
Learning Minesweeper with Multirelational Learning 

Lourdes Pefia Castillo 
Otto-von-Guericke-University 

Magdeburg, Germany 

Abstract 

Minesweeper is a one-person game which looks 
deceptively easy to play, but where average hu­
man performance is far from optimal. Playing the 
game requires logical, arithmetic and probabilis­
tic reasoning based on spatial relationships on the 
board. Simply checking a board state for consis­
tency is an NP-complete problem. Given the dif­
ficulty of hand-crafting strategies to play this and 
other games, AI researchers have always been in­
terested in automatically learning such strategies 
from experience. In this paper, we show that when 
integrating certain techniques into a general pur­
pose learning system (Mio), the resulting system is 
capable of inducing a Minesweeper playing strat­
egy that beats the winning rate of average human 
players. In addition, we discuss the necessary 
background knowledge, present experimental re­
sults demonstrating the gain obtained with our tech­
niques and show the strategy learned for the game. 

1 Introduction 
Minesweeper is a popular one-player computer game written 
by Robert Donner ami Curt Johnson which was included in 
Microsoft Windows© in 1991. At the beginning of the game, 
the player is presented with a p x q board containing pq tiles 
or squares which are all blank. Hidden among the tiles are M 
mines distributed uniformly at random on the board. The task 
of the player is to uncover all the tiles which do not contain a 
mine. At each turn the player can select one of three actions 
(moves): to mark a tile as a mine; to unmark a tile; and to 
uncover a tile. In the last action, if the tile contains a mine, 
the player loses; otherwise, the number of mines around the 
tile is displayed. In the 4 x 4 board depicted in Fig. 1 left, the 
number 1 located on the second row from top indicates that 
there is one and only one mine hidden among the eight blank 
neighbouring tiles. 

Although the simplicity of its rules makes Minesweeper 
look deceptively easy, playing the game well is indeed chal­
lenging: A player requires logic and arithmetic reasoning to 
perform certain moves given the board state, and probabilis­
tic reasoning to minimize the risk of uncovering a mine when 

LEARNING 

Stefan Wrobel 
Fraunhofer AIS, Sankt Augustin 
and University Bonn, Germany 

i 

Figure 1: Left: Available information on a board. Right: 
Seven tiles can be determined safe (s) and one a mine(m) 

a safe move cannot be done. Given the difficulty of hand­
crafting playing strategies for this and other games, AI re­
searchers have always been interested in the possibility of au­
tomatically learning such strategies from experience. How­
ever, with the exception of reinforcement learning [Tesauro, 
1995], most of the playing strategies and heuristics used in 
game playing programs are coded and tuned per hand in­
stead of automatically learned. In this work, we use a gen­
eral purpose ILP system, Mio, to learn a playing strategy 
for Minesweeper. Multirelational learning or ILP consists in 
learning from examples usually within the framework pro­
vided by clausal logic. 

The task of learning rules to deduce Minesweeper moves 
proved itself to be an arduous test for current multirelational 
learning systems. In this paper, we describe how recent opti­
mizations make possible for Mio to discover a Minesweeper 
playing strategy. Experimental results obtained by playing 
Minesweeper using this strategy show a better performance 
than that obtained on average by non-expert human players. 

The remainder of this paper is organized as follows. The 
next section discusses the complexity of the game and de­
scribes the learning task. Section 3 describes the background 
knowledge, the learning system and the new techniques used. 
Section 4 shows our empirical results on the effectiveness of 
the learning techniques, the strategy obtained and its perfor­
mance at game playing. Related work is surveyed in Section 5 
and Section 6 concludes. 

2 Minesweeper 

2.1 Why Is Minesweeper Interesting? 
Minesweeper has been shown to be NP-complete by simulat­
ing boolean circuits as Minesweeper positions [Kaye, 2000]. 
Kaye describes the Minesweeper consistency problem as the 
problem of determining if there is some pattern of mines in 
the blank squares that give rise to the numbers seen in a given 

533 



board partially filled with numbers and marked mines, and 
thus determining that the data given is consistent. 

