
LADDER: 
A Language to Describe Drawing, Display, and Editing in Sketch Recognition 

Tracy Hammond and Randall Davis 
Massachusetts Institute of Technology 

200 Technology Square, NE43 
Cambridge, MA 02139 

{hammond, davis}@ai.mit.edu 

Abstract 

We have created LADDER, the first language to 
describe how sketched diagrams in a domain are 
drawn, displayed, and edited. The difficulty in cre­
ating such a language is choosing a set of prede­
fined entities that is broad enough to support a wide 
range of domains, while remaining narrow enough 
to be comprehensible. The language consists of 
predefined shapes, constraints, editing behaviors, 
and display methods, as well as a syntax for spec­
ifying a domain description sketch grammar and 
extending the language, ensuring that shapes and 
shape groups from many domains can be described. 
The language allows shapes to be built hierarchi­
cally (e.g., an arrow is built out of three lines), and 
includes the concept of "abstract shapes", analo­
gous to abstract classes in an object oriented lan­
guage. Shape groups describe how multiple do­
main shapes interact and can provide the sketch 
recognition system with information to be used 
in top-down recognition. Shape groups can also 
be used to describe "chain-reaction" editing com­
mands that effect multiple shapes at once. To 
test that recognition is feasible using this language, 
we have built a simple domain-independent sketch 
recognition system that parses the domain descrip­
tions and generates the code necessary to recognize 
the shapes. 

1 Introduction 
To date, sketch recognition systems have been domain-
specific, with the recognition details of the domain hard-
coded into the system. Developing such a sketch interface is a 
substantial effort. We propose instead that recognition be per­
formed by a single domain-independent recognition system 
that uses a domain specific sketch grammar (an approach used 
with some success in speech recognition [Zue et al, 1990; 
Hunt and McGlashan, 2002]). Programmers could then cre­
ate new sketch interfaces simply by writing a sketch grammar 
describing the domain-specific information. 

We have created LADDER, a sketch description language 
that can be used to describe how shapes and shape groups are 
drawn, edited, and displayed. These descriptions primarily 
concern shape, but may include other information helpful to 

the recognition process, such as stroke order or stroke direc­
tion. The specification of editing behavior allows the system 
to determine when a pen gesture is intended to indicate edit­
ing rather than a stroke. Display information indicates what 
to display after strokes are recognized. 

The language consists of predefined shapes, constraints, 
editing behaviors, and display methods, as well as a syntax 
for specifying a domain description and extending the lan­
guage. The difficulty in creating such a language is ensur­
ing that domain descriptions are easy to specify, and that 
the descriptions provide enough detail for accurate sketch 
recognition. To simplify the task of creating a domain de­
scription, shapes can be built hierarchically, reusing low-
level shapes. Shapes can extend abstract shapes, which de­
scribe shared shape properties, preventing the application de­
signer from having to redefine these properties several times. 
The language has proven powerful enough to describe shapes 
from several domains. The language enables more accurate 
sketch recognition by supporting both top-down and bottom-
up recognition. Descriptions of how shapes may combine 
can aid in top-down recognition and can be used to describe 
"chain-reaction" editing commands. 

Our contribution is in creating LADDER, the first sketch­
ing language to incorporate editing, display, and shape group 
information. To test our language, we have built a simple 
domain-independent sketch recognition system that parses 
the domain description and successfully recognizes shapes 
based on these descriptions. 

Section 2 describes the components of the language, in­
cluding the predefined shapes, constraints, editing behaviors, 
and display methods available. Section 3 describes the syn­
tax and content of a sketch grammar designed in the language. 
Section 4 describes a system we have implemented to test the 
language and ensure that shapes in a domain can be recog­
nized based on their descriptions. Section 5 describes related 
work done in the development in sketch languages. 

