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Abstract 

We extend multiclass SVM to multiple prototypes 
per class. For this framework, we give a compact 
constrained quadratic problem and we suggest an 
efficient algorithm for its optimization that guaran­
tees a local minimum of the objective function. An 
annealed process is also proposed that helps to es­
cape from local minima. Finally, we report experi­
ments where the performance obtained using linear 
models is almost comparable to that obtained by 
state-of-art kernel-based methods but with a signif­
icant reduction (of one or two orders) in response 
time. 

1 Introduction 
Automatic multiclass classification, i.e. the process to auto­
matically assign exactly one from a prefixed set of labels to a 
stream of input instances, is a central task for many real world 
problems like speech recognition, OCR, text categorization 
etc. Many supervised learning methods have been studied 
that help on these tasks. Recently, kernel-based methods, like 
SVM, have been well studied especially for binary settings, 
and they yielded state-of-art performance in many different 
tasks. SVM searches for a high margin linear discriminant 
model in a very high dimensional space (feature space) where 
examples are implicitly mapped via a function . Since 
kernel-based algorithms need only of dot products in feature 
space, it is possible to resort to the so called kernel trick if 
these dot products can be computed efficiently with a kernel 
function K(x, y ) = • . When the number o f exam­
ples (or support vectors) is large, these approaches tend to be 
less efficient w.r.t. the time spent for classifying new vectors 
since they require to work with the implicit characterization 
of the discriminant model. 

One of the most effective SVM extension able to deal 
with general multiclass problems has been recently provided 
[Crammer and Singer, 2000] and it has shown very good re­
sults. In this paper, we extend the multiclass SVM to the 
multi-prototype setting where for each class there can be 
more than one prototype vector. This allowed us to get very 
expressive decision functions by using simple models without 
necessarily requiring the use of kernels. 
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1.1 Prel iminaries and notat ion 
be a set of n training exam­

p l e s , A single-label 
multi-class classifier is a f u n c t i o n t h a t maps in­
stances to labels We focus on the class of 
winneMake-all linear classifiers with form: 

( i ) 

where Mr is the r-th prototype vector, R is the set of proto­
type indexes and C(r) the function returning the class associ­
ated to the prototype indexed r. Given a classifier hM(x) and 
a training example I we will say that misclassi-
fies 

In the following, we denote by the constant that is equal 
to 1 i f o t h e r w i s e . For a given example x1 , , 
we denote by the set of "positive" 
prototypes indexes and by '> the 
set of "negative" prototypes indexes. Finally, the real value 

• x is referred to as similarity score (or simply 
score) of the r-th prototype on the instance x. 

2 Single-prototype multi-class SVM 
An effective multi-class extension to SVM has been already 
proposed in [Crammer and Singer, 2000]. The resulting 
classifier is of the same form of (1) where each class has 
associated exactly one prototype, i.e. 
The solution is obtained through the minimization of a 
convex quadratic constrained problem. In this section, we 
present a simpler derivation of an equivalent formulation that 
will be extended in the next section to the multi-prototype 
framework. 

In the multiclass setting, in order to have a correct classi­
fication of the instance the prototype of the correct class 
should have a score that is greater than the maximum among 
the scores of the prototypes associated to incorrect classes. 
We can formally write the constraints for a correct classifica­
tion of the example with a margin greater or equal to 1 by 
requiring: 

where yi; = d is the index of the prototype vector associated 
to the correct class for the example x,. To allow for margin 
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violations, for each example, we introduce soft margin slack 
variables 

where denotes the hinge loss equal to x if x > 0 and 
0 otherwise. Notice that the value is an upper bound to 
the 0 - 1 loss for the example Xi, and consequently its aver­
age value over the training set will be an upper bound for the 
empirical error. 

