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Abstract 

Compilability is a fundamental property of knowl­
edge representation formalisms which captures 
how succinctly information can be expressed. A l ­
though many results concerning compilability have 
been obtained, they are all "worst-case" results. 
We develop a theory of average-case compilability 
which allows for the formal comparison and clas­
sification of knowledge representation formalisms 
"on average." 

1 Introduction 
By now, a multitude of knowledge representation formalisms 
have been proposed and studied in the literature, for exam­
ple, propositional logic, default logic, and circumscription 
- to name a few. The comparison of these formalisms has 
been a major research theme over the past decade. In par­
ticular, many results have been obtained on the computa­
tional complexity of inference and model checking - core 
reasoning tasks associated with each formalism. The funda­
mental property of compilability, which measures how effi­
ciently or succinctly a formalism represents knowledge, has 
also been studied.1 There is now a rich body of results 
concerning compilability; however, all of these results ad­
dress the "worst-case", and are thus susceptible to the com­
plaint that they do not address "average" or "typical" com­
pilability. The main contribution of this paper is a theoret­
ical framework providing a language and tools for compar­
ing and classifying the compilability of formalisms on aver­
age. Our framework is built on notions and insights from the 
theory of compilability clases due to Cadoli et al. 12000a; 
2000b] and the theory of average-case time complexity due 
to Levin 11986]. 

1.1 Background 

Compilability. Informally, a formalism A is compilable to 
a formalism B if for every knowledge base x in formalism 
A, there is a knowledge base in formalism D representing 
the same information as x with size polynomial in the length 

In previous work, compilability has also been called space effi­
ciency and succinctness. 

of xr Intuitively, this means that formalism B is at least as 
space efficient as formalism A: whatever can be expressed in 
formalism A can be expressed, with about the same level of 
succinctness, in formalism B. 

A number of papers compared the compilability of dif­
ferent formalisms [Kautz et ai, 1995; Gogic el al, 1995; 
Khardon and Roth, 1996; Cadoli et al 1996; 1997; 1999; 
2000a; 2000b]. In many cases, these papers rigorously prove 
that one formalism B is strictly more succinct than another 
formalism A - that is, A is compilable to B, but B is not 
compilable to A. This means that there is no way to trans­
late knowledge bases in B to knowledge bases in A, unless 
the translation is allowed to increase the size of knowledge 
bases by a super-polynomial amount. In other words, any 
translation of knowledge bases in B to knowledge bases in 
A is inherently exponential in size.3 Observe that this state­
ment has the same flavor as the famous "P does not equal NP" 
conjecture from classical complexity theory. This conjecture 
holds that no algorithm can solve an NP-complete problem, 
unless the algorithm is allowed to take super-polynomial time 
on some inputs - or, put differently, any algorithm solving a 
NP-complete problem is inherently exponential in time. 

Notice that the above definition of "formalism A is com­
pilable to formalism B" docs not take into account the dif­
ficulty or complexity of computing the translation between 
knowledge bases in A and knowledge bases in B. This non-
uniformity is a key feature of the definition: the existence of 
a succinct translation is sufficient; an efficiently computable 
translation is not necessary. It turns out that many proofs of 
non-compilability - that is, proofs of statements of the form 
"formalism B is not compilable to formalism A" - rely on re­
sults from non-uniform complexity theory. Such proofs often 
are not unconditional, but are contingent upon the widely be­
lieved complexity-theoretic assumption that the polynomial 
hierarchy does not collapse.4 

2ln the technical portion of this paper, this definition will be cap­
tured formally by the rcducibility. 

3Here, by "exponential" we mean exceeding every polynomial 
infinitely often. 