2 Language Contents 
The language consists of predefined shapes, constraints, edit­
ing behaviors, and display methods. Figure 2 shows an ex­
ample description for OpenArrow drawn in (Figure 1). The 
description of a shape contains a list of components (the el­
ements from which the shape is built), geometric constraints 
on those components, a set of aliases (names that can be used 

KNOWLEDGE REPRESENTATION 461 



2.1 Predefined Shapes 

The language includes a number of predefined primitive and 
non-primitive shapes, usable as building blocks in describing 
other shapes. The primitive shapes are Shape, Point, Path, 
Line, BezierCurve, and Spiral. Circle, Arc, and Ellipse are 
examples of non-primitive shapes included in the language 
library; all three are more specific versions of the primitive 
shape Spiral. The OpenArrow in Figure 2 is a non-primitive 
shape built out of three primitive shapes. 

The language uses an inheritance hierarchy; Shape is an 
abstract shape which all other shapes extend. Shape provides 
a number of components and properties for all shapes, includ­
ing boundingbox, centerpoint, width, and height. Each prede­
fined shape may have additional components and properties; a 
Line, for example, also has Pl. p2 (the endpoints), midpoint, 
length, angle, and slope. Components and properties for a 
shape can be used hierarchically in shape descriptions. When 
defining a new shape the components and properties are those 
defined by Shape, and those defined by the components and 
aliases section. 

2.2 Predefined Constraints 
New shapes are defined in terms of previously defined shapes 
and constraints between them. For instance, the OpenArrow 
in Figure 2 contains the constraint (acute-meet headl shaft), 
which indicates that headl and shaft meet at a point and form 
an acute angle in a counter-clockwise direction from headl 
to shaft. (Angles are measured in a counter-clockwise direc­
tion.) 

A number of predefined constraints are included in the lan­
guage, including: perpendicular, parallel, collinear, same-
side, opposite-side, coincident, connected, meet, intersect, 
tangent, contains, concentric, larger, near, draw-order, equal-
length, angle, angle-dir, acute, obtuse, acute-
meet, and obtuse-meet. If a sketch grammar consists of only 
the constraints above, the shape is rotationally invariant. 

There are also predefined constraints that are valid only 
in a particular orientation, including horizontal, verti­
cal, pos-slope, neg-slope, left-of, right-of above, below, 
same-H-pos, same-V-pos, above-left, above-right, below-left, 
below-right, centered-below, centered-above, centered-left, 
centered-right, and angleL, where (angleL line l degrees) 
specifics that the angle between a horizontal line pointing 
right and linel is degrees. 

There is an additional constraint: is-rotatable, which im­
plies the shape can be found in any orientation. If is-rotatable 
is specified along with an orientation-dependent constraint, 
there must be an angleL, horizontal, or vertical constraint 
specified, which serves to define the orientation and set a rel­
ative coordinate system. For example, the two angle-meet 
constraints could have been replaced with: 

in which case the shaft is the reference line. 

2.3 Predefined Ed i t ing Behaviors, Act ions, and 
Triggers 

Describing editing gestures permits the recognition system 
to discriminate between sketching (pen gestures intended to 
leave a trail of ink) and editing gestures (pen gestures in­
tended to change existing ink), and permits us to describe the 
desired behavior in response to a gesture. 

In order to encourage interface consistency, the language 
includes a number of predefined editing behaviors described 
using the actions and triggers above. One such example is 
Draglnside, defines that if you click-hold-drag the pen start­
ing inside of the bounding box of a shape, the entire shape 
automatically moves with it. 

When defining a new editing behavior particular to a do­
main, there are two things to specify: the trigger - what sig­
nals an editing command- and the action - what should hap­
pen when the trigger occurs. The language has a number of 
predefined triggers and actions to aid in describing editing 
behaviors. 

For instance, in Figure 2, the OpenArrow contains three 
editing behaviors. The first editing behavior says that if you 
click and hold the pen over the shaft of the OpenArrow, 
when you drag the pen, the entire OpenArrow wil l translate 
along with the movement of the arrow. The second editing be­
havior states that if you click and hold the pen over the head 

462 KNOWLEDGE REPRESENTATION 



of the arrow, the head of the arrow wil l follow the motion of 
the pen, but the tail of the arrow wil l remain fixed and the 
entire OpenArrow wil l stretch like a rubber band (translat­
ing, scaling, and rotating) to satisfy these two constraints and 
keep the OpenArrow as one whole shape. Al l of the edit­
ing behaviors also change the pen's cursor as displayed to the 
sketcher, and display moving handles to the sketcher to let the 
sketcher know that she performing an editing command. 

