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Abstract 

This paper investigates a new approach for training 
discriminant classifiers when only a small set of la­
beled data is available together with a large set of 
unlabeled data. This algorithm optimizes the clas­
sification maximum likelihood of a set of labeled-
unlabeled data, using a variant form of the Clas­
sification Expectation Maximization (CEM) algo­
rithm. Its originality is that it makes use of both un­
labeled data and of a probabilistic misclassification 
model for these data. The parameters of the label-
error model are learned together with the classifier 
parameters. We demonstrate the effectiveness of 
the approach on four data-sets and show the advan­
tages of this method over a previously developed 
semi-supervised algorithm which does not consider 
imperfections in the labeling process. 

1 Introduction 
In many real-life applications, labeling training data for learn­
ing is costly, sometimes not realistic and often prone to error. 
For example, for many rapidly evolving data bases available 
via the web, there is not enough time to label data for differ­
ent information needs. In some cases, like medical diagnosis 
or biological data analysis, labeling data may require very 
expensive tests so that only small labeled data sets may be 
available. In other cases, like object identification in images, 
noise is inherent in the labeling process. 
The statistician and pattern recognition communities were the 
first to consider the problem of forming discriminant rules us­
ing either partially classified or random misclassified training 
data in order to cope with this type of situation. 
More recently this idea has motivated the interest of the ma­
chine learning community and many papers now deal with 
this subject. The use of partially classified data for training, 
known as semi-supervised learning, has been the subject of 
intense studies since 1998 and more recently there has been a 
resurgence of interest for training with misclassified data also 
called learning in presence of label noise. 
We consider here semi-supervised learning for classification. 
Most approaches to this problem make use of a mixture 
density model where mixture components are identified as 
classes. Labeled data are known to belong to exactly one 

mixture component whereas unlabeled data may belong to 
any components. Using the Expectation Maximization (EM) 
algorithm [Dempster et al., 1977], proposed approaches usu­
ally attempt to optimize the likelihood of the whole labeled-
unlabeled data. Starting from an initial labeling, these ap­
proaches proceed by computing at each E-step, tentative 
labels for unlabeled data using the current parameters of 
the model and update in the M-step, these parameters us­
ing the estimated labels. Our departure point here is the 
work of [Amini and Gallinari-a, 2002] who proposed a semi-
supervised discriminant algorithm using a variant form of the 
CEM algorithm [Celeux and Govaert, 1992]. Discrimina­
tive approaches which attempt to estimate directly posterior 
class probabilities are often considered superior to generative 
models which compute these posteriors after learning class 
conditional densities. Tests on different datasets in I Amini 
and Gallinari-/?, 2002] led to the same conclusion for semi-
supervised learning. Like for other methods, at each step of 
the algorithm, the model computes tentative labels for unla­
beled data. We extend here the system by incorporating a 
model which takes into account label errors. This provides an 
unifying framework for semi-supervised learning and learn­
ing with label noise. To our knowledge, this form of model 
has not been studied yet. We detail the algorithm for the case 
of a logistic classifier and give a convergence proof for the 
general case. We then show experimentally that modeling 
the stochastic labeling noise, increases notably the perfor­
mance, especially when only small labeled datasets are avail­
able. This paper is organized as follows; we first make a brief 
review of work on semi-supervised learning and learning in 
the presence of label noise (section 2). In section 3 we present 
the formal framework of our model and describe in section 4 
the semi-supervised approach we propose. Finally we present 
a series of experiments on four data sets. 