4The polynomial hierarchy is a collection of complexity classes 
which includes P, NP, co-NP, and other classes which are in essence 
generalizations of these three classes. For the intents and purposes 
of this paper, this assumption can be thought of as being similar to 
the (perhaps better known) assumption that P does not equal NP (In 
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Compilability classes. The initial papers that demonstrated 
non-compilability results [Kautz et at., 1995; Gogic et al, 
1995; Khardon and Roth, 1996; Cadoli et al., 1996; 1997; 
1999] were based on ad hoc proofs, each of which iso­
lated two particular formalisms and then demonstrated non-
compilability of one to the other. In [Cadoli et al, 2000a; 
2000b], new complexity classes measuring compilability, 
called compilability classes, were introduced; for every clas­
sical complexity class C, it is possible to define a compil­
ability class analog of C. The theory of compilability classes 
made it possible to systematize proofs of non-compilability 
much in the way classical complexity theory makes it pos­
sible to systematize proofs of intractability. A proof that a 
language is NP-complete is demonstration that there is no 
polynomial-time algorithm for the language, and that the lan­
guage has the same time complexity (up to a polynomial) as 
all other NP-complete languages. Likewise, a proof that a for­
malism is complete for the compilability class analog of NP 
is demonstration that it is not compilable to any formalism in 
the compilability class analog of P, and that the language is 
compilable to and from all other formalisms complete for the 
compilability class analog of NP.5 (More generally, when C 
is a class from the polynomial hierarchy, a proof that a for­
malism is complete for the compilability class analog of C is 
demonstration that it is not compilable to any formalism in 
the compilability class analog of C", if C" is below C in the 
polynomial hierarchy.) 

In addition to providing a methodology for comparing 
formalisms with respect to compilability, the compilability 
classes capture formally the notion of off-line preprocessing. 
Preprocessing a knowledge base off-line can be of great util­
ity if the resulting, processed knowledge base is in a form 
that allows for quick, on-line response to queries (and if many 
queries are expected). Membership of a formalism A in the 
compilability class analog of P will mean that any knowledge 
base x of A can be preprocessed into a form that does not un­
reasonably increase the size of x, but permits queries to x to 
be processed efficiently (that is, in polynomial time). 

The compilability classes are part of a formal framework 
for discussing compilability, which includes robust notions 
of reduction and completeness. Not only is this framework 
extremely appealing from a theoretical point of view, but the 
compilability classes are rife with natural complete problems 
- the sine qua non of complexity classes purporting to be use­
ful in performing problem classification. Indeed, there do not 
appear to be any knowledge representation formalisms which 
defy classification as complete for a compilability class. On 
the downside, many of the existing classification results are 
quite negative, showing that a formalism is complete for (the 
compilability class analog of) NP, coNP, or a higher level of 
the polynomial hierarchy. 

fact, if the polynomial hierarchy does not collapse, then P does not 
equal NP.) 

5Our discussion presumes that the polynomial hierarchy does not 
collapse. 

1.2 Motivations and Approach 
Worst-case versus average-case. Although crisp theo­
retical results can be obtained concerning compilability 
and non-compilability, these are worst-case notions: non-
compilability of formalism B to formalism A implies that 
there is an infinite family of knowledge bases in B that can­
not be succinctly translated into knowledge bases in A. Non-
compilability does not say anything about the density or fre­
quency of instances from the family of untranslatable knowl­
edge bases. This observation calls into question the real-
world utility of studying compilability (as defined above); 
if formalism B is compilable to formalism A for all but a 
pathological family of knowledge bases arising infrequently 
in practice, then formalism B is, for pragmatic purposes, 
compilable to formalism A. Therefore, a theory which per­
mits formal results of compilability on average is necessary. 
This paper lays the foundations for a theory of average-case 
compilability. 

Notice that our objection to the worst-case nature of non-
compilability is not truly novel. It has long been observed 
that NP-completeness of a language L does not imply hard­
ness of L on typical or real-world instances. Our objection is 
really this old observation, masquerading in the new context 
of compilability. 

One theory that was developed in response to this old 
observation is the theory of average-case time complexity 
(ACTC), initiated by Levin [1986]. Our theory of average-
case compilability will be built on a key notion of ACTC -
that of "polynomial on average." Moreover, there are useful 
analogies between our theory and the theory of ACTC. Con­
sequently, we provide a brief overview of ACTC. 

Average-case time complexity. By definition, a language 
L (consisting of strings) is in P if there is an algorithm decid­
ing membership for L in polynomial time. The idea behind 
ACTC is to relax the requirement in this definition that a suit­
able algorithm is one that always runs in polynomial time; 
this is done by placing a probability distribution on all strings 
and allowing an algorithm to take super-polynomial times on 
unlikely strings. 

A language paired with a probability distribution over all 
strings is called a distributional language. While languages 
are the objects classified by classical complexity theory, dis­
tributional languages are the objects classified by ACTC. A 
distributional language is in the average-case version 
of P, average-P, if there is an algorithm deciding member­
ship for L in time polynomial on - a concept to be 
discussed formally later in this paper. 