The possible editing actions include wait, select, deselect, 
color, delete, translate, rotate, scale, resize, rubber-band, 
show-handle, and set-cursor. To give an example: 
( rubber-band s h a p e - o r - s e l e c t i o n f i x e d - p o i n t move-point 
[new-po in t ] ) 
translates, scales, and rotates the shape-or-selection so 
that the fixed-point remains in the same spot, but that the 
move-point translates to the new-point. If new-point is not 
specified, move-point translates according to the movement 
of the pen. 

The possible triggers include: click, double-click, click-
hold, click-hold-drag, draw, draw-over, scribble-over, and 
encircle. Possible triggers also include any action listed 
above, to allow for "chain-reaction" editing. 

Shape groups allow designers to define "chain-reaction" 
editing behaviors. For instance, the designer may want to 
specify that when we move a rectangle, if there is an arrow 
head inside of this rectangle, the arrow should move with the 
rectangle. 

2.4 Predefined Display Methods 

An important part of a sketching interface is controlling what 
the user sees after shapes are recognized. The designer can 
specify that the original strokes should remain, or instead that 
a cleaned version of the strokes should be displayed. In the 
cleaned version, the original strokes are fit to straight lines, 
clean curves, clean arcs, or a combination. 

Another option is to display the ideal version of the strokes. 
In this case, lines that are supposed to connect at their end 
points actually connect and lines that are supposed to be par­
allel are actually shown as parallel. In the ideal version of the 
strokes, all of the noise from sketching is removed. 

It may be that we don't want to show any version of the 
strokes at all, but some other picture. In this case, we can ei­
ther place an image at a specified location, size, and rotation, 
or we can create a picture built out of predefined shapes, such 
as circles, lines, and rectangles. 

The pre-defined display methods include: original-strokes, 
cleaned-strokes, ideal-strokes, circle, line, point, rectangle, 
text, color, and image. Each method includes color as an op­
tional argument. 

3 Specifying a Domain Description 
A domain description contains a list of the domain shapes 
and shape groups, as well as definitions for each of them. De­
scriptions can be hierarchical and can refer to other shapes 
in the language. This section provides examples from the 
domain description sketch grammar of UML (Unified Mod­
elling Language) class diagrams [Booch et al, 1998]. 

3.1 Indicating Domain Definitions 
The compiler uses a list of domain shapes and shape groups 
to confirm that each shape is properly defined and to speed 
recognition by creating recognizers only for sub-shapes 
needed by the domain. 

3.2 Def ining Shapes 
A domain shape is a shape that is meaningful in the do­
main. Geometric shapes usually occur in several domains and 
are the building blocks of the domain shapes. For instance, 
in the domain of UML class diagrams, the domain shapes 
(followed by their geometric shape component) are: general 
classes (represented by rectangles), interface classes (circles), 
interface associations (lines), dependency associations (open-
headed arrows), aggregation associations (diamond-headed 
arrows), inheritance associations (triangle-headed arrows), 
information associations (dotted lines or dotted open arrows). 

A shape definition includes primarily geometric informa­
tion, but can include other drawing information that may be 
helpful to the recognition process, such as stroke order or 
stroke direction. A shape definition is composed of seven 
sections. Al l sections are optional except the components sec­
tion. 

1. The description contains a textual description of the 
shape, e.g., "an arrow with a triangle-shaped head " 

2. The is-a section specifies any class of abstract shapes 
(Section 3.3) that the shape may be a part of. This is 
similar to the extends property in Java. Al l shapes extend 
the abstract shape Shape. 