2 Related work 

2.1 Learning with both labeled and unlabeled data 
The idea of using partially labeled data for learning started 
in the statistician community at the end of 60\s. The seminal 
paper by [Day, 1969] presents an iterative EM-like approach 
for learning the parameters of a mixture density under the as­
sumption of multivariate normal components with a common 
covariance matrix for two group-conditional distributions. 
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Other iterative algorithms for building maximum likelihood 
classifiers from labeled and unlabeled data based on the same 
type of assumption followed [O'Neill, 1978] [McLachlan and 
Ganesalingam, 1982]. Some other authors have suggested 
updating procedures for no-normal group conditional densi­
ties using for example kernel methods for modeling mixture 
components iMurray and Titterington, 1978]. There has been 
considerably fewer work on discriminative approaches. In 
his fundamental paper on logistic regression, Anderson sug­
gests modifying a logistic regression classifier to incorporate 
unlabeled data in order to maximize the likelihood function 
[Anderson, 1979]. 
The semi-supervised paradigm has been recently rediscov­
ered by the machine learning community. Most papers pro­
pose mixture density models for combining labeled and unla­
beled data for classification. [Miller and Uyar, 1996] consider 
a mixture density model where each class is described by sev­
eral component densities. [Roth and Steinhage, 1999] pro­
pose kernel discriminant analysis as an extension to classical 
linear discriminant analysis. This framework can be used also 
for semi-supervised learning. fNigam et al., 2000] propose a 
semi-supervised EM algorithm which is essentially similar to 
the one in [McLachlan, 1992] but makes use of naive Bayes 
estimator for modeling the different densities. They present 
empirical evaluation for text classification tasks. Some au­
thors make use of discriminant classifiers instead of model­
ing conditional densities. For example [Joachims, 1999] pro­
pose a transductive support vector machine which finds pa­
rameters for a linear separator using both the labeled data in 
the training set and the current test data whose class is un­
known. iBlum and Mitchell, 1998] introduce the co-training 
paradigm where each sample x is supposed to be described 
by two modalities. Two classifiers are then used, one for each 
modality, operating alternatively as teacher and student. This 
framework can be used for unsupervised and semi-supervised 
learning. Based on the multi-modal framework introduced 
by [Blum and Mitchell, 1998], [Muslea et al., 2002] propose 
to combine both active and semi-supervised learning. Since 
that, different authors have proposed semi-supervised learn­
ing schemes, they usually follow one of the above ideas. 

2.2 Learn ing w i th imperfect ly labeled data 

Practical applications of pattern recognition, like eg image 
classification problems, have motivated in the early 80\s some 
work on the problem of learning in presence of mislabeled 
data for fully supervised learning. [Chittineni, 1980] ob­
tained error bounds on the performance of the Bayes and 
nearest neighbor classifiers with imperfect labels. [Krish-
nan, 1988] considered a 2-class classification problem for 
two group multivariate normal mixture when training samples 
are subject to random misclassification and derived the likeli­
hood estimation of parameters. [Titterington, 1989] proposed 
a logistic-normal distribution model and worked out an EM 
algorithm for the estimation of its parameters. More recently, 
[Lawrence and Scholkopf, 2001] proposed an algorithm for 
constructing a kernel Fisher discriminant from training ex­
amples in the presence of label noise. 

3 A semi-supervised probabilistic model for 
mislabeling 

We consider here the problem of semi-supervised learn­
ing. We start from the Logistic-CEM algorithm described in 
[Amini and Gallinari-a, 2002]. It is a generic scheme in the 
sense that it can be used with any discriminant classifier esti­
mating the posterior class probabilities. The classifier is first 
trained on labeled data, it then alternates two steps until con­
vergence to a local maximum of the Classification Maximum 
Likelihood (CML) criterion [Symons, 1981]. Unlabeled data 
are first labeled using the output of the current classifier. Clas­
sifier parameters are then learned by maximizing the CML 
function computed using the known labels of labeled data and 
the current estimated labels for unlabeled data. In this algo­
rithm, at each iteration, labels computed for unlabeled data 
are considered as desired outputs. 
We suppose here that labels from the labeled dataset are cor­
rect and that at each step of this algorithm, labels computed 
for unlabeled data are subject to error. We propose to model 
the imperfection of these labels using a probabilistic for­
malism and to learn the semi-supervised classifier by taking 
into account its labeling errors according to this error model. 
Parameters of the error model and of the classifier will be 
learned simultaneously in this new algorithm. Compared to 
the baseline algorithm [Amini and Gallinari-a, 2002], we ex­
plicitly take into account the fact that the current classifier is 
not optimally trained at each step, since many data labels are 
missing and are only estimated. 
In the following we present the general framework and the 
learning criterion of our model. 

3.1 General f ramework 
We suppose that each example belongs to one and only one 
class and that there are available a set of n labeled exam­
ples, D1 and a set of m unlabeled examples, Du. A discrim­
inant classifier is to be trained on the basis of these n + ra, 
d-dimensional feature v e c t o r s 1 . For each labeled ex­
ample xt in / ) / , let ct and be respectively the 
class label and the indicator vector class associated to xt : 

We suppose that for each unlabeled example Xi in Du, there 
exists a perfect and an imperfect label respectively denoted ci 

and ci. We propose to model the imperfections in the labels 
by the following probabilities: 

(1) 
Which are subject to the constraint: 

(2) 

In order to simplify the presentation, we consider in the fol­
lowing a two-class classification problem. 