There is a vast literature on ACTC; for more information, 
we recommend the overviews/surveys [Johnson, 1984; Gure-
vich, 1989; 1991a; 1991b; Impagliazzo, 1995; Wang, 1997; 
Goldreich, 1997] as starting points. 

Average-case compilability. In laying down a theory for 
average-case compilability, we want to "soften" the definition 
of "formalism A is compilable to formalism J3" by relaxing 
the requirement that there needs to be a translation of knowl­
edge bases of strictly polynomial size. This is done roughly in 
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analogy to the described development of ACTC. We first de­
fine a distributional formalism to be a formalism paired with 
a probability distribution over all knowledge bases. Then, a 
distributional formalism is (informally) compilable on 
average to a formalism B if there is a translation of knowl­
edge bases of size polynomial on 

Using the notion of "compilable on average," we de­
fine average-case analogs of compilability classes. These 
average-case analogs contain distributional formalisms, in 
contrast to the compilability classes themselves, which con­
tain pure formalisms. Intuitively, membership of a distri­
butional formalism in the average-case compilability 
class analog of P wil l mean the following: any knowledge 
base x of A can be preprocessed in a way that tends not to in­
crease the size of x by more than a polynomial (with respect 
to U), and that allows for rapid processing of queries to x. 

2 Preliminaries 
In this section, we present notation and assumptions that will 
be used throughout the paper. 

We assume to be a fixed finite alphabet which is used 
to form strings. We will at times assume that pairs of strings 
(that is, elements of are represented as strings (that 
is, elements of ; when this assumption is made, we as­
sume that the representation is via a pairing function 
such that the length of (x, y) is linear in For a string 

denote that is, the length of x written 
in unary notation. 

We assume that the reader has familiarity with basic no­
tions of computational complexity theory - in particular, the 
classes of the polynomial hierarchy (P, NP, CO-NP, 
etc.) and the polynomial many-one reduction [Balcdzar 
et al., 1995]. A language is a subset of , that is, a set of 
strings. A complexity class is a set of languages. When C 
is a complexity class and is a reduction, we say that C is 
compatible with if for all languages A and B, A B and 
B C imply that A C. We will assume throughout that 
every complexity class C is compatible with the polynomial 
many-one reduction We say that a language B is com­
plete for a complexity class C under reductions if B C 
and for all 

A function is polynomial-size if there exists 
a polynomial P such that for all 
A function / : is polynomial-time computable if 
there exist a polynomial p and a Turing machine M such that 
for all , the Turing machine M, on input x, produces 
f(x) in time less than 

Definition 2.1 A knowledge representation formalism (KRF) 
is a subset of When F is a KRF and we let 
Fx denote the set 

Intuitively, each can be thought of as a knowledge 
base (KB), representing the information The following 

6In the technical portion of this paper, this definition will be cap­
tured formally by the reducibility. 

7Notice that every polynomial-time computable function is 
polynomial-size, but not every polynomial-size function is 
polynomial-time computable. 

are examples of KRFs which capture model checking and in­
ference for 3-SAT formulas. 

Propositional-Logic-MC 
{ (x, y) : x is a 3-SAT formula and y is a model of x} 

Clause-Inference 
: x is a 3-SAT formula, y is a 3-clause, and 

Notice the generality of the definition of a KRF; the knowl­
edge represented (the various may be models, formulas, 
or some altogether different combinatorial structures. 

3 Compilability classes and reductions 
This section reviews the theory of compilability classes. 
There are two different types of compilability classes, uni­
form and non-uniform, but our focus is on the latter, for rea­
sons discussed below. We emphasize that none of the defini­
tions, theorems, or insights in this section are our own, but 
rather, are due to [Cadoli et al., 2000a; 2000b], on which our 
presentation is based. 

The formal definition of non-uniform compilability may 
by itself look non-intuitive, so we first attempt to describe 
some of the ideas behind this definition, before giving the 
actual definition. Intuitively, we want to say that a KRF F 
is compilable if membership queries can be decided 
efficiently after the KB x is preprocessed into a new KB / ( x ) . 
We want to constrain the size of the new ; otherwise, 
it may be prohibitively large to store. We arrive at a candidate 
definition of compilability: say that a KRF F is in COmp-C 
if for some polynomial-size function / and a second KRF 

the property 
for all pairs if and only if 

holds. Notice that the class C constrains the difficulty of de­
ciding a post-processing query of course, such 
queries can be decided efficiently when C = P. However, to 
permit fine classification of KRFs, we leave C as a parameter 
to the definition of COmp-C. 