3. The components section lists the components of the 
shape. For example, the TriangleArrow in Figure 3 is 
built out of the OpenArrow from Figure 2 and a Line. 
Components can be accessed hierarchically. 

4. The constraints section specifics relationships between 
the components. For example, in the TriangleArrow in 
Figure 3, (coincident head3.pl headl.pl) specifies that 
an endpoint of head3 and an endpoint of head I are lo­
cated at the same point. 
The constraints section can specify both hard con­
straints, such as the one listed above, and soft con­
straints, which are specified by the keyword soft. Hard 
constraints are always satisfied in the shape, but soft con­
straints may not be. Soft constraints can aid recognition 
by specifying relationships that usually occur. For in­
stance, in Figure 3 the shaft of the arrow is commonly 
drawn before the head of the arrow, but the arrow should 
still be recognized even if this constraint is not satisfied. 

5. The aliases section allows us to compute certain prop­
erties and name them for use later. For instance, in Fig­
ure 3, headl is defined and used in a constraint for sim­
plicity. Components specified in the aliases section can 
be accessed hierarchically. For instance, TriangleAr-
row uses head and tail from the OpenArrow in Fig­
ure 2. 

6. An editing section specifies how the shape can be 
edited. Common editing commands involve movement 

KNOWLEDGE REPRESENTATION 463 



and deletion of the shape. Each editing behavior must 
specify a trigger and an action listed in Section 2.3. 
Shapes can be defined to be moved as a whole rather 
than having to move individual lines. For instance, in 
Figure 3, one editing behavior for the TriangleArrow 
indicates that if the user presses and holds the pen on 
the shaft for a brief period, the pen wil l drag the entire 
TriangleArrow when moved. 

7. A display section specifies what should be displayed on 
the screen when the shape is recognized. This section is 
generally included only for domain shapes, not for ge­
ometric shapes. In the UMLInheritanceAssociation in 
Figure 4, the arrow wil l be displayed using straight lines 
for the arrow head and the original stroke for the shaft. 

(de f ine shape Tr iang leAr row 
( d e s c r i p t i o n "An arrow w i t h a t r i ang le - shaped head") 
(components 

(OpenArrow oa) 
(Line head3)) 

(a l i ases 
(Line sha f t oa . sha f t ) 
(Line headl oa.headl) 
(Line head2 oa.head2) 
(Point head oa.head) 
(Point t a i l o a . t a i l ) ) 

( c o n s t r a i n t s 
(co inc iden t head3.p l headl .p2) 
( co inc iden t head3.p2 head2.p2) 
( so f t draw-order sha f t headl) 
( so f t draw-order sha f t head2)) 

( e d i t i n g 
( ( t r i g g e r ( c l i c k h o l d d r a g s h a f t ) ) 

( ac t i on 
( t r a n s l a t e t h i s ) 
( se t - cu rso r DRAG) 
(show-handle MOVE t a i l h e a d ) ) ) . . . ) ) 

Figure 3: The description for an arrow with a triangle-shaped 
head. 

(def ine shape UMLInher i tanceAssoc ia t ion 
( i s - a UMLGeneralAssociation) 
(components 

(Tr iangleArrow arrow)) 
(a l i ases 

(Point head arrow.head) 
(Point t a i l a r r o w . t a i l ) 
(Line sha f t a r r o w . s h a f t ) ) 

( d i sp lay 
( o r i g i n a l _ s t r o k e s a r r ow .sha f t ) 
( c l e a n e d s t r o k e s ar row.head l arrow.head2 arrow.head3)) 

Figure 4: The domain shape UML Inheritance Association is 
defined by the geometrical shape TriangleArrow from Fig­
ure 3. 

3.3 Defining Abstract Shapes 
In the UMLInheritanceAssociation defined in Figure 4, the 
is-a section specifics that the UMLInheritanceAssociation 
is an extension of the abstract shape UMLGeneralAssocia-
tion. Abstract shapes have no concrete shape associated with 
them; they represent a class of shapes that have similar at­
tributes or editing behaviors. These attributes can be defined 
once in the abstract shape description rather than for each do­
main shape. For instance, in Figure 2 and Figure 3, notice that 
the OpenArrow and the TriangleArrow have identical edit­
ing behaviors defined. Rather than repeatedly listing these 

editing behaviors in each shape, we could create an abstract 
shape which specifies these editing behaviors. 