One realizes the complexity of the game by calculating an 
estimate for the size of its search space. Consider an 8 x 8 
board with M = 10 mines; in this case at the beginning of 
the game the player has pq = 64 tiles from which to choose 
a move (i.e., a tile to uncover) and in the last move, assuming 
the player does not uncover a mine, there are 11 tiles from 
which to choose one. This leads to possible move 
sequences to win a game. Alternatively, one can calculate the 
probability of a random player winning a game. In the first 
move the probability that the random player chooses a tile 
which does not contain a mine is 54/04, and in the last move 
it has 1/11 chance to choose the only tile without a mine. 
Then, the probability of a random player winning a game is 

and that is only for the easiest playing level! 
Another measure of the complexity of Minesweeper is the 

number of games won on average by non-expert human play­
ers. To estimate the average human performance playing 
Minesweeper, we carried out an informal study. In the study, 
eleven persons who have played Minesweeper before were 
asked to play at least ten times in an 8 x 8 board with 10 
mines. Every participant was told to aim for accuracy rather 
than for speed. In this study, a person won on average 35% of 
the games with a standard deviation of 8%. 

2.2 The Learn ing Task 
In Minesweeper there are situations that can be "solved" with 
nontrivial reasoning. For example, consider Fig. 1 left where 
the only available information about the board state are the 
numbers. After careful analysis one finds that the squares 
with an s (see Fig. 1 right) do not contain a mine, the square 
with an m is a mine, and the state of the blank tiles cannot be 
determined if we do not know how many mines are hidden in 
the board. There are other Minesweeper situations where the 
available information is not enough to identify a safe square 
or a mine, as in Fig. 2, and the best option available to the 
player is to make an informed guess, i.e., a guess that mini­
mizes the risk of blowing up by uncovering a mine. 

In this work, we consider the learning task in Minesweeper 
to be the induction of rules to identify all the safe squares^ 
and squares with a mine which can be deduced given a board 
state. For instance, we want the system to learn rules to clas­
sify all the blank tiles in Fig. 1 either as safe or mine. 

3 The Learning Tools 
In machine learning it is possible to choose between a propo-
sitional representation (in the form of attribute-value tuples) 
and a multirelational representation (in the form of logic pred­
icates). A multirelational representation has the expressive­
ness required to describe the concepts involved when rea­
soning about Minesweeper, and is thus more intuitive than 
the propositional one. For this reason we use multirelational 
learning for the learning task described above. Usually a mul­
tirelational learning system takes as input background knowl­
edge B, positive (E+) and negative (E~) examples of a target 

A safe square is a blank tile which given the current board state 
cannot contain a mine. 

concept such that and has 
to find a clausal theory T which minimizes the classification 
error on future instances. Next we describe the background 
knowledge and the system used. 

3.1 Background Knowledge 

The background knowledge provides the system with infor­
mation about the domain and is given in the form of logic 
predicates (facts and rules, or clauses). A predicate is de­
scribed as and, in our case, argi in­
dicates the argument's type. The background knowledge pro­
vided to the learning system about Minesweeper is shown 
in Table 1. The predicates in the background knowledge 
were defined by trying to abstract the concepts used by hu­
mans when explaining their own Minesweeper playing strate­
gies. These concepts were obtained from the first author's 
Minesweeper playing experience and from Minesweeper 
pages on the web. 

In the predicates listed in Table 1, a TD is a determined or 
uncovered tile, i.e., a number 0 . . . 8 is shown on the tile; a 
TV is an undetermined or blank tile; Board is the board state 
given as a list of characters 0 . . . 8, m, u; Zone is a list 
of determined tiles, and Set is a set of undetermined tiles to­
gether with the number of mines hidden among those tiles. 
In addition, each symbol preceding an argument denotes how 
that argument should be instantiated when calling the predi­
cate, is an input argument and should be instanti­
ated to a non-variable term; is an output argument 
and should be uninstantiated, and a indicates that the 
constant value of an output argument can appear in a rule. 