The above definition misses one important detail - non-
uniformity. If F is a KRF such that Fx is always a finite 
set, F can never be complete for comp-C when C is a class 
of the polynomial hierarchy above P. At the same time, 
there are KRFs with this "finiteness" property that are prov-
ably not in comp-P. As an example, Clause-Inference is 
in COmp-CO-NP, but is neither comp-CO-NP-complete nor 
in comp-P.8 Hence, the classes comp-C fail to capture the 
compilability of some very natural KRFs. (For more informa­
tion on these matters, as well as proofs of the claims, we refer 
the reader to [Cadoli et al, 2000a].) To resolve this issue, we 
allow the length of a query to be known to the compilation 
mapping / . 

Definition 3.1 (nu-COmp-C) Let C be a complexity class. 
A KRF F belongs to nu-COmp-C if there exists a binary 
polynomial-size function and a KRF F' in 
C such that the following property holds: 

8This discussion presumes that the polynomial hierarchy does 
not collapse. 
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The fact that the compilation mapping may use the length 
of y may seem a bit strange; after all, we wish to capture, 
after preprocessing on a knowledge base x, the difficulty of 
answering queries of the form y Fx. However, it is rea­
sonable to assume that we will never be interested in such 
a query when the length of y greatly exceeds that of x -
since such a query requires a large amount of time to even 
write down. Under this assumption, Definition 3.1 is equiv­
alent to the "uniform" definition given above. (Formally, if 
there exists a polynomial p such that (x, y) F implies that 
\y\ p(\x\), then F is in nu-comp-C if and only if F is in 
comp-C.) 

The following notion of reduction, associated with the 
nu-COmp-C classes, allows one to compare the compilability 
of different KRFs. 
Definition 3.2 (nu-comp reducibility) A KRF F is nu-comp 
reducible to a KRF F' (denoted by if there 
exist binary polynomial-size functions fi,f'2 • 
and a binary polynomial-time computable function g : 

such that the following property' holds: 
for all pairs if and only if 

Theorem 3.3 The nu-comp reduction is transitive and is 
compatible with the class nu-comp-C (for every complexity 
class C). 

We note that Clause-Inference is nu-comp-co-NP-
complete, under nu-comp reductions. 

Finally, we observe that the nu-comp-C analog of the 
polynomial hierarchy does not collapse. 

Theorem 3.4 lfC\ and C>L are classes of the polynomial hi­
erarchy such that C2 is higher than C1, then nu-COmp-C\ 
is properly contained in nu-COmp-C2 (under the assumption 
that the polynomial hierarchy does not collapse). 

4 Average-case compilability 
In this section, we present our new theory of average-case 
compilability. 

Definition 4.1 A probability distribution is a real-
valued function from such that 

The nu-comp-C classes are used to classify and compare 
KRFs; our new classes will be used to classify and compare 
what we call distributional KRFs. 

Definition 4.2 A distributional KRF (DKRF) is a pair (F, u) 
consisting of a KRF F and a probability distribution u. 

We now define the notion of "polynomial on average.1' This 
definition is exactly that used in the theory of average-case 
time complexity (up to appropriate changes of the domain 
and range of the functions whose size we wish to measure). 

We are now ready to define our new "average-
compilability" classes; formally, each class is a set of DKRFs. 
The definition can be viewed as a relaxation of Definition 3.1. 
The difference is that the translation mapping 

need no longer be of strictly polynomial size, but is now 
only required to be of size polynomial on average. 

Definition 4.4 (avg-nu-COmp-C) Let C be a complexity 
class. A DKRF (F, p) belongs to avg-nu-COmp-C if there 
exists a binary function of size polynomial 
on p-average and a KRF F' in C such that the property of 
Definition 3.1 holds. 

There is an alternative way to define avg-nu-COmp-C, 
in terms of the following type of reduction, which relates 
DKRFs to KRFs. 

Definition 4.5 (dist-nu-comp reducibility) A DKRF (F, p) 
is dist-nu-comp reducible to a KRF F' (denoted by 
F i f there exist binary polynomial-size 
f u n c t i o n s a n d a binary polynomial-
time computable function such that 

is of size polynomial on -average*9 and the property 
of Definition 3.2 holds. 

