
Multi-prototype Support Vector Machine

Fabio Aiolli
Dept. of Computer Science

University of Pisa, Italy
aiolli@di.unipi.it

Abstract

We extend multiclass SVM to multiple prototypes
per class. For this framework, we give a compact
constrained quadratic problem and we suggest an
efficient algorithm for its optimization that guaran­
tees a local minimum of the objective function. An
annealed process is also proposed that helps to es­
cape from local minima. Finally, we report experi­
ments where the performance obtained using linear
models is almost comparable to that obtained by
state-of-art kernel-based methods but with a signif­
icant reduction (of one or two orders) in response
time.

1 Introduction
Automatic multiclass classification, i.e. the process to auto­
matically assign exactly one from a prefixed set of labels to a
stream of input instances, is a central task for many real world
problems like speech recognition, OCR, text categorization
etc. Many supervised learning methods have been studied
that help on these tasks. Recently, kernel-based methods, like
SVM, have been well studied especially for binary settings,
and they yielded state-of-art performance in many different
tasks. SVM searches for a high margin linear discriminant
model in a very high dimensional space (feature space) where
examples are implicitly mapped via a function . Since
kernel-based algorithms need only of dot products in feature
space, it is possible to resort to the so called kernel trick if
these dot products can be computed efficiently with a kernel
function K(x, y) = • . When the number o f exam­
ples (or support vectors) is large, these approaches tend to be
less efficient w.r.t. the time spent for classifying new vectors
since they require to work with the implicit characterization
of the discriminant model.

One of the most effective SVM extension able to deal
with general multiclass problems has been recently provided
[Crammer and Singer, 2000] and it has shown very good re­
sults. In this paper, we extend the multiclass SVM to the
multi-prototype setting where for each class there can be
more than one prototype vector. This allowed us to get very
expressive decision functions by using simple models without
necessarily requiring the use of kernels.

Alessandro Sperduti
Dept. of Pure and Applied Mathematics

University of Padova, Italy
sperduti@math.unipd.it

1.1 Prel iminaries and notat ion
be a set of n training exam­

p l e s , A single-label
multi-class classifier is a f u n c t i o n t h a t maps in­
stances to labels We focus on the class of
winneMake-all linear classifiers with form:

(i)

where Mr is the r-th prototype vector, R is the set of proto­
type indexes and C(r) the function returning the class associ­
ated to the prototype indexed r. Given a classifier hM(x) and
a training example I we will say that misclassi-
fies

In the following, we denote by the constant that is equal
to 1 i f o t h e r w i s e . For a given example x1 , ,
we denote by the set of "positive"
prototypes indexes and by '> the
set of "negative" prototypes indexes. Finally, the real value

• x is referred to as similarity score (or simply
score) of the r-th prototype on the instance x.

2 Single-prototype multi-class SVM
An effective multi-class extension to SVM has been already
proposed in [Crammer and Singer, 2000]. The resulting
classifier is of the same form of (1) where each class has
associated exactly one prototype, i.e.
The solution is obtained through the minimization of a
convex quadratic constrained problem. In this section, we
present a simpler derivation of an equivalent formulation that
will be extended in the next section to the multi-prototype
framework.

In the multiclass setting, in order to have a correct classi­
fication of the instance the prototype of the correct class
should have a score that is greater than the maximum among
the scores of the prototypes associated to incorrect classes.
We can formally write the constraints for a correct classifica­
tion of the example with a margin greater or equal to 1 by
requiring:

where yi; = d is the index of the prototype vector associated
to the correct class for the example x,. To allow for margin

LEARNING 541

violations, for each example, we introduce soft margin slack
variables

where denotes the hinge loss equal to x if x > 0 and
0 otherwise. Notice that the value is an upper bound to
the 0 - 1 loss for the example Xi, and consequently its aver­
age value over the training set will be an upper bound for the
empirical error.