534 LEARNING 



Predicate Description 
. returns in Zone the tiles which are determined neighbours of TU and zoneOflnterest(+TU, +Board, -Zone) 
the determined tiles which share an undetermined neighbour with them 
(see Fig. 4 center). 

totalMinesLeft(+Board,-Int) returns how many mines remained to be marked. 
allMineslnFringe(+Board, -Set) gives the set of tiles in the fringe3 where all the remaining mines are. 
setHasXMines(-TD, +Board, +Zone, -Set) gives in Set the undetermined neighbours of TD (TD is in Zone), 

and the number of mines hidden among them (sec Fig. 4 right). 
diffSetHasXMines(+Setl, +Set2, -Set) . . . returns in Set all and only the tiles of Setl which are not also in Set2 

and the number of mines hidden among the tiles in Set. 
inSet(+TU, +Set) is true when TU is a member of Set. 
lengthSet(+Set,+Int) is true when Set contains Int tiles. 
minesInSet(+Set,-#Int) returns the number of mines hidden among the tiles in Set. 

Table 1: Minesweeper background knowledge 

3.2 The System 
Mio is an example-driven covering system (see Fig. 3) in­
troduced by Pena Castillo and Wrobel [2002b] which uses 
a Progol-like declaration language and, the same as Pro-
gol [Muggleton, 1995], lower bounds the search space with a 
most specific clause (also called bottom clause). This is 
a maximally specific clause which entails (covers) a positive 
example e. Mio performs a general-to-specific (top-down) 
IDA* [Korf, 1985] search to find a clause to add to the the­
ory. In addition, Mio selects stochastically the examples from 
which it learns, performs parallel search to increase the stabil­
ity of the example-driven approach, and enforces type strict­
ness. Three other techniques arc implemented in Mio to al­
low the learning of Minesweeper rules: macro-operators (or 
macros, for short) to reduce the search space, greedy search 
with macros to speed up the learning process, and active 
learning to guide the exploration of the instance space. 

Macros 
Macros in multirclational learning [Pena Castillo and Wro­
bel, 2002a] are a formal technique to reduce the hypothesis 
space explored by a covering system. A macro is a sequence 
of literals, chosen from the bottom clause, which is created 
based on provider-consumer relationships between the liter­
als. A literal is a provider if it has output arguments, and it 
is a consumer if it receives as an input argument a variable 
provided by another literal in the bottom clause. Pena and 
Wrobel show that by adding macros instead of literals to a 
clause, the number of clauses evaluated by the system is sig­
nificantly reduced. 

Greedy Search with Macros 
In [Pena Castillo and Wrobel, 2002a] macros are used with 
IDA*. It is well known that greedy search explores on av­
erage less nodes than IDA*; however, greedy search could 
miss a solution because it underestimates the importance 
of provider literals without discriminative power which are 
nonetheless necessary to introduce new variables (this is 
known as the myopia problem). Since macros add several 
literals at once to a clause, they might reduce the myopia of 
greedy search allowing us to gain in efficiency without losing 

too much in effectiveness. We implement a greedy search 
with macros which consists of a lookahead step where all 
the macros are combined with each other and the best evalu­
ated clauses arc selected. Then if the selected clauses can be 
extended (refined) the system tries to combine these clauses 
with all the macros available and selects the best candidates. 
This last step is repeated until there is no clause which can be 
extended and the best candidates are returned. 

Active Inductive Learning 

In the covering algorithm a clause is learned which covers 
(explains) some positive examples and none (or few) negative 
ones; however, in domains such as games and puzzles, thou­
sands of examples are required to contain most of the possible 
game situations; on the other hand, considering thousands of 
examples when evaluating a rule slows down the learning pro­
cess. Thus, to improve the efficiency of the exploration of the 
instance space, active learning [Cohn et al, 1994] is included 
in Mio. 

Active inductive learning consists of the following steps. 
At the beginning, Mio learns from few randomly drawn ex­
amples and when it has learned some clauses gives these 
clauses to an active learning server. The active learning server 
returns to Mio counterexamples*. These counterexamples are 
selected from examples given by a random example generator 
(or random sampler). While Mio iterates on the new exam­
ples received, the server tests the rules obtained against ran­
domly drawn examples, discards all the rules below a user-
defined accuracy value and collects new counterexamples. 
This validation step on the server side avoids overfitting5. 
These steps arc repeated until a user-defined maximum num­
ber of iterations is reached or no counterexample is found. 