Theorem 4.6 Suppose that is a DKRF and that C is a 
complexity class. The DKRF is in avg-nu-COmp-C 
if and only if F' for some F' in 
nu-comp-C. 

This theorem has an important corollary: if nu-comp-C 
has a complete KRF F' then the DKRFs contained in 
avg-nu-comp-C are exactly those which reduce to F'. In or­
der to establish the corollary, the following lemma is needed. 

Lemma 4.7 Suppose that is a DKRF and that F' and 
F" are KRFs. If 
F",then 

Roughly, Lemma 4.7 can be viewed as a proof of transitiv­
ity: i f r e d u c e s to F' and F' reduces to F" , then 
reduces to (under the right notions of reduction). 

Corollary 4.8 Suppose that is a DKRF C is a com­
plexity class and the KRF Ff is nu-COmp-C-complete un­
der nu-comp reductions. Then, the DKRF is in 
avg-nu-comp-C if and only if 

It is worth noting here that the class nu-comp-C has a 
complete KRF under nu-comp reductions whenever the un­
derlying complexity class C has a complete language under 

reductions fCadoli et al, 2000a]. 
We now give a notion of reduction for the comparison of 

DKRFs. When u and v are probability distributions, we say 
that v dominates p if there exists a polynomial p such that for 
all 

Definition 4.9 (avg-nu-comp reducibility) A DKRF is 
avg-nu-comp reducible to a DKRF if there exist a nu-
comp reduction ( / 1 , f2, g)from F to Ff and a probability dis­
tribution dominating p such that 
where the sum is over all (x, /) such that [f\(x, I) = y and 
there exists 
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Theorem 4.10 The avg-nu-comp reduction is transitive and 
is compatible with the class avg-nu-COmp-C (for every com-
plexity class C). 

5 Discussion 
We now discuss some of the considerations behind the defi­
nitions in the previous section. When 
is a probability distribution and S is a subset of 
let denote the conditional distribution of on 5, that 
is, the function defined on , wi th value equal to 

• Why is Levin s notion of polynomial-on-average used in­
stead of the naive formulation of expected polynomial size? 

According to the naive formulat ion, a function / : 
has expected polynomial size (with respect to μ) if 

there exists k 1 such that for all n, 

It is well known that this notion of expected polynomial is 
not closed under polynomials (see for example [Goldreich, 
1997]). For instance, there exist functions 

and a distribution such that and 
/ has expected polynomial size, but /' fails to have expected 
polynomial size. 

In our average-case compilabi l i ty theory, this "lack of clo­
sure under polynomials" problem manifests itself in the fo l ­
lowing way. Suppose that, using the alternative definition of 
avg -nu -comp-C given in Theorem 4.6, the KRF F' is wi t­
ness to the membership of D K R F in avg-nu-comp-C, 
that is, '. Surely, if F" is at least as 
space efficient as F' (that is, , then one ex­
pects that F" would also witness the membership of (F, μ) in 
avg -nu -comp-C; this is the content of Lemma 4.7, on which 
Corollary 4.8 relies. However, if expected polynomial size 
is used instead of polynomial on average in Definit ion 4.3, 
Lemma 4.7 breaks down - then, there would exist a D K R F 
(F, μ) and KRFs F' and F" such that 
F\ F' F", and does not 
reduce to F". 

• Why does a DKRF have one probability distribution -
over all elements of - as opposed to an ensemble 
of distributions, each of which is over some finite subset of 

Defining a D K R F to be a K R F paired with an ensemble 
of distributions (each of which is, say, defined on a different 
string length) may seem more natural than the given defini­
t ion, where there is only one distribution, on all strings. 

However, the literature on ACTC contains many alterna­
tive formulations of "polynomial on average" (equivalent to 
that given in Defini t ion 4.3) and sufficient conditions for a 
function to be polynomial on average. (For example, there is 
a different formulation of Definit ion 4.3 in terms of ensem­
bles of distributions, each having finite support, in [ Impagl i-
azzo, 1995].) These give rise to alternative formulations of 
avg -nu -comp-C, and so the particular characterizations we 
give for avg -nu -comp-C ( in Defini t ion 4.4 and Theorem 4.6) 
were, in some sense, chosen over provably equal characteri­
zations on purely aesthetic grounds. 