Motivated by the structural risk minimization (SRM) prin­
ciple in [Vapnik, 1998], we want to search for a set of pro­
totype vectors M = { M i , . . , M\c\} with small norm such
to minimize the empirical error on the training set. For this,
we can formulate the problem in a SVM-style by requiring
a set of prototypes of minimal norm that fulfill the soft con­
straints given by the classification requirements. Thus, the
single-prototype multiclass SVM (SProtSVM) will result in:

(2)

Notice that, as desired, the optimal solution for will be the
maximum value among the negative scores for the instance
Xi. This problem is convex and it can be solved in the stan­
dard way by resorting to the optimization of the Wolfe dual
problem. In this case, the lagrangian is:

(3)
subject to the constraints . By differentiating the
lagrangian with respect to the primal variables and impos­
ing the optimality conditions we obtain the set of constraints
(KKT conditions) that the variables must fulfill in order to be
an optimal solution:

(4)
By using the fact and substituting condi­

tions (4) in (3) and omitting constants that do not change the
solution, the problem can be restated as:

(5)

The next section includes an efficient optimization pro­
cedure for the more general multi-prototype setting that in­
cludes the single-prototype case as a particular instance.

3 Multi-prototype multi-class SVM
In this section, the SProtSVM model previously defined wil l
be extended to the case of multiple prototypes per class. The
basic idea is that, given multiple prototype vectors, we have a
correct classification iff at least one of the prototypes associ­
ated to the correct class has a score higher than the maximum
of the scores of the prototypes associated to incorrect classes.

In this case, we write the constraints for a correct classifi­
cation of the example Xi with a margin greater or equal to 1
requiring:

To allow for margin violations, for each example xi, we
introduce soft margin slack variables 0, one for each
positive prototype, s.t.

Given a pattern X i, we arrange the soft margin slack variables
f J* in a vector Let us now introduce, for each
example Xi a new vector , whose components
are all zero except one component that is 1. In the following,
we refer to as the assignment of the pattern xt. Notice that
the dot product is always an upper bound to the 0—1
loss for the example X; independently from its assignment.

Now, we are ready to formulate the multi-prototype prob­
lem by requiring a set of prototypes of small norm and the
best assignment for the examples able to fulfill the soft con­
straints given by the classification requirements.

Thus, the MProtSVM formulation will result in:

(6)

Unfortunately, this is a mixed integer problem that is not
convex and it is a difficult problem in general but, as we will
see in the following, it is prone to an efficient optimization
procedure that approximates the global optimum. At this
point, it is worth noticing that, since the effective formulation
is itself an (heuristic) approximation to the structural risk
minimization principle, a good solution, although not opti­
mal, can anyway give good results. As we see after, this claim
is confirmed by the results obtained in our experimental work.

Let suppose now that the assignments are kept fixed. In this
case the reduced problem becomes convex and can be solved
as above by resorting to the optimization of the Wolfe dual
problem. In this case, the lagrangian is:

subject to the constraints . As above, by differen­
tiating the lagrangian of the reduced problem and imposing

542 LEARNING

the optimality conditions, we obtain:

Notice that the second condition requires the dual variables
associated to positive prototypes and not assigned to the as­
sociated pattern to be 0. By denoting now as yi the unique
index such that , once using the conditions (8)
in (7) and omitting constants that do not change the obtained
solution, the reduced problem can be restated as:

(9)

It can be trivially shown that this formulation is consistent
with the formulation for SProtSVM's given above.

3.1 Optimization with static assignments
When patterns are statically assigned to the prototypes
via constant vectors the convexity of the associated
MProtSVM problem implies that the optimal solution for the
primal problem in (6) can be found through the maximization
of the lagrangian in (9).

Assuming an equal number q of prototypes per class, the
dual involves n x m x q variables which lead to a very large
scale problem. Anyway, the independence of constraints
among the different patterns allows for the separation of the
variables in n disjoint sets of m x q variables.

The algorithm we propose for the optimization of the prob­
lem in (9) is inspired by the ones already presented in [Cram­
mer and Singer, 2000; Aiolli and Sperduti, 2002a] and con­
sists in iteratively selecting patterns from the training set and
optimizing with respect to the variables associated to that pat­
tern. From the convexity, each iteration leads to an increase
of the lagrangian until no more improvement is possible since
the optimal solution for the lagrangian has been found.

After selecting a pattern Xi, to enforce the constraint
two elements from the set

of variables will be optimized in pair
while keeping the solution inside the feasible region. In par­
ticular, let wi and w2 be the two selected variables, we restrict
the updates to the form with
optimal choices for p. Iterating the application of this basic
step over different pairs and then doing the same for different
patterns will guarantee to reach the optimum for the overall
problem.