Motivated by the structural risk minimization (SRM) prin­
ciple in [Vapnik, 1998], we want to search for a set of pro­
totype vectors M = { M i , . . , M\c\} with small norm such 
to minimize the empirical error on the training set. For this, 
we can formulate the problem in a SVM-style by requiring 
a set of prototypes of minimal norm that fulfill the soft con­
straints given by the classification requirements. Thus, the 
single-prototype multiclass SVM (SProtSVM) will result in: 

(2) 

Notice that, as desired, the optimal solution for will be the 
maximum value among the negative scores for the instance 
Xi. This problem is convex and it can be solved in the stan­
dard way by resorting to the optimization of the Wolfe dual 
problem. In this case, the lagrangian is: 

(3) 
subject to the constraints . By differentiating the 
lagrangian with respect to the primal variables and impos­
ing the optimality conditions we obtain the set of constraints 
(KKT conditions) that the variables must fulfill in order to be 
an optimal solution: 

(4) 
By using the fact and substituting condi­

tions (4) in (3) and omitting constants that do not change the 
solution, the problem can be restated as: 

(5) 

The next section includes an efficient optimization pro­
cedure for the more general multi-prototype setting that in­
cludes the single-prototype case as a particular instance. 

3 Multi-prototype multi-class SVM 
In this section, the SProtSVM model previously defined wil l 
be extended to the case of multiple prototypes per class. The 
basic idea is that, given multiple prototype vectors, we have a 
correct classification iff at least one of the prototypes associ­
ated to the correct class has a score higher than the maximum 
of the scores of the prototypes associated to incorrect classes. 

In this case, we write the constraints for a correct classifi­
cation of the example Xi with a margin greater or equal to 1 
requiring: 

To allow for margin violations, for each example xi, we 
introduce soft margin slack variables 0, one for each 
positive prototype, s.t. 

Given a pattern X i, we arrange the soft margin slack variables 
f J* in a vector Let us now introduce, for each 
example Xi a new vector , whose components 
are all zero except one component that is 1. In the following, 
we refer to as the assignment of the pattern xt. Notice that 
the dot product is always an upper bound to the 0—1 
loss for the example X; independently from its assignment. 

Now, we are ready to formulate the multi-prototype prob­
lem by requiring a set of prototypes of small norm and the 
best assignment for the examples able to fulfill the soft con­
straints given by the classification requirements. 

Thus, the MProtSVM formulation will result in: 

(6) 

Unfortunately, this is a mixed integer problem that is not 
convex and it is a difficult problem in general but, as we will 
see in the following, it is prone to an efficient optimization 
procedure that approximates the global optimum. At this 
point, it is worth noticing that, since the effective formulation 
is itself an (heuristic) approximation to the structural risk 
minimization principle, a good solution, although not opti­
mal, can anyway give good results. As we see after, this claim 
is confirmed by the results obtained in our experimental work. 

Let suppose now that the assignments are kept fixed. In this 
case the reduced problem becomes convex and can be solved 
as above by resorting to the optimization of the Wolfe dual 
problem. In this case, the lagrangian is: 

subject to the constraints . As above, by differen­
tiating the lagrangian of the reduced problem and imposing 
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the optimality conditions, we obtain: 

Notice that the second condition requires the dual variables 
associated to positive prototypes and not assigned to the as­
sociated pattern to be 0. By denoting now as yi the unique 
index such that , once using the conditions (8) 
in (7) and omitting constants that do not change the obtained 
solution, the reduced problem can be restated as: 

(9) 

It can be trivially shown that this formulation is consistent 
with the formulation for SProtSVM's given above. 

3.1 Optimization with static assignments 
When patterns are statically assigned to the prototypes 
via constant vectors the convexity of the associated 
MProtSVM problem implies that the optimal solution for the 
primal problem in (6) can be found through the maximization 
of the lagrangian in (9). 

Assuming an equal number q of prototypes per class, the 
dual involves n x m x q variables which lead to a very large 
scale problem. Anyway, the independence of constraints 
among the different patterns allows for the separation of the 
variables in n disjoint sets of m x q variables. 