Active inductive learning is similar in spirit to integrative 
windowing [Furnkranz, 1998] with two main differences: in 
our approach random sampling is done dynamically and a 
client-server architecture is used which allows to treat test­
ing and learning as separated processes. 

3Fringe refers to all the blank tiles with a determined neighbour. 

4 A counterexample is a positive example not covered by a set of 
clauses T or a negative example covered by at least one clause in T. 

5Overfitting refers to obtaining results with high classification 
error over new data despite null or almost null training error. 

LEARNING 535 



Figure 4: A rule learned by Mio. Left: Is the highlighted tile safe? Center: zoneOflntcrest corresponding to the highlighted 
tile. Right: Applying difference operations to the sets determined by the tiles inside a circle is concluded that the tile 40 is safe 

4 Empirical Results 

4.1 Improvements Obtained with each Technique 
Experiments were carried out to determine the effects on the 
rules obtained and on the system efficiency, of macros, greedy 
search with macros, and active inductive learning. To produce 
the training examples, we randomly generate board configu­
rations and take all blank tiles with at least one determined 
neighbour as examples. If the blank tile does not contain a 
mine is labeled as safe, otherwise it is labeled as mine. Af­
terwards, contradictory examples are removed. In the exper­
iments, the learning task was to learn rules to identify safe 
tiles. The rule to discover mines was learned using the best 
setting (i.e., using active learning, macros and greedy search). 

For the completeness of this work, we ran Progol [Muggle-
ton and Firth, 2001] and Foil [Quinlan and Cameron-Jones, 
1995] on the same learning task as Mio; however, we failed 
to make the systems learn correct rules about safe tiles. Pro­
gol search was interrupted due to search limits implemented 
in the system (although the maximum stack depth and res­
olutions steps were set to 50000 and 10000, respectively), 
and Foil pruned determined literals which are needed. This 
might imply that the optimizations included in Mio are in­
deed necessary to learn a Minesweeper playing strategy. Ta­
ble 2 shows the empirical results with four Mio settings. 

Al l the experiments with active learning were performed 
with the same seeds which means that the same training ex­
amples are generated by the random sampler and that Mio 
selects the same examples to guide the search. For the exper­
iments without active learning, we took five random samples 
from the set of examples used in the active learning exper­
iments. The size of the sample is equal to the number of 
examples received by Mio when performing active learning 
(40 positive and 34 negative examples). We carried out an 
extra experiment where Mio was given the complete set of 
examples (2890 positive and 1306 negative) used by the ac­
tive learning server to test Mio's rules and select counterex­
amples; however, this experiment was stopped after Mio ran 
for 10 days. To reduce the running time of the experiments, 
we set the maximum number of clauses explored per search 
to 4000 clauses. 

Table 2 shows that each optimization added to Mio reduces 
the average number of rules (nodes) explored per search and 

the number of times the search is interrupted because of the 
search limit. Without active learning, overfitting occurs and 
erroneous rules are obtained. The performance of the rules 
obtained with IDA*+M is worse than that of the IDA* rules 
because Mio with macros explores a larger part of the hy­
pothesis space and thus the IDA* + M setting overfits more 
the training data. However, if no limit in the maximum num­
ber of clauses explored per search is set, both settings (IDA* 
and IDA*+M) obtain the same Riles. The running time of the 
fastest setting (AL+GS+M) is 56hrs. 

4.2 Rules Learned 
Table 3 shows the rules with the highest winning rate which 
were obtained by using both AL+GS+M and AL+IDA*+M. 
An extra rule was obtained with the latter setting; however, 
this extra rule does not improve the playing performance. 
One important feature of the rules learned by Mio is that they 
can be applied independently of the size of the board and the 
number of mines. The rules vary in complexity. Rule S-l and 
Rule M-l correspond to the trivial situations where a deter­
mined tile needs k mines and K: mines are already marked, 
and where a determined tile needs k mines and it has A; blank 
neighbours, respectively. 

On the other hand, Rule S-3 can be seen as one of the most 
complex rules because it involves three determined tiles to 
deduce a safe tile. Fig. 4 left shows a board state where Rule 
S-3 is the only one which allows to identify a safe tile. The 
rule obtains the zoneOflntcrest corresponding to the unde­
termined tile considered (Fig. 4 center). Then by applying 
difference operations on the sets determined by three uncov­
ered tiles from the zoneOflnterest (see Fig. 4 right), the set 
([40], 0) is obtained and thus it is deduced that tile 40 is safe. 