Let now compute the optimal value for p. First of all, we
observe that the update will affect the squared norm of the
prototype vector Mr of an amount

Now, we show how to analytically solve the associated
problem with respect to an update involving a single variable

and the variable Since does not influence

If the values of a7
p and aft, after being updated, would turn

out to be not feasible for the constraints ar
p > 0 and aft < 7,

we select the value for p such to fulfill the violated constraint
bounds at the limit.

Now, we show how to analytically solve the associated
problem with respect to an update involving a pair of vari­
ables a^1, ap

2 such that r\, r2 E Ni and = ^ r-i. Since, in
this case, the update must have zero sum, we have:

LEARNING 543

Similarly to the previous case, if the values of the and
ar

p
2, after being updated, would turn out to be not feasible for

the constraints we select the value for
p such to fulfill the violated constraint bounds at the limit.

Iterating multiple times the basic step described above on
pairs of variables chosen among that associated to a given
pattern it is guaranteed to find the optimality condition for
the pattern. This has been exploited in [Aiolli and Sper-
duti, 2002a] to devise an incremental algorithm that uses the
method on the reduced problem of a single example and then
iterates over different examples. This optimization proce­
dure can be considered incremental in the sense that the so­
lution previously found for a given pattern forms the initial
condition when the pattern is selected again for optimiza­
tion. In this version, the basic step of optimization of the
reduced problem can require the optimization over all the

pairs of variables not
constrained to 0 associated with the selected pattern. Thus
the complexity of the optimization of the reduced problem is

where / is the number of iterations.
Now, we perform a further step by giving an algorithm that

at each iteration has a complexity o(m x q). For this, we ob­
serve that for the variables associated to the pattern

xp to be optimal, the feasible analytic solution p must be 0
for each pair.

In particular, for the first case above, in order to be able to
apply the step, it is required that, one of the following two
conditions are verified, i.e.:

0)

while for the second case we must have:

Notice that these facts can be checked in linear time. It is
easy to show that the solution obtained at a certain step can
be improved i f f one of these facts are verified. This suggests
an efficient procedure, shown in Figure l(Top), that tries to
greedily fulfill the previous condition of optimality.

3.2 Optimization of general MProtSVM
In this section, we present an efficient procedure that guaran­
tees to reach a local minimum of the objective function of the
problem in (6) associated to MProtSVM. This procedure will
try to optimize also with respect to the assignments

Let suppose to start with a given assignment I for the
patterns. In this case, as we have already seen, the associated
problem is convex and can be efficiently solved by using the
algorithm given in Section 3.1. Once that the optimal value
for the primal has been reached, we observe that the so­
lution can be further improved by updating the assignments
in such a way to assign each pattern to a positive prototype
with minimal slack value, i.e. by setting the vector (2)
such to have the unique 1 corresponding to the best perform­
ing positive prototype. However, with this new assignment
7r(2), the variables might not fulfill the second KKT con­
dition in eq. (8) anymore. If it is the case, it simply means
that the current solution is not optimal for the new assign­
ment. Thus, a lagrangian optimization done by satisfying
constraints dictated by KKT conditions for the new assign­
ment is guaranteed to obtain a new with a better optimal
primal value . For the optimization algorithm to suc­
ceed, however, the KKT conditions on the must be restored
in order to return back to a feasible solution and then finally
resuming the lagrangian optimization with the new assign­
ment 7r(2). We restore the KKT conditions by setting
whenever there exists such that

Performing the same procedure over different assignments,
each one obtained from the previous one by the procedure
just mentioned, implies the convergence of the algorithm to a
local solution for the primal problem when no improvements
are possible and the KKT conditions are all fulfilled by the
current solution. This is due to the fact that every step induces
an improvement on the primal value.

The first problem with this procedure is that it results oner­
ous when dealing with many prototypes since we must per­
form many lagrangian optimizations. For this, we observe
that for the procedure to work, at each step, it is sufficient to
stop the optimization of the lagrangian when we find a value

Figure 1: Top: algorithm for the optimization of the variables
associated with a given pattern xp and a tolerance e. Bottom:
algorithm for the optimization of MProtSVM.

544 LEARNING

for the primal better than the last found and this is going to
happen for sure since the last solution has been found not op­
timal. This requires only a periodic check of the primal value
when optimizing the lagrangian.