The algorithm we propose for the optimization of the prob­
lem in (9) is inspired by the ones already presented in [Cram­
mer and Singer, 2000; Aiolli and Sperduti, 2002a] and con­
sists in iteratively selecting patterns from the training set and 
optimizing with respect to the variables associated to that pat­
tern. From the convexity, each iteration leads to an increase 
of the lagrangian until no more improvement is possible since 
the optimal solution for the lagrangian has been found. 

After selecting a pattern Xi, to enforce the constraint 
two elements from the set 

of variables will be optimized in pair 
while keeping the solution inside the feasible region. In par­
ticular, let wi and w2 be the two selected variables, we restrict 
the updates to the form with 
optimal choices for p. Iterating the application of this basic 
step over different pairs and then doing the same for different 
patterns will guarantee to reach the optimum for the overall 
problem. 

Let now compute the optimal value for p. First of all, we 
observe that the update will affect the squared norm of the 
prototype vector Mr of an amount 

Now, we show how to analytically solve the associated 
problem with respect to an update involving a single variable 

and the variable Since does not influence 

If the values of a7
p and aft, after being updated, would turn 

out to be not feasible for the constraints ar
p > 0 and aft < 7, 

we select the value for p such to fulfill the violated constraint 
bounds at the limit. 

Now, we show how to analytically solve the associated 
problem with respect to an update involving a pair of vari­
ables a^1, ap

2 such that r\, r2 E Ni and = ^ r-i. Since, in 
this case, the update must have zero sum, we have: 
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Similarly to the previous case, if the values of the and 
ar

p
2, after being updated, would turn out to be not feasible for 

the constraints we select the value for 
p such to fulfill the violated constraint bounds at the limit. 

Iterating multiple times the basic step described above on 
pairs of variables chosen among that associated to a given 
pattern it is guaranteed to find the optimality condition for 
the pattern. This has been exploited in [Aiolli and Sper-
duti, 2002a] to devise an incremental algorithm that uses the 
method on the reduced problem of a single example and then 
iterates over different examples. This optimization proce­
dure can be considered incremental in the sense that the so­
lution previously found for a given pattern forms the initial 
condition when the pattern is selected again for optimiza­
tion. In this version, the basic step of optimization of the 
reduced problem can require the optimization over all the 

pairs of variables not 
constrained to 0 associated with the selected pattern. Thus 
the complexity of the optimization of the reduced problem is 

where / is the number of iterations. 
Now, we perform a further step by giving an algorithm that 

at each iteration has a complexity o(m x q). For this, we ob­
serve that for the variables associated to the pattern 



xp to be optimal, the feasible analytic solution p must be 0 
for each pair. 

In particular, for the first case above, in order to be able to 
apply the step, it is required that, one of the following two 
conditions are verified, i.e.: 

0) 

while for the second case we must have: 

Notice that these facts can be checked in linear time. It is 
easy to show that the solution obtained at a certain step can 
be improved i f f one of these facts are verified. This suggests 
an efficient procedure, shown in Figure l(Top), that tries to 
greedily fulfill the previous condition of optimality. 

3.2 Optimization of general MProtSVM 
In this section, we present an efficient procedure that guaran­
tees to reach a local minimum of the objective function of the 
problem in (6) associated to MProtSVM. This procedure will 
try to optimize also with respect to the assignments 

Let suppose to start with a given assignment I for the 
patterns. In this case, as we have already seen, the associated 
problem is convex and can be efficiently solved by using the 
algorithm given in Section 3.1. Once that the optimal value 
for the primal has been reached, we observe that the so­
lution can be further improved by updating the assignments 
in such a way to assign each pattern to a positive prototype 
with minimal slack value, i.e. by setting the vector (2) 
such to have the unique 1 corresponding to the best perform­
ing positive prototype. However, with this new assignment 
7r(2), the variables might not fulfill the second KKT con­
dition in eq. (8) anymore. If it is the case, it simply means 
that the current solution is not optimal for the new assign­
ment. Thus, a lagrangian optimization done by satisfying 
constraints dictated by KKT conditions for the new assign­
ment is guaranteed to obtain a new with a better optimal 
primal value . For the optimization algorithm to suc­
ceed, however, the KKT conditions on the must be restored 
in order to return back to a feasible solution and then finally 
resuming the lagrangian optimization with the new assign­
ment 7r(2). We restore the KKT conditions by setting 
whenever there exists such that 

Performing the same procedure over different assignments, 
each one obtained from the previous one by the procedure 
just mentioned, implies the convergence of the algorithm to a 
local solution for the primal problem when no improvements 
are possible and the KKT conditions are all fulfilled by the 
current solution. This is due to the fact that every step induces 
an improvement on the primal value. 

