-size function and a KRF F' in
C such that the following property holds:

8This discussion presumes that the polynomial hierarchy does
not collapse.

KNOWLEDGE REPRESENTATION 457

The fact that the compilation mapping may use the length
of y may seem a bit strange; after all, we wish to capture,
after preprocessing on a knowledge base x, the difficulty of
answering queries of the form y Fx. However, it is rea­
sonable to assume that we will never be interested in such
a query when the length of y greatly exceeds that of x -
since such a query requires a large amount of time to even
write down. Under this assumption, Definition 3.1 is equiv­
alent to the "uniform" definition given above. (Formally, if
there exists a polynomial p such that (x, y) F implies that
\y\ p(\x\), then F is in nu-comp-C if and only if F is in
comp-C.)

The following notion of reduction, associated with the
nu-COmp-C classes, allows one to compare the compilability
of different KRFs.
Definition 3.2 (nu-comp reducibility) A KRF F is nu-comp
reducible to a KRF F' (denoted by if there
exist binary polynomial-size functions fi,f'2 •
and a binary polynomial-time computable function g :

such that the following property' holds:
for all pairs if and only if

Theorem 3.3 The nu-comp reduction is transitive and is
compatible with the class nu-comp-C (for every complexity
class C).

We note that Clause-Inference is nu-comp-co-NP-
complete, under nu-comp reductions.

Finally, we observe that the nu-comp-C analog of the
polynomial hierarchy does not collapse.

Theorem 3.4 lfC\ and C>L are classes of the polynomial hi­
erarchy such that C2 is higher than C1, then nu-COmp-C\
is properly contained in nu-COmp-C2 (under the assumption
that the polynomial hierarchy does not collapse).

4 Average-case compilability
In this section, we present our new theory of average-case
compilability.

Definition 4.1 A probability distribution is a real-
valued function from such that

The nu-comp-C classes are used to classify and compare
KRFs; our new classes will be used to classify and compare
what we call distributional KRFs.

Definition 4.2 A distributional KRF (DKRF) is a pair (F, u)
consisting of a KRF F and a probability distribution u.

We now define the notion of "polynomial on average.1' This
definition is exactly that used in the theory of average-case
time complexity (up to appropriate changes of the domain
and range of the functions whose size we wish to measure).

We are now ready to define our new "average-
compilability" classes; formally, each class is a set of DKRFs.
The definition can be viewed as a relaxation of Definition 3.1.
The difference is that the translation mapping

need no longer be of strictly polynomial size, but is now
only required to be of size polynomial on average.

Definition 4.4 (avg-nu-COmp-C) Let C be a complexity
class. A DKRF (F, p) belongs to avg-nu-COmp-C if there
exists a binary function of size polynomial
on p-average and a KRF F' in C such that the property of
Definition 3.1 holds.

There is an alternative way to define avg-nu-COmp-C,
in terms of the following type of reduction, which relates
DKRFs to KRFs.

Definition 4.5 (dist-nu-comp reducibility) A DKRF (F, p)
is dist-nu-comp reducible to a KRF F' (denoted by
F i f there exist binary polynomial-size
f u n c t i o n s a n d a binary polynomial-
time computable function such that

is of size polynomial on -average*9 and the property
of Definition 3.2 holds.

Theorem 4.6 Suppose that is a DKRF and that C is a
complexity class. The DKRF is in avg-nu-COmp-C
if and only if F' for some F' in
nu-comp-C.

This theorem has an important corollary: if nu-comp-C
has a complete KRF F' then the DKRFs contained in
avg-nu-comp-C are exactly those which reduce to F'. In or­
der to establish the corollary, the following lemma is needed.

Lemma 4.7 Suppose that is a DKRF and that F' and
F" are KRFs. If
F",then

Roughly, Lemma 4.7 can be viewed as a proof of transitiv­
ity: i f r e d u c e s to F' and F' reduces to F" , then
reduces to (under the right notions of reduction).

Corollary 4.8 Suppose that is a DKRF C is a com­
plexity class and the KRF Ff is nu-COmp-C-complete un­
der nu-comp reductions. Then, the DKRF is in
avg-nu-comp-C if and only if

It is worth noting here that the class nu-comp-C has a
complete KRF under nu-comp reductions whenever the un­
derlying complexity class C has a complete language under

reductions fCadoli et al, 2000a].
We now give a notion of reduction for the comparison of

DKRFs. When u and v are probability distributions, we say
that v dominates p if there exists a polynomial p such that for
all

Definition 4.9 (avg-nu-comp reducibility) A DKRF is
avg-nu-comp reducible to a DKRF if there exist a nu-
comp reduction (/ 1 , f2, g)from F to Ff and a probability dis­
tribution dominating p such that
where the sum is over all (x, /) such that [f\(x, I) = y and
there exists

458 KNOWLEDGE REPRESENTATION

Theorem 4.10 The avg-nu-comp reduction is transitive and
is compatible with the class avg-nu-COmp-C (for every com-
plexity class C).