4.3 Game Playing 
To evaluate the performance at game playing of each set 
of rules obtained, we used each set of rules as the playing 
strategy of an automatic Minesweeper player and calculated 
the percentage of games won by the player in 1000 random 
games (see Table 2). The playing conditions were the same 
as the ones presented to the human players; i.e., at the begin­
ning the player is presented with an empty 8 x 8 board with 
M = 10 mines and can uncover a mine in the first move. 
Note that in most Minesweeper implementations, one never 
hits a mine in the first move. 

536 LEARNING 



Table 2: Performance of various Mio settings used to learn rules about safe tiles (AL = Active Learning, GS = Greedy Search 
IDA* = Iterative Deepening A*, M = Macros) 

Table 3: Minesweeper rules learned by Mio 

Let us analyze the performance of the best rule set (see 
Table 3). In 1000 games, the player made 15481 moves from 
which 2762 where random guesses, 169 used Rule S-l, 10285 
used Rule S-2, 54 used Rule S-3, and 2211 used Rule M- l . 

In addition, we examined the effect of adding probabilistic 
reasoning. In the experiment, we instructed the player us­
ing the rules shown in Table 3 to select a tile which mini­
mizes the probability that an undetermined tile Tu is a 
mine when none of the rules can be applied. is equal 
to where is a determined neighbour of 

returns the number of mines needed by Td and 
returns the number of blank neighbours of Tj. Every 

time the player has to guess, it selects the tile which mini­
mizes . This player wins 579 of 1000 random games. 

5 Related Work 

5.1 Minesweeper Playing Programs 
There are several Minesweeper programs available on the 
web. These programs are not learning programs but playing 
programs where the authors have embedded their own game 
playing strategy. Among these programs, John D. Ramsdell's 
PGMS is quite successful winning 60% of 10000 random 
games in a 8 x 8 board with 10 mines. 

PGMS plays using the Equation Strategy based on find­
ing approximate solutions to derived integer linear equations, 
and probabilities. As mentioned by Ramsdell [2002], PGMS 
represents the information available on the board as a set of 
integer linear equations. Associated with an undetermined 
tile is a variable x that has the value 1 if the tile hides a mine, 
or 0 otherwise. An equation is generated for each uncovered 
tile with an adjacent undetermined tile. Each equation has 
the form , where 5 is a set of undetermined 
tiles, and c is the number of mines hidden among 5. To sim­
plify notation, this equation is written as < Since the 
total number of hidden mines is known, an additional equa­
tion simply equates this number with the sum of all of the 
undetermined tiles. 

Every time a tile t is determined safe or a mine, the board 
changes are propagated to all the equations containing t and a 
new equation for the undetermined neighbours of t is added. 
I n addition, i f a r e two equations such 
that So is a proper subset of , the equation 
So is added. To determine whether a tile is safe or a mine, 
PGMS iteratively applies the following rules until none are 
applicable7: 

LEARNING 537 



We were surprised to notice that although Mio was only 
given general background knowledge about Minesweeper, 
the rules it learned are similar to the rules programmed in 
PGMS. For example, Mio's Rule S-l and Rule S-2 corre­
spond to the first and third rule in PGMS, respectively; and 
Mio's Rule M-l is similar to PGMS second rule. To compare 
PGMS performance with the performance of Mio's best play­
ing strategy, we let our best player (i.e., the player using the 
rules in Table 3 and probabilities) play 10000 random games 
in a 8 x 8 board with 10 mines. Its winning rate is also 60%. 

5.2 M u l t i n a t i o n a l Learn ing for Games 
Other work has been done which applies ILP systems to 
learn heuristics or playing strategies for games. Ramon 
et al. [2001] used Tilde [Blocked and Raedt, 1998] to 
learn a theory that predicts the value of a move in Go. 
Morales [1996] applied the system PAL to learn chess pat­
terns for constructing chess playing strategies. Nakano et 
al. [1998] presented an approach to generate an evaluation 
function for Shogi mating problems using ILP. 