The second and more stringent problem is that the proce­
dure will lead to a local minimum that can be very far from
the best possible. For this, we suggest to update the assign­
ments on the basis of a stochastic annealed function instead
of the hard decision function described above.

Specifically, let us view the value of the primal as an energy
function

Let suppose to have a pattern Xi having slack variables
and suppose that the probability for the assignment to

be in the state s (i.e. with the 5-th component set to 1) follows
the law

I
where T is the temperature of the system and

the variation of the system energy when the pattern Xi
is assigned to the s-th prototype. By multiplying every term

by the normalization term exp
and considering that probabilities over alternative

states must sum to one, i.e. , we obtain

with the partition function.
Thus, when assigning the pattern Xi, each positive proto­

type s wil l be selected with probability Pi{s). Notice that,
when the temperature of the system is low, the probability
for a pattern to be assigned to a prototype different from the
one having minimal slack value tends to 0 and we obtain a
behavior similar to the not annealed version of the algorithm.
The simulated annealing is typically implemented by decreas­
ing the temperature as the number of iterations increases by a
monotonic decreasing function T = T(t,T0). The full algo­
rithm is depicted in Figure 1 (Bottom).

4 Experimental Results
We tested our model against three datasets that we briefly de­
scribe in the following:

N1ST: it consists of a 10-class task of 10705 digits randomly
taken from the NIST-3 dataset. The training set con­
sists of 5000 randomly chosen digits, while the remain­
ing 5705 digits are used in the test set.

USPS: it consists of a 10-class OCR task (digits from 0 to 9)
whose input are the pixels of a scaled digit image. There
are 7291 training examples and 2007 test examples.

LETTER: it consists of a 26-class task (alphabetic letters
A-Z). Inputs are measures of the printed font glyph. The
first 16000 examples are used for training and the last
4000 for testing.

Even if any kernel function can be in principle used, for the
following preliminary experiments, we used the linear kernel
K(x, y) = (x - y + 1). This allowed us to write an optimized

code for training and classification that works directly with
the explicit (compact) version of the model M.

Since we are primarily interested into the evaluation of
MProtSVM w.r.t. SProtSVM, for each dataset, we performed
validation on the parameter for the SProtSVM model and
we re-used the obtained value for training every MProtSVM
generated for the same dataset. This approach seems us any­
way a pessimistic estimate of the performance of MProtSVM.

The annealing process required by MProtSVM has been
implemented by decreasing the temperature of the system
with the exponential law:

where 0 < r < 1 and T0 > 0 are external parameters. We
used To = 10 for all the following experiments.

Table 1: Comparison of generalization performances be­
tween LVQ and MProtSVM increasing the number of code-
books/prototypes on the NIST dataset

Table 2: (a) Test error of MProtSVM on the USPS dataset
, with an increasing

number of prototypes; (b) Test error of MProtSVM on the
LETTER dataset with an
increasing number of prototypes.

A set of experiments have been performed to compare the
generalization performance of our (linear) model versus LVQ
[Kohonen et al., 1996] which seemed to us the most compa­
rable model. For this, we have reported the best results that
have been obtained by LVQ on the NIST dataset. Specifi­
cally, they have been obtained with the LVQ2.1 version of
the algorithm (see [Sona and Sperduti, 2000]). As it is possi­
ble to see in Table 1, MProtSVM performs significantly better
when few prototypes per class are used, while the difference
gets lower when the number of prototypes per class increases.
This can be due to the more effective control of the margin for
SVM w.r.t. LVQ models. On the same dataset, the tangent-
distance based TVQ algorithm [Aioll i and Sperduti, 2002b]
has obtained the best result, a remarkable 2 .1% test error,
and polynomial SVM's have obtained a 2.82% test error. In

LEARNING 545

Table 3: Primal values and generalization error obtained with different configurations varying the parameter r (USPS dataset).

addition, we tested the MProtSVM on the UCI Irvine USPS
and LETTER datasets. As it is possible to see in Table 2, by
combining a reasonably high number of linear prototypes, we
have obtained performances almost comparable with the ones
obtained in literature by using non-linear models. In fact, on
the USPS dataset, we have been able to get a 4.63% error,
using a SProtSVM with polynomial kernel of degree 3 and
without preprocessing the data, while for LETTER, we re­
fer to the 1.95% obtained in [Crammer and Singer, 2001] by
SProtSVM with exponential kernel. Although obtained with
a slightly different split of the LETTER dataset (15000 exam­
ples for training and 5000 for test), we would like to mention
the results reported in [Michie et al., 1994] where LVQ and
k-NN yielded a 7.9% and 6.8% error, respectively.