An abstract shape is defined similarly to a regular shape, 
except it has a required section instead of a components sec­
tion. Each shape that extends the abstract shape must define 
each variable listed in the required section, in its components 
or aliases section. 

Figure 5 presents a diagram of the inheritance hierarchy for 
the abstract and non-abstract shapes in the UML class dia­
grams domain. In UML, UMLDependency Association, the 
UMLInheritanceAssociation, the UMLAggregationAsso-
ciation, the UMLInformationAssociation, and the Inter-
faceAssociation are all links represented by arrows or lines 
and all have the same editing behavior. Thus, we can create 
the abstract shape UMLAssociation, which lists the editing 
behavior of these shapes. Figure 6 shows the abstract shape 
description of the UMLAssociation. Notice that the required 
variables are used when defining editing behaviors. 

(de f ine abs t rac t -shape UMLAssociat ion 
( i s - a Shape) 
( requ i red 

(Point head) 
(Point t a i l ) 
(L ine s h a f t ) ) 

( e d i t i n g 
( ( t r i g g e r ( c l i c k h o l d d r a g s h a f t ) ) 

( a c t i o n 
( t r a n s l a t e t h i s ) 
( se t - cu r so r DRAG) 
(show-handle MOVE t a i l h e a d ) ) ) . . . ) ) 

Figure 6: The description for the abstract class UMLAssoci­
ation. 

3.4 Defining Shape Groups 
A shape group is a collection of domain shapes that are 
commonly found together in the domain. Defining shape 
groups provides two significant benefits. Shape groups can be 
used by the recognition system to provide top-down recogni­
tion, and "chain-reaction" editing behaviors can be applied to 
shape groups, allowing the movement of one shape to cause 
the movement of another. 

In the domain of UML class diagrams, there are six le­
gal shape groups that describe the visual relationship between 
UML associations and UML classes. For example, one shape 
group consists of an association combined with a general 
class, such that the tail of the association is inside or near the 
general class shown in Figure 7 and described in Figure 8. A 
shape group definition is similar to that of a shape definition. 

i ) — * 
Figure 7: An association attached to a class at its tail. 

If a single shape in a sketch can be part of many instances 
of a shape group, then we place the key word multiple before 
the component shape of the shape group. In UML Class Dia­
grams, for example, a single UMLAssociation can be part of 
only one instance of a shape group, while a single UMLClass 
can be part of many instances of UMLGenCIassGen Associ­
ation Tail. 

464 KNOWLEDGE REPRESENTATION 

http://head3.pl


Figure 5: The inheritance diagram of UML Class Diagram shapes. 

(de f ine shape-group 
UMLGenClassGenAssociationTail 

( d e s c r i p t i o n "A genera l c lass a t tached to 
the t a i l o f a genera l a s s o c i a t i o n " ) 

( i s - a UMLAssociat ionAt tachedTai l ) 
(components 

( m u l t i p l e (GeneralClass c t ) ) 
(Genera lAssoc ia t ion r ) ) ) 

Figure 8: Description of the shape group from Figure 7. 

3.5 Defining Abstract Shape Groups 
Abstract shape groups definitions allow the reuse of shared 
properties across multiple shape groups. The definition of a 
UMLAssociationAttachedTail in Figure 9 indicates that the 
tail, but not the head, of the association is inside the class, 
preventing us from having to redefine the constraints many 
times, and allows us to define one general editing behavior 
for many shapes. An editing behavior for the UMLAssocia­
tionAttachedTail indicates that whenever you move a UML-
Class that is attached to the tail of a UMLAssociation, the 
head of the UMLAssociation remains fixed in its original lo­
cation, but the tail of the UMLAssociation remains attached 
to the UMLCIass as it moves; the UMLAssociation acts like 
a rubber band (translating, scaling, and rotating) to satisfy 
these constraints. 