• Why is a probability distribution over E* x 1 * as opposed 
to over E* ? After all, the knowledge bases are represented by 
elements of , and an element of ' E * x 1* is just a "slice" 
of a knowledge base. 

Let F be a KRF conforming to the "bounded-query-
length" assumption discussed in Section 3, that is, suppose 
that there exists a polynomial p such that (x , y) E F implies 
|y| < P(IxI)- Then, a distribution over E* naturally induces a 
distribution over E* x 1* for the padded version of F defined 
as F' = {(x,z) : z - yDk, \z\ = p(\x\), (x,y) € F] (where 
□ is an extra padding symbol), which has the property that all 
strings in Fx. have the same length, for any x. Note that all of 
the example KRFs in this paper already have this property. 

6 Example: model checking for 
circumscription 

In this section, we illustrate the use of our new the­
ory by showing that model checking for circumscription 
on 3-SAT formulas (formalized below and denoted by 
C i rcumscr ip t ion-MC(d) ) is in avg-nu-comp-P, under a nat­
ural probability distribution where formulas are generated 
by including each clause independently with identical prob­
ability. Since C i rcumscr ip t ion-MC(d) is nu-comp-co-NP-
hard,10 this result gives a natural D K R F which is contained 
in avg-nu-COmp-P, but which has a KRF which is provably 
not in nu-COmp-P (Theorem 3.4). 

Suppose that is a 3-SAT formula over 
{v1,..., vn], and 5 is a subset of Vn. We say that a model 
a:Vn -> { 0 , 1 } o f ' i f for all 
other models b : i for all 
s S] implies that In addition, 
a model a : S { 0 , 1 } of is said to be a minimal model if 
it is the restriction of a S-minimal model a : Vn --> { 0 , 1 } (of 

We define C i rcumscr ip t ion-MC(d) to be the set 

is a 3-SAT formula on variable set on Vn and 
is a minimal model of 

Let Wn denote the set 
is a 3-SAT formula on Vn and a : ' —> 

{ 0 , 1 } is an assignment)}, which is the set of all syn­
tactically wel l- formed pairs that may or may not be in 
Ci rcumscr ip t ion-MC(d)-

Theorem 6.1 Let vn,c denote the distribution on 3-SAT for­
mulas over Vn where a formula is generated by including 
each of the 8(n/3) 3-clauses independently with probability 

r all real numbers c > 0 and natural numbers 
Let (with c > 0 and d (0, (0,1); be any dis­

tribution such that 

• for all n, and 

• = 0 i f i s a 3-SAT formula on 
[dn\. 

10This can be shown using a result in [Gogic et al, 1995]. 
11 Here, denotes the usual total ordering on {0 ,1} where 
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This theorem is established using techniques from proba­
bilistic combinatorics. It is worth noting that at c = 3.73, 
the expected number of satisfying assignments that a random 
3-SAT formula has is exponential. 

7 Conclusions and future work 
In [Papadimitriou, 1996], Papadimitriou writes: 

The ultimate and most conclusive criterion for 
comparing knowledge representation formalisms is 
to compare their expressive power not on arbitrary 
sets of models, but on the "interesting" sets of mod­
els, the ones that come up in the "real world." We 
still hope that a meaningful and convincing formu­
lation of this important problem may be possible. 

In this paper, we presented a robust and flexible theory of 
average-case compilability in which the intuitive notion of 
"interesting sets of models" can be formalized as a DKRF 
(Definition 4.2), DKRFs can be classified (Definition 4.4), 
and DKRFs can be compared (Definition 4.9). We illus­
trated the use of this theory by showing that, under a natural 
probability distribution, model checking for circumscription 
is compilable to the analog of the complexity class P, in our 
theory. 

There are many open questions for future investigation; to 
conclude the paper, we list a few. 

• Can additional DKRFs be classified as being inside 
avg-nu-comp-P? We conjecture in particular that 
Circumscription-MC(d) - along with the "standard" 3-
SAT probabilistic model with , for a sufficiently 
low c - is in avg-nu-comp-P. 

• Are there DKRFs complete for avg-nu-comp-C (where 
C is from the polynomial hierarchy) under the avg-nu-
comp reduction, or some other notion of reduction com­
patible with the avg-nu-comp-C classes? 

• Can any questions concerning the new avg-nu-comp-C 
classes defined here be related to better known 
complexity-theoretic hypotheses? 
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