Notice that MProtSVM returns far more compact models
with respect to state of the art non-linear kernel methods,
thus allowing a (one or two order) reduced response time
in classification. Defining a sort of model complexity fac­
tor = 100 x (m x q)/n, i.e. the number of prototypes
produced as a fraction of the cardinality of the training set,
the above experiments have shown very low value for (e.g.
15 x 26 prototypes in the LETTER dataset gives = 0.65%
and 20 x 10 prototypes for USPS gives = 2.74%). Notice
that can be directly compared with the fraction of support
vectors in kernel machines. Thus, MProtSVMs also give us a
way to decide (before training) the complexity of the model.

Finally, in Table 3 we have reported the values of the ob­
jective function of the primal problem in (6) along with their
corresponding test errors obtained with the USPS dataset us­
ing different configurations and lowering the parameter r. As
expected, fixed a raw in the table, better values for the pri­
mal can be obtained with lower values of r. Moreover, as
the number of prototypes per class increases, the choice of
small r tends to be more crucial. Anyway, higher values for
r, and thus not optimal values for the primal, can neverthless
lead to good generalization performances. This can be due to
the fact that the primal value is just a way to approximate the
theorethical SRM principle.

5 Conclusion
We have proposed an extension of multiclass SVM able to
deal with several prototypes per class. This extension defines
a non-convex problem. We suggested to solve this problem
by using a novel efficient optimization procedure within an
annealing framework where the energy function corresponds
to the primal of the problem. Experimental results on some
popular benchmarks demonstrated that it is possible to reach
very competitive performances by using few linear models

per class instead of a single model per class with kernel. This
allows the user to get very compact models which are very
fast in classifying new patterns. Thus, according to the com­
putational constraints, the user may decide how to balance the
trade-off between better accuracy and speed of classification.
Finally, it should be noted that the proposed approach com­
pares favorably versus LVQ, a learning procedure that, simi­
larly to the proposed approach, returns a set of linear models
per class.

References
[Aiolli and Sperduti, 2002a] Fabio Aiol l i and Alessandro

Sperduti. An efficient smo-like algorithm for multiclass
svm. In Proceedings of IEEE workshop on Neural Net­
works/or Signal Processing, 2002.

[Aiolli and Sperduti, 2002b] Fabio Aiolli and Alessandro
Sperduti. A re-weighting strategy for improving margins.
Artificial Intelligence Journal, 137/1-2:197-216,2002.

[Crammer and Singer, 2000] Koby Crammer and Yoram
Singer. On the learnability and design of output codes
for multiclass problems. In Proceedings of the Thirteenth
Annual Conference on Computational Learning Theory,
pages 35-46,2000.

[Crammer and Singer, 2001] Koby Crammer and Yoram
Singer. On the algorithmic implementation of multiclass
kernel-based machines. Journal of Machine Learning Re­
search, 2(Dec):265-292,2001.

[Kohonen et al., 1996] Teuvo Kohonen, Jussi Hynninen, Jari
Kangas, Jorma Laaksonen, and Kari Torkkola. Lvq_pak:
The learning vector quantization program package. Tech­
nical Report A30, Helsinki University of Technology, Lab­
oratory of Computer and Information Science, Rakenta-
janaukio 2 C, SF-02150 Espoo, Finland, January 1996.
http://www.cis.hut.fi/nnrc/nnrc-programs.html.

[Michie etal, 1994] D. Michie, D. Speigelhalter, and
C. Taylor. Machine Learning, Neural and Statistical Clas­
sification. Ellis Horwood, 1994.

[Sona and Sperduti, 2000] Diego Sona and Alessandro
Sperduti. Discriminant pattern recognition using
transformation-invariant neurons. Neural Computation,
12:1355-1370,2000.

[Vapnik, 1998] V. Vapnik. Statistical Learning Theory. Wi­
ley, 1998.

546 LEARNING

http://www.cis.hut.fi/nnrc/nnrc-programs.html