5 Discussion
We now discuss some of the considerations behind the defi­
nitions in the previous section. When
is a probability distribution and S is a subset of
let denote the conditional distribution of on 5, that
is, the function defined on , wi th value equal to

• Why is Levin s notion of polynomial-on-average used in­
stead of the naive formulation of expected polynomial size?

According to the naive formulat ion, a function / :
has expected polynomial size (with respect to μ) if

there exists k 1 such that for all n,

It is well known that this notion of expected polynomial is
not closed under polynomials (see for example [Goldreich,
1997]). For instance, there exist functions

and a distribution such that and
/ has expected polynomial size, but /' fails to have expected
polynomial size.

In our average-case compilabi l i ty theory, this "lack of clo­
sure under polynomials" problem manifests itself in the fo l ­
lowing way. Suppose that, using the alternative definition of
avg -nu -comp-C given in Theorem 4.6, the KRF F' is wi t­
ness to the membership of D K R F in avg-nu-comp-C,
that is, '. Surely, if F" is at least as
space efficient as F' (that is, , then one ex­
pects that F" would also witness the membership of (F, μ) in
avg -nu -comp-C; this is the content of Lemma 4.7, on which
Corollary 4.8 relies. However, if expected polynomial size
is used instead of polynomial on average in Definit ion 4.3,
Lemma 4.7 breaks down - then, there would exist a D K R F
(F, μ) and KRFs F' and F" such that
F\ F' F", and does not
reduce to F".

• Why does a DKRF have one probability distribution -
over all elements of - as opposed to an ensemble
of distributions, each of which is over some finite subset of

Defining a D K R F to be a K R F paired with an ensemble
of distributions (each of which is, say, defined on a different
string length) may seem more natural than the given defini­
t ion, where there is only one distribution, on all strings.

However, the literature on ACTC contains many alterna­
tive formulations of "polynomial on average" (equivalent to
that given in Defini t ion 4.3) and sufficient conditions for a
function to be polynomial on average. (For example, there is
a different formulation of Definit ion 4.3 in terms of ensem­
bles of distributions, each having finite support, in [Impagl i-
azzo, 1995].) These give rise to alternative formulations of
avg -nu -comp-C, and so the particular characterizations we
give for avg -nu -comp-C (in Defini t ion 4.4 and Theorem 4.6)
were, in some sense, chosen over provably equal characteri­
zations on purely aesthetic grounds.

• Why is a probability distribution over E* x 1 * as opposed
to over E* ? After all, the knowledge bases are represented by
elements of , and an element of ' E * x 1* is just a "slice"
of a knowledge base.

Let F be a KRF conforming to the "bounded-query-
length" assumption discussed in Section 3, that is, suppose
that there exists a polynomial p such that (x , y) E F implies
|y| < P(IxI)- Then, a distribution over E* naturally induces a
distribution over E* x 1* for the padded version of F defined
as F' = {(x,z) : z - yDk, \z\ = p(\x\), (x,y) € F] (where
□ is an extra padding symbol), which has the property that all
strings in Fx. have the same length, for any x. Note that all of
the example KRFs in this paper already have this property.

6 Example: model checking for
circumscription

In this section, we illustrate the use of our new the­
ory by showing that model checking for circumscription
on 3-SAT formulas (formalized below and denoted by
C i rcumscr ip t ion-MC(d)) is in avg-nu-comp-P, under a nat­
ural probability distribution where formulas are generated
by including each clause independently with identical prob­
ability. Since C i rcumscr ip t ion-MC(d) is nu-comp-co-NP-
hard,10 this result gives a natural D K R F which is contained
in avg-nu-COmp-P, but which has a KRF which is provably
not in nu-COmp-P (Theorem 3.4).

Suppose that is a 3-SAT formula over
{v1,..., vn], and 5 is a subset of Vn. We say that a model
a:Vn -> { 0 , 1 } o f ' i f for all
other models b : i for all
s S] implies that In addition,
a model a : S { 0 , 1 } of is said to be a minimal model if
it is the restriction of a S-minimal model a : Vn --> { 0 , 1 } (of

We define C i rcumscr ip t ion-MC(d) to be the set

is a 3-SAT formula on variable set on Vn and
is a minimal model of

Let Wn denote the set
is a 3-SAT formula on Vn and a : ' —>

{ 0 , 1 } is an assignment)}, which is the set of all syn­
tactically wel l- formed pairs that may or may not be in
Ci rcumscr ip t ion-MC(d)-

Theorem 6.1 Let vn,c denote the distribution on 3-SAT for­
mulas over Vn where a formula is generated by including
each of the 8(n/3) 3-clauses independently with probability

r all real numbers c > 0 and natural numbers
Let (with c > 0 and d (0, (0,1); be any dis­

tribution such that

• for all n, and

• = 0 i f i s a 3-SAT formula on
[dn\.

10This can be shown using a result in [Gogic et al, 1995].
11 Here, denotes the usual total ordering on {0 ,1} where

KNOWLEDGE REPRESENTATION 459

This theorem is established using techniques from proba­
bilistic combinatorics. It is worth noting that at c = 3.73,
the expected number of satisfying assignments that a random
3-SAT formula has is exponential.