(de f ine abs t rac t -shape-g roup 
UMLAssociat ionAt tachedTai l 

( requ i red 
(Assoc ia t ion r ) 
(Class c t ) ) 

( c o n s t r a i n t s 
(conta ins c t r . t a i l ) 
( i c o n l a i n s c t r .head)) 

( e d i t i n g 
( t r i g g e r ( t r a n s l a t e c t ) ) 
( a c t i o n ( rubber-band r r .head r . t a i l ) ) ) ) 

Figure 9: Definition for an abstract shape group. 

3.6 Defining Constraints 
We believe the language contains sufficient constraints to de­
fine a broad range of domains. When an additional con­
straint is needed, it can be defined using a macro facility. The 
sections of a sketch-constraint definition include description, 
components, and constraints. 

4 Testing 
4.1 Examples of Shapes Described in the 

Language 
We have evaluated the language by showing that it can de­
scribe a wide variety of symbols from a number of different 
domains. We have used it to describe over a hundred shapes 

(de f ine c o n s t r a i n t c e n t e r e d - i n 
( d e s c r i p t i o n "Tests i f shapel i s centered i ns i de shape2") 
(components 

(Shape s i ) 
(Shape s2)) 

( c o n s t r a i n t s 
(conta ins s2 s i ) 
( co inc iden t s1 . cen te r s 2 . c e n t e r ) ) ) 

Figure 10: Definition for the constraint centered-in. 

from the domains of UML class diagrams, mechanical engi­
neering diagrams, course of action diagrams, and letters of 
the alphabet. Illustrative examples are given below. 

Polygon 
A PolyLine (shown in Figure 11a), may contain a variable 
number of line segments. A variable number of components 
is specified by the key word vector and must specify the min­
imum and maximum number of components. If the maxi­
mum number can be infinite, the variable n is listed. For in­
stance the PolyLine must contain at least two lines, and each 
line must be connected with the previous. The definition of a 
Polygon easily follows from the definition of the PolyLine 

Figure 11: (a)Poly Line (b) Dashed Open Arrow (c) Stick 
Figure 

Figure 12: Shape Description of a Polygon. 

Dashed Open Arrow 
A DashedOpenArrow (Figure l i b ) is made from a Ope-
nArrow, and a Dashedline, which in turn contains at least 
two line segments. When given a third argument specifying 
a length, the constraint near states that two points are near to 
each other relative to a given length. 

Stick Figure 
The definition of a stick figure (Figure l i e ) shows how we 
can create new components to help describe shapes. It creates 

KNOWLEDGE REPRESENTATION 465 



Figure 13: Description of a dashed line and a dashed open 
arrow. 

a new line between the feet for use in defining constraints, 
ensuring that both feet lie below the body. 

Figure 14: Description of a stick figure. 

4.2 System Implementat ion 
We built a simple domain-independent recognition system to 
test whether sketches can be recognized from our domain 
descriptions. The system parses a domain description into 
Java code and Jess (a rule-based system that interfaces with 
Java) [Friedman-Hill, 1995] rules, and uses them to recog­
nize sketches. For example, using the domain description 
for UML, the system successfully recognized hand-drawn 
sketches of all of the shapes in Figure 5 regardless of over­
lap. 

Domain Description Parsing 
The domain description is parsed to create recognition code, 
creating at least one Jess rule (containing the shape recogni­
tion information), and one Java file (describing the shape), for 
each shape description. The system then uses the Jess rules 
to recognize sketches. 

Jess Rule Example 
The rule automatically generated for the TriangleArrow 
from Figure 3 is shown in Figure 15. If a shape description 
contains a vector, such as that of the DashedArrow in Fig­
ure 13, two Jess rules are created, one containing the base 
case, and the second containing a recursive rule. 