The first problem with this procedure is that it results oner­
ous when dealing with many prototypes since we must per­
form many lagrangian optimizations. For this, we observe 
that for the procedure to work, at each step, it is sufficient to 
stop the optimization of the lagrangian when we find a value 

Figure 1: Top: algorithm for the optimization of the variables 
associated with a given pattern xp and a tolerance e. Bottom: 
algorithm for the optimization of MProtSVM. 
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for the primal better than the last found and this is going to 
happen for sure since the last solution has been found not op­
timal. This requires only a periodic check of the primal value 
when optimizing the lagrangian. 

The second and more stringent problem is that the proce­
dure will lead to a local minimum that can be very far from 
the best possible. For this, we suggest to update the assign­
ments on the basis of a stochastic annealed function instead 
of the hard decision function described above. 

Specifically, let us view the value of the primal as an energy 
function 

Let suppose to have a pattern Xi having slack variables 
and suppose that the probability for the assignment to 

be in the state s (i.e. with the 5-th component set to 1) follows 
the law 

I 
where T is the temperature of the system and 

the variation of the system energy when the pattern Xi 
is assigned to the s-th prototype. By multiplying every term 

by the normalization term exp 
and considering that probabilities over alternative 

states must sum to one, i.e. , we obtain 

with the partition function. 
Thus, when assigning the pattern Xi, each positive proto­

type s wil l be selected with probability Pi{s). Notice that, 
when the temperature of the system is low, the probability 
for a pattern to be assigned to a prototype different from the 
one having minimal slack value tends to 0 and we obtain a 
behavior similar to the not annealed version of the algorithm. 
The simulated annealing is typically implemented by decreas­
ing the temperature as the number of iterations increases by a 
monotonic decreasing function T = T(t,T0). The full algo­
rithm is depicted in Figure 1 (Bottom). 

4 Experimental Results 
We tested our model against three datasets that we briefly de­
scribe in the following: 

N1ST: it consists of a 10-class task of 10705 digits randomly 
taken from the NIST-3 dataset. The training set con­
sists of 5000 randomly chosen digits, while the remain­
ing 5705 digits are used in the test set. 

USPS: it consists of a 10-class OCR task (digits from 0 to 9) 
whose input are the pixels of a scaled digit image. There 
are 7291 training examples and 2007 test examples. 

LETTER: it consists of a 26-class task (alphabetic letters 
A-Z). Inputs are measures of the printed font glyph. The 
first 16000 examples are used for training and the last 
4000 for testing. 

Even if any kernel function can be in principle used, for the 
following preliminary experiments, we used the linear kernel 
K(x, y) = (x - y + 1). This allowed us to write an optimized 

code for training and classification that works directly with 
the explicit (compact) version of the model M. 

Since we are primarily interested into the evaluation of 
MProtSVM w.r.t. SProtSVM, for each dataset, we performed 
validation on the parameter for the SProtSVM model and 
we re-used the obtained value for training every MProtSVM 
generated for the same dataset. This approach seems us any­
way a pessimistic estimate of the performance of MProtSVM. 

The annealing process required by MProtSVM has been 
implemented by decreasing the temperature of the system 
with the exponential law: 

where 0 < r < 1 and T0 > 0 are external parameters. We 
used To = 10 for all the following experiments. 