6 Conclusions and Future Work 
In this paper we described how the use of new ILP techniques 
such as macros, greedy search with macros, and active in­
ductive learning allow Mio to learn a Minesweeper playing 
strategy. This learning task proved itself to be a challenging 
testbed for general purpose multirelational learning systems. 

The best rules obtained by Mio win 52% of the games in 
a 8 x 8 board with 10 mines, while on average a non-expert 
human player wins 35% of the games. The performance of 
the playing program using these rules as playing strategy im­
proves to 60% when adding the use of probabilities. 

By examining the games played using Mio's rules, we no­
tice that there are still situations where the player guesses 
without need (i.e., a sure move can be deduced). As fu­
ture work, we want to use other ILP systems (e.g., Tilde), 
and other machine learning approaches to learn Minesweeper 
playing strategies and compare their performance. 

Acknowledgments 
We thank all the persons who participated as guinea pigs play­
ing Minesweeper, the anonymous reviewers for their com­
ments, and Oscar Meruvia for proofreading. The second au­
thor was partially supported by DFG (German Science Foun­
dation), projects WR40/1-3 and WR40/2-1. 

References 
[Blocked and Raedt, 1998] Hendrik Blocked and Luc De 

Raedt. Top-down induction of first order logical decision 
trees. Artificial Intelligence, 101(l-2):285-297, 1998. 

[Cohn et al., 1994] David Cohn, Les Atlas, and Richard Lad-
ner. Improving generalization with active learning. Ma­
chine Learning, 15(2):201-221, 1994. 

[Furnkranz, 1998] Johannes Furnkranz. Integrative window­
ing. Journal of Artificial Intelligence Research, 8:129— 
164, 1998. 

[Kaye, 2000] Richard Kaye. Minesweeper is NP-complete. 
The Mathematical Intelligencer, 22(2):9-15, Spring 2000. 

[Korf, 1985] Richard E. Korf. Iterative-deepening A*: An 
optimal admissible tree search. In Proc. of the 9th IJCAI, 
pages 1034-1036, 1985. 

[Morales, 1996] Eduardo Morales. Learning playing strate­
gies in chess. Computational Intelligence, 12(l):65-87, 
1996. 

[Muggleton and Firth, 2001] Stephen Muggleton and John 
Firth. Relational rule induction with CProgol4.4: a tutorial 
introduction. In Relational Data Mining, pages 160-187. 
2001. 

[Muggleton, 1995] Stephen Muggleton. Inverse entailment 
and Progol. New Generation Computing Journal, 13:245— 
286, 1995. 

[Nakano et al, 1998] Tomofumi Nakano, Nobuhiro In-
uzuka, Hirohisa Seki, and Hidenori Itoh. Inducing Shogi 
heuristics using inductive logic programming. In Proc. of 
the 8th Int. Confi on ILP, pages 155-164, 1998. 

[Pena Castillo and Wrobel, 2002a] Lourdes Pena Castillo 
and Stefan Wrobel. Macro-operators in multirelational 
learning: a search-space reduction technique. In Proc. of 
ECML'2002, pages 357- 368, 2002. 

[Pena Castillo and Wrobel, 2002b] Lourdes Pena Castillo 
and Stefan Wrobel. On the stability of example-driven 
learning systems: a case study in multirelational learning. 
In Proc. ofMICAI'2002, pages 321-330, 2002. 

[Quinlan and Cameron-Jones, 1995] J. Ross Quinlan and 
R. Michael Cameron-Jones. Induction of logic programs: 
FOIL and related systems. New Generation Computing, 
Special issue on ILP, 13(3-4):287-312, 1995. 

[Ramon et al, 2001] Jan Ramon, Tom Francis, and Hendrik 
Blocked. Learning a tsume-go heuristic with TILDE. In 
Proc. of the 2nd Int. Conf. Computers and Games, pages 
151-169,2001. 

[Ramsdell, 2002] John D. Ramsdell, November 25, 2002. 
Personal communication. 

[Tesauro, 1995] Gerald Tesauro. Temporal-difference learn­
ing and td-gammon. Communications of the ACM, 
38(3):58-68, 1995. 

538 LEARNING 