Stroke Preprocessing 
The recognition system has several stages of recognition. 
First, each time a stroke is drawn, the stroke is pre-processed 
[Sezgin et al, 2001] into either Point, Line, Curve, Arc, or a 
combination thereof, allowing users to draw objects in a sin­
gle stroke or with multiple strokes. These primitive shapes 
are then asserted to a Jess database. 

Figure 15: Automatically generated Jess Rule for the Triangle 
Arrow. 

Recognition of Shapes 
Recognition is handled by the Jess rule based system. We 
have automatically generated templates for the Jess system to 
fill in. Once Jess finds the appropriate components, the rule is 
fired and the constraints are tested. The constraints are Java 
functions with which Jess interacts. All possible shapes are 
found, even if the shapes share lines or other components. If 
the shape can be a domain shape (i.e., a final shape in the 
domain), the shape is asserted as a domain shape. 

Domain Shapes 
When domain shapes are created, a rule fires in Jess confirm­
ing that no two found domain shapes share the same sub­
components. If two domain shapes do share subcomponents, 
one domain shape is retracted. The domain shape chosen 
to remain is the one containing more primitive components 
(following Ockham's Razor); if the two shapes contain the 
same number of components, the shape created first is cho­
sen, since previously chosen recognitions have higher prece­
dence. If a domain shape is found, then the recognition sys­
tem displays the shape as the designer specified and editing 
commands can then be performed on the shape. 

5 Related Work 
Shape description languages, such as shape grammars, have 
been around for a long time [Stiny and Gips, 1972]. Shape 
grammars are studied widely within the field of architecture, 
and many systems are continuing to be built using shape 
grammars [Gips, 1999]. However, shape grammars were 
developed for shape generation rather than recognition, and 
don't provide for non-graphical information, such as stroke 

466 KNOWLEDGE REPRESENTATION 



order, that may be helpful in recognition. They also lack ways 
for specifying shape editing. 

With in the field of sketch recognit ion, there have been 
other attempts to create languages for sketch recognition. 
Bimber et. al [2000] describe a simple sketch language using 
a BNF-grammar. The language describes three-dimensional 
shapes hierarchically. This language allows a programmer to 
specify only shape information and lacks the abil i ty to spec­
i fy other helpful domain information such as stroke order or 
direction and editing behavior, display, or shape interaction 
information. 

Mahoney [2002] uses a language to model and recognize 
stick figures. The language currently is not hierarchical, mak­
ing large objects cumbersome to describe. Caetano et. al. 
[2002] use fuzzy relational grammars to describe shape. Both 
Mahoney and Caetano lack the abil i ty to describe edit ing, dis­
play, or shape grouping information. 

The Electronic Cocktai l Napkin project [Gross and Do, 
1996] allows users to define domain shapes by drawing them. 
A shape is described by the shapes it is built out of and the 
constraints between them. The Cocktail Napkin's language is 
able to describe only shape. 

Jacob [Jacob et al, 1999] has created a software model 
and language for describing and programming fine-grained 
aspects of interaction in a non-WIMP user interface, such as 
a virtual environment. The language is very low-level making 
it diff icult to define new interactions, and, in the domain of 
sketching, does not provide a significant improvement to cod­
ing the domain-dependent recognit ion system f rom scratch. 

The language described in this paper is being used in sev­
eral other systems, including sketch learning f rom example 
[Veselova, 2002], smart compi l ing using H M M ' s [Sezgin, 
2002], and an intelligent Bayesian network context oriented 
sketch recognition system [Alvarado et al, 2002]. 

6 Conclusion 
6.1 Future Work 
We plan to examine more domains to ensure that the language 
contains the appropriate primit ives. We would also like to 
test our syntax on a wide user base. Large domains benefit 
f rom visual diagrams, such as the one in Figure 5. We plan to 
automatically generate some of these visual diagrams to help 
wi th the grammar-wri t ing process. 