This is not restrictive since we can easily extend the analysis 
to multi-class cases. 

'Components of x could also be discrete 
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3.2 Classification M a x i m u m Like l ihhod estimation 
in presence of label noise 

The baseline semi-supervised discriminant algorithm has 
been conceived as an extension to classification problems of 
the CEM algorithm proposed by fCeleux and Govaert, 1992] 
for clustering. CEM has been first proposed for learning the 
parameters of gaussian mixtures using as training criterion 
the classification maximum likelihood criterion initially de­
scribed in [Symons, 1981]. 
McLachlan has extended CML and CEM to the case where 
both labeled and unlabeled data are used for learning 
([McLachlan, 1992], page 39). The CML criterion in this 
case is the complete-data likelihood and writes: 

The algorithm proposed by [McLachlan, 1992] optimizes this 
criterion for a mixture of normal densities. In their algorithm 
for training discriminant classifiers on labeled and unlabeled 
data, [Amini and Gallinari-a, 2002] make use of the following 
form of the log-classification-likelihood: 

This writing makes apparent the posterior probabilities which 
are directly estimated in their algorithm instead of the condi­
tional densities in [McLachlan, 1992]. As no assumptions 
are made on the distributional nature of data, maximizing Lc 
is equivalent to the maximization of L'c ([McLachlan, 1992], 
page 261). 

n ' 2 

(3) 

Let us now introduce our misclassifiction model. For that, 
we will express the I in the second summation 
in (3) as a function of the mislabeling probabilities and of the 
posterior probability of correct labels . Consider 

can be decomposed with regard to the 
conditional class probabilities: 

I 

Following [Chittineni, 1980] we make the assumption that the 
density of an example, given its true label, does not depend 
on its imperfect label: 
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4 Updating a discriminant function on the 
basis of labeled and imperfect labeled data 

We now present an iterative discriminant CEM algorithm for 
learning a classifier for semi-supervised learning, which in­
corporates the mislabeling error model. The training criterion 
is (6). For simplification, we consider a simple logistic classi­
fier [Anderson, 1982], but the algorithm can be easily adapted 
for training any discriminant classifier. Consider i a logistic 
classifier with parameters The output of 

for i n p u t . . After 

have been learned, are respectively used 
t o e s t i m a t e b e the 
current partition for the unlabeled data, the param­
eters for the misclassification model and the logistic classifier 
at iteration p of the algorithm. The learning criterion (6) is a 
function of . An iterative approach is then adopted 
for its maximization (algorithm 1). Parameters are first ini­
tialized by training the classifier on the labeled dataset D1. 
Two steps are then iterated until the convergence of criterion 
L'c. In the first step, the classifier is considered as an imper­
fect supervisor for the unlabeled data. Its outputs, G(x) and 
1 - G(x), are used to compute the posterior imperfect class 
probabilities p(c — k \ x) for each x in Du and , x 
is then labeled according to the maximum imperfect output. 
In the second step, the parameters of the error model and of 
the classifier are updated using the imperfect labels obtained 
in the previous step as well as the labeled data. We adopted in 
this step, a gradient algorithm to maximize (6). An advantage 
of this method is that it only requires the first order deriva­
tives at each iteration. In the following lemma, we provide a 
proof of convergence of the algorithm to a local maximum of 
the likelihood function for semi-supervised training. 
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Finally as there is a finite number of partitions of the example 
into 2-classes, the increasing sequence 
takes a finite number of values and thus, converges to a sta­
tionary value. ■ 
In the following section we will present results on four 
datasets, using a baseline logistic classifier trained with the 
updating scheme presented above. 

5 Experiments 
5.1 Data sets 
In our experiments we used the Spambase, C r e d i t 
s c r e e n i n g and Mushroom collections from the 
UCI repository2 as well as the Compu ta t i on and 
Language (Cmp.lg) collection of TIPSTER SUMMAC3 

for text summarization. Table 1 summarizes the characteris­
tics of these datasets. We removed 37 samples with missing 
attributes from the C r e d i t data set. For summarization, we 