Table 1: Comparison of generalization performances be­
tween LVQ and MProtSVM increasing the number of code-
books/prototypes on the NIST dataset 

Table 2: (a) Test error of MProtSVM on the USPS dataset 
, with an increasing 

number of prototypes; (b) Test error of MProtSVM on the 
LETTER dataset with an 
increasing number of prototypes. 

A set of experiments have been performed to compare the 
generalization performance of our (linear) model versus LVQ 
[Kohonen et al., 1996] which seemed to us the most compa­
rable model. For this, we have reported the best results that 
have been obtained by LVQ on the NIST dataset. Specifi­
cally, they have been obtained with the LVQ2.1 version of 
the algorithm (see [Sona and Sperduti, 2000]). As it is possi­
ble to see in Table 1, MProtSVM performs significantly better 
when few prototypes per class are used, while the difference 
gets lower when the number of prototypes per class increases. 
This can be due to the more effective control of the margin for 
SVM w.r.t. LVQ models. On the same dataset, the tangent-
distance based TVQ algorithm [Aioll i and Sperduti, 2002b] 
has obtained the best result, a remarkable 2 .1% test error, 
and polynomial SVM's have obtained a 2.82% test error. In 
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Table 3: Primal values and generalization error obtained with different configurations varying the parameter r (USPS dataset). 

addition, we tested the MProtSVM on the UCI Irvine USPS 
and LETTER datasets. As it is possible to see in Table 2, by 
combining a reasonably high number of linear prototypes, we 
have obtained performances almost comparable with the ones 
obtained in literature by using non-linear models. In fact, on 
the USPS dataset, we have been able to get a 4.63% error, 
using a SProtSVM with polynomial kernel of degree 3 and 
without preprocessing the data, while for LETTER, we re­
fer to the 1.95% obtained in [Crammer and Singer, 2001] by 
SProtSVM with exponential kernel. Although obtained with 
a slightly different split of the LETTER dataset (15000 exam­
ples for training and 5000 for test), we would like to mention 
the results reported in [Michie et al., 1994] where LVQ and 
k-NN yielded a 7.9% and 6.8% error, respectively. 

Notice that MProtSVM returns far more compact models 
with respect to state of the art non-linear kernel methods, 
thus allowing a (one or two order) reduced response time 
in classification. Defining a sort of model complexity fac­
tor = 100 x (m x q)/n, i.e. the number of prototypes 
produced as a fraction of the cardinality of the training set, 
the above experiments have shown very low value for (e.g. 
15 x 26 prototypes in the LETTER dataset gives = 0.65% 
and 20 x 10 prototypes for USPS gives = 2.74%). Notice 
that can be directly compared with the fraction of support 
vectors in kernel machines. Thus, MProtSVMs also give us a 
way to decide (before training) the complexity of the model. 

Finally, in Table 3 we have reported the values of the ob­
jective function of the primal problem in (6) along with their 
corresponding test errors obtained with the USPS dataset us­
ing different configurations and lowering the parameter r. As 
expected, fixed a raw in the table, better values for the pri­
mal can be obtained with lower values of r. Moreover, as 
the number of prototypes per class increases, the choice of 
small r tends to be more crucial. Anyway, higher values for 
r, and thus not optimal values for the primal, can neverthless 
lead to good generalization performances. This can be due to 
the fact that the primal value is just a way to approximate the 
theorethical SRM principle. 

5 Conclusion 
We have proposed an extension of multiclass SVM able to 
deal with several prototypes per class. This extension defines 
a non-convex problem. We suggested to solve this problem 
by using a novel efficient optimization procedure within an 
annealing framework where the energy function corresponds 
to the primal of the problem. Experimental results on some 
popular benchmarks demonstrated that it is possible to reach 
very competitive performances by using few linear models 

per class instead of a single model per class with kernel. This 
allows the user to get very compact models which are very 
fast in classifying new patterns. Thus, according to the com­
putational constraints, the user may decide how to balance the 
trade-off between better accuracy and speed of classification. 
Finally, it should be noted that the proposed approach com­
pares favorably versus LVQ, a learning procedure that, simi­
larly to the proposed approach, returns a set of linear models 
per class. 
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