6.2 C o n t r i b u t i o n s 

We have created L A D D E R , the first language to describe how 
sketched diagrams in a domain are drawn, displayed, and 
edited. The language consists of pre-defined shapes, con­
straints, editing-behaviors, and display methods, as wel l as 
a syntax for specifying a sketch grammar and extending the 
language, ensuring that shapes and shape groups f rom many 
domains can be described. The syntax simplifies the defini­
t ion of new shapes by al lowing shapes to be built hierarchi­
cally and by providing abstract shapes to contain common 
shape properties. Shape groups describe how domain shapes 
interact, and can provide information to be used in top-down 
as wel l as bottom-up recognition. Shape groups can also 
be used to describe "chain-reaction" edit ing commands. We 
have built a simple domain-independent sketch recognition 

system for testing that recognition is feasible based on the 
descriptions provided. 

Acknowledgments 
This work is supported in part by the MIT Oxygen Collaboration. 
The authors would like to thank Jacob Eiscnstcin for the name LAD­
DER and Jacob Eisenstein, Michael Oltmans, Mark Foltz, and Vi-
neet Sinha for their help in reviewing this paper. 

References 
[Alvarado et al., 2002] C Alvarado, M Oltmans, and R Davis. A 

framework for multi-domain sketch recognition. AAAI Spring 
Symposium on Sketch Understanding, pages 1-8, March 25-27 
2002. 

I Bimber et a/., 2000] O Bimber, LM Encarnao, and A Stork. A 
multi-layered architecture for sketch-based interaction within vir­
tual environments. Computer and Graphics, 2000. 

[Booch et al, 1998] G Booch, J Pumbaugh, and I Jacobson. The 
Unified Modeling Language User Guide. Addison-Wesley, Read­
ing, MA, 1998. 

[Caetano et al., 2002] A Caetano, N Goulart, M Fonseca, and 
J Jorge. Javasketchit: Issues in sketching the look of user inter­
faces. AAA I Spring Symposium on Sketch Understanding, 2002. 

[Friedman-Hill, 1995] E Friedman-Hill. Jess, the rule engine for 
the Java platform, http://herzberg.ca.sandia.gov/jess/, 1995. 

[Gips, 1999] J Gips. Computer implementation of shape grammars. 
NSF/MIT Workshop on Shape Computation, 1999. 

[Gross and Do, 1996] MD Gross and EYL Do. Demonstrating the 
electronic cocktail napkin: a paper-like interface for early design. 
ACM Conference on Human Factors in Computing, pages 5-6, 
1996. 

[Hunt and McGlashan, 2002] A Hunt and S McGlashan. Speech 
recognition grammar specification version 1.0, w3c candidate re-
comentation. http://www.w3.org/TR/speech-grammar, 26 June 
2002. 

[Jacob et al, 1999] RJK Jacob, L Deligiannidis, and S Morrison. A 
software model and specification language for non-WIMP user 
interfaces. ACM Transactions on Computer-Human Interaction, 
6(1): 1-46, 1999. 

[Mahoney and Fromherz, 2002] JV Mahoney and MPJ Fromherz. 
Three main concerns in sketch recognition and an approach to ad­
dressing them. AAAI Spring Symposium on Sketch Understand­
ing, pages 105-112, March 25-27 2002. 

[Sezgin et al, 2001] TM Sezgin, T Stahovich, and R Davis. Sketch 
based interfaces: Early processing for sketch understanding. Per­
ceptive User Interfaces Workshop, 2001. 

[Sezgin, 2002] M Sezgin. Generating domain specific sketch recog­
nizers from object descriptions. MIT Student Oxygen Workshop, 
2002. 

[Stiny and Gips, 1972] G Stiny and J Gips. Shape grammars and 
the generative specification of painting and sculpture. Informa­
tion Processing, pages 1460-1465, 1972. 

[Veselova, 2002] O Veselova. Perceptually based learning of shape 
descriptions from one example. MIT Student Oxygen Workshop, 
2002. 

[Zue et al, 1990] V Zue, J Glass, M Phillips, and S Seneff. The mit 
speech recognition system: phonological modeling and lexical 
access. 1990 International Conference on Acoustics, Speech and 
Signal Processing, pages 49-52, March 25-27 1990. 

KNOWLEDGE REPRESENTATION 467 