adopt the text-span extraction paradigm which amounts at 
selecting a subset of representative document sentences. This 
is a classification problem where sentences are to be classi­
fied as relevant or non relevant for the extracted summary. 
All four problems are two-class classification tasks, Ema i l 
Spam and Cmp.lg have continuous attributes, C r e d i t 
vectors are mixed continuous and qualitative, Mushroom 
attributes are qualitative. 
For each dataset, we ran 3 algorithms - the semi-supervised 
learning algorithm using the label imperfections, the baseline 
semi-supervised algorithm [Amini and Gallinari-o, 2002] 
and a fully supervised logistic classifier trained only on the 
available labeled data. We compared the performance of 
these algorithms on 20 runs of arbitrary training and test 
splits, by varying the proportion of labeled-unlabeled data on 
the training set. 
For text summarization, we represent each sentence using 
a continuous version of features proposed by [Kupiec 
et al., 19951. This characterization has given good re­
sults in previous work [Amini and Gallinari-b, 2002]. 
Each sentence i, with length l(i) is characterized by 

2ftp://ftp.icsS.uci.edu/pub/machine-leaming-databases/ 
3 http://www.itl. nist.gov/iaui/894.02/related-projccts/tipster_summac/ 

5.2 Evaluation measures 
For the three UCI datasets there is approximately the same 
proportion of examples for each class (table 1). We used as 
performance criterion the percentage of good classification 
(PGC) defined as: 

For text summarization, we followed the SUMMAC evalua­
tion by using a 10% compression ratio. Hence, for each doc­
ument in the test set we have formed its summary by select­
ing the top 10% sentences having higher score with respect 
to the output of the classifier. For evaluation we compared 
these extractive sentences with the desired summary of each 
document. The desired extractive summaries were generated 
from the abstract of each article using the text-span align­
ment method described in [Banko et al., 1999]. Since the 
collection is not well balanced between positive and negative 
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Figure 1: Performance curves for the 4 datasets showing, for a classical logistic classifier trained in a fully supervised scheme 
(square), the baseline semi-supervised Logistic-CEM algorithm (circle) and our semi-supervised algorithm with label imper­
fections (star). Each point represents the mean performance for 20 arbitrary runs. The error bars show standard deviations for 
the estimated performance. 

examples, PGC is meaningless, we used the average preci­
sion (AP) measure for the evaluation. Let be the number 
of sentences extracted by the system which arc in the target 
summaries, and be the total number of sentences extracted 
by the system. The precision is defined as the ratio 

5.3 Results 
For each dataset and each cross validation, 25% of examples 
are held aside as a test set. We vary the percentage of labeled-
unlabeled data in the remaining 75% training set of the collec­
tions. Figure 1, shows the performance on the test sets for the 
four datasets as a function of the proportion of labeled data in 
the training set. On the x-axis, 5% means that 5% of data in 
the training set were labeled for training, the 95% remaining 
being used as unlabeled training data. Each experiment was 
carried on twenty paired trials of randomly selected training-
test splits. On the y-axis, each point represents the mean per­
formance for the 20 runs and the error bars correspond to the 
standard deviation for the estimated performance [Tibshirani, 

1996]. 
All figures exhibit the same behavior. In all four datasets, 
semi-supervised algorithms are over the baseline classifier 
trained only on the labeled training data. For example, if 
we consider text summarization, using only 5% of labeled 
sentences, our algorithm allows to increase performance by 
15% compared to a fully supervised algorithm trained on 
the 5%. 15% labeled data are needed to reach the same 
performance with the baseline method. Our model is uni­
formly better than the two reference models used in our ex­
periments. It provides an important performance increase es­
pecially when there are only few labeled data available which 
is the most interesting situation in semi-supervised learning. 
For the C r e d i t c a r d problem, the dataset is small and 
semi-supervised learning allows for a smaller increase of per­
formance than for other datasets where there are a lot of un­
labeled data available. Semi-supervised learning allows to 
reach 'optimal' performance with about 50% of labeled data 
(only 30% for the Mushroom set). 
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6 Conclusion 
We have described how to incorporate a label error model 
into an iterative semi-supervised discriminant algorithm. We 
have detailed a version of this general algorithm in the case 
of a simple logistic classifier, shown its convergence and 
proved empirically its efficiency on four datasets with dif­
ferent characteristics. The algorithm allows for an impor­
tant performance increase compared to a reference efficient 
semi-supervised algorithm without mislabeling model. The 
main contribution of the paper is to provide a general frame-
work for handling simultaneously semi-supervised learning 
and learning in the presence of label noise. The noise model 
we have used is simple and allows for efficient estimations in 
the semi-supervised setting. More sophisticated models have 
still to be investigated. However, our experience is that sim­
ple models do often perform better when only few labeled 
data are available. 
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