7 Conclusions and future work
In [Papadimitriou, 1996], Papadimitriou writes:

The ultimate and most conclusive criterion for
comparing knowledge representation formalisms is
to compare their expressive power not on arbitrary
sets of models, but on the "interesting" sets of mod­
els, the ones that come up in the "real world." We
still hope that a meaningful and convincing formu­
lation of this important problem may be possible.

In this paper, we presented a robust and flexible theory of
average-case compilability in which the intuitive notion of
"interesting sets of models" can be formalized as a DKRF
(Definition 4.2), DKRFs can be classified (Definition 4.4),
and DKRFs can be compared (Definition 4.9). We illus­
trated the use of this theory by showing that, under a natural
probability distribution, model checking for circumscription
is compilable to the analog of the complexity class P, in our
theory.

There are many open questions for future investigation; to
conclude the paper, we list a few.

• Can additional DKRFs be classified as being inside
avg-nu-comp-P? We conjecture in particular that
Circumscription-MC(d) - along with the "standard" 3-
SAT probabilistic model with , for a sufficiently
low c - is in avg-nu-comp-P.

• Are there DKRFs complete for avg-nu-comp-C (where
C is from the polynomial hierarchy) under the avg-nu-
comp reduction, or some other notion of reduction com­
patible with the avg-nu-comp-C classes?

• Can any questions concerning the new avg-nu-comp-C
classes defined here be related to better known
complexity-theoretic hypotheses?

References
[Balcazar et al., 1995] J. L. Balcazar and J. Diaz and J.

Gabarr6. Structural Complexity I. Springer-Verlag, Berlin,
1995.

[Cadoli et a/., 2000a] Marco Cadoli, Francesco M. Donini,
Paolo Liberatore, and Marco Schaerf. Preprocessing
of intractable problems. Information and Computation,
176(2):89-120,2000.

[Cadoli et al, 1999] Marco Cadoli, Francesco M. Donini,
Paolo Liberatore, and Marco Schaerf. The size of a revised
knowledge base. Artificial Intelligence, 115(1), 25-64.

[Cadoli et al, 2000b] Marco Cadoli, Francesco M. Donini,
Paolo Liberatore, and Marco Schaerf. Space Efficiency
of Propositional Knowledge Representation Formalisms.
Journal of Artificial Intelligence Research, 13:1-31,2000.

[Cadoli et al., 1997] Marco Cadoli, Francesco M. Donini,
Marco Schaerf, and Riccardo Silvestri. On Compact Rep­
resentations of Propositional Circumscription. In Theoret­
ical Computer Science, 182:183-202.

[Cadoli et al, 1996] Marco Cadoli, Francesco M. Donini,
and Marco Schaerf. Is Intractability of Non-Monotonic
Reasoning a Real Drawback? Artificial Intelligence,
88:215-251.

[Gogic et al., 1995] Goran Gogic, Henry Kautz, Christos Pa­
padimitriou, and Bart Selman. The Comparative Linguis­
tics of Knowledge Representation. In Proceedings of the
14th International Joint Conference on Artificial Intelli­
gence, pages 862-869, Montreal, Canada, 1995.

[Goldreich, 1997] Oded Goldreich. Notes on Levin's Theory
of Average-Case Complexity. Electronic Colloquium on
Computational Complexity (ECCC) 4(58): 1997.

[Gurevich, 1991a] Yuri Gurevich. Average case complete­
ness. Journal of Computer and System Sciences, 42:346-
398,1991.

[Gurevich, 1991b] Yuri Gurevich. Average case complexity.
In Proceedings of the 18th International Colloquium on
Automata, Languages and Programming, volume 510 of
Lecture Notes in Computer Science, Springer, pages 615-
628,1991.

[Gurevich, 1989] Yuri Gurevich. The challenger-solver
game: variations on the theme of P =? NP? EATCS Bul­
letin, pages 112-121, 1989.

[Impagliazzo, 1995] Russell Impagliazzo. A personal view
of average-case complexity. In Proceedings of the 10th
Conference on Structure in Complexity Theory, IEEE
Computer Society Press, pages 134-147, 1995.

[Johnson, 1984] David Johnson. The NP-completeness col­
umn: an ongoing guide. Journal of Algorithms, 5:284-299,
1984.

[Kautz et al, 1995] Henry Kautz, Michael Kearns, and Bart
Selman. Horn approximations of empirical data. Artificial
Intelligence, 75:129-145.

[Khardon and Roth, 1996] Roni Khardon and Dan Roth.
Reasoning with Models. Artificial Intelligence 87:187-
213, November 1996.

[Levin, 1986] Leonid Levin. Average case complete prob­
lems. SIAM Journal on Computing, 15:285-286, 1986.

[Papadimitriou, 1996] Christos Papadimitriou. The Com­
plexity of Knowledge Representation. In Proceedings of
the Eleventh Annual IEEE Conference on Computational
Complexity, pages 244-248, Philadelphia, Pennsylvania,
May 1996.

[Wang, 1997] Jie Wang. Average-case computational com­
plexity theory. (L. Hemaspaandra and A. Selman, eds.),
Complexity Theory Retrospective I I , Springer-Verlag,
pages 295-328,1997.

460 KNOWLEDGE REPRESENTATION

