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Abstract 
Single-Class Classification (SCC) seeks to distin­
guish one class of data from the universal set of 
multiple classes. We present a new SCC algorithm 
that efficiently computes an accurate boundary of 
the target class from positive and unlabeled data 
(without labeled negative data). 

1 Introduction 
Single-Class Classification (SCC) seeks to distinguish one 
class of data from the universal set of multiple classes, (e.g., 
distinguishing apples from fruits, identifying "waterfall" pic­
tures from image databases, or classifying personal home-
pages from the Web) (Throughout the paper, we call the target 
class positive and the complement set of samples negative.) 

Since it is not natural to collect the "non-interesting" ob­
jects (i.e., negative data) to train the concept of the "interest­
ing" objects (i.e., positive data), SCC problems are prevalent 
in real world where positive and unlabeled data are widely 
available but negative data are hard or expensive to acquire 
[Yu et al. 2002; Letouzey et al. , 2000; DeComite et a/., 
1999]. For example, in text or Web page classification (e.g., 
personal homepage classification), collecting negative train­
ing data (e.g., a sample of "non-homepages") is delicate and 
arduous because manually collected negative data could be 
easily biased because of a person's unintentional prejudice, 
which could be detrimental to classification accuracy. In an 
example of diagnosis of a disease, positive data are easy to 
access (e.g., all patients who have the disease) and unlabeled 
data are abundant (e.g., all patients), but negative data are ex­
pensive if detection tests for the disease are expensive since 
all patients in the database cannot be assumed to be negative 
samples if they have never been tested. Further applications 
can be also found in pattern recognition, image retrieval, clas­
sification for data mining, rare class classification, etc. In this 
paper, we focus on this SCC problem from positive and unla­
beled data (without labeled negative data). 

1.1 Previous Approaches for SCC 
Traditional (semi-)supervised learning schemes are not suit­
able for SCC without labeled negative data because: (1) the 
portions of positive and negative spaces are seriously unbal­
anced without being known (i.e., Pr(P) « Pr(P)), and 

(2) the absence of negative samples in the labeled data set 
makes unfair the initial parameters of the model and thus it 
leads to unfair guesses for the unlabeled data. 

Active learning methods also try to minimize the labeling 
labors to construct an accurate classification function by a dif­
ferent approach that involves an interactive process between 
the learning system and users [Tong and Koller, 2000]. 

Valiant in 1984 [Valiant, 1984] pioneered learning theory 
from positive examples based on rule learning. In 1998, F. De­
nis defined the Probably Approximately Correct (PAC) learn­
ing model for positive and unlabeled examples, and showed 
that k-DNF (Disjunctive Normal Form) is learnable from pos­
itive and unlabeled examples [Denis, 1998]. After that, some 
experimental attempts to learn using positive and unlabeled 
data have been tried using k:-DNF or C4.5 [Letouzey et al., 
2000; DeComite et al, 1999]. Rule learning methods are 
simple and efficient for learning nominal features but tricky to 
use for the problems of continuous features, high dimensions, 
or sparse instance spaces. 

Positive Example-Based Learning (PEBL) framework was 
proposed for Web page classification [Yu et ai, 2002]. Their 
method is limited to the Web domain with binary features, 
and its training efficiency is poor because of using SVM iter-
atively whose training time is already at least quadratic to the 
size of training data set. This problem becomes critical when 
the size of unlabeled data set is large. 

A probabilistic method for the SCC problem has been re­
cently proposed for the text domain [Liu et ai, 2002]. As 
they specified in the paper, their method - a revision of the 
EM algorithm - performs badly on "hard" problems due to 
the fundamental limitations of the generative model assump­
tion, the attribute independence assumption which results in 
linear separation, and the requirement of good estimation of 
prior probabilities. 

OSVM (One-Class SVM) also distinguishes one class of 
data from the rest of the feature space given only a pos­
itive data set [Tax and Duin, 2001; Manevitz and Yousef, 
2001]. Based on a strong mathematical foundation, OSVM 
draws a nonlinear boundary of the positive data set in the fea­
ture space using two parameters - v (to control the noise in 
the training data) and (to control the "smoothness" of the 
boundary). They have the same advantages as SVM, such 
as efficient handling of high dimensional spaces and system­
atic nonlinear classification using advanced kernel functions. 
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Figure 1: Boundaries of SVM and OSVM on a synthetic data set. big dots: positive data, small dots: negative data 

However, OSVM requires a much larger amount of positive 
training data to induce an accurate class boundary because its 
support vectors (SVs) of the boundary only comes from the 
positive data set and thus the small number of positive SVs 
can hardly cover the major directions of the boundary espe­
cially in high dimensional spaces. Due to the SVs coming 
only from positive data, OSVM tends to ovcrfit and undcrfit 
easily. Tax proposed a sophisticated method which uses artif-
ically generated unlabeled data to optimize the OSVM's pa­
rameters that "balance" between ovcrfitting and undcrfitting 
[Tax and Duin, 2001]. However, their optimization method 
is infeasibly inefficient in high dimensional spaces, and even 
with the best parameter setting, its performance still lags far 
behind the original SVM with negative data due to the short­
age of SVs which makes "incomplete" the boundary descrip­
tion. Figure 1(a) and (b) show the boundaries of SVM and 
OSVM on a synthetic data set in a two-dimensional space. 
(We used L1BSVM version 2.33' for SVM implementation.) 
In this low-dimensional space with "enough" data, the ob-
stensibly "smooth" boundary of OSVM is not the result of the 
good generalization but instead is from the poor expressibility 
caused by the "incomplete" SVs, which wil l become much 
worse in high-dimensional spaces where more SVs around 
the boundary are needed to cover major directions in the high-
dimensional spaces. When we increase the number of SVs in 
OSVM, it ovcrfits rather than being more accurate as shown 
in Figure l(c)and(d). 

1.2 Contributions and Paper Layout 
We first discuss the "optimal" SCC boundary, which moti­
vates our new SCC framework Mapping-Convergence (MC), 
where the algorithms under the MC framework generate the 
boundary close to the optimum (Section 2). In Section 3, we 
present an efficient SCC algorithm Support Vector Mapping 
Convergence (SVMC) under the MC framework. We prove 
that although SVMC iterates under the MC framework for 
the "near-optimal" result, its training time is independent of 
the number of iterations, which is asymptotically equal to that 
of a SVM. We empirically verify our analysis of SVMC by 
extensive experiments on various domains of real data sets 
such as text classification (e.g., Web page classification), pat­
tern recognition (e.g., letter recognition), and bioinformatics 
(e.g., diagnosis of breast cancer), which shows the outstand­
ing performance of SVMC in a wide spectrum of SCC prob-

1 http://www.csie.ntu.edu.tw/~cjlin/libsvm 

lems (with nominal or continuous attributes, linear or nonlin­
ear separation, and low or high dimensions) (Section 4). 

1.3 Notat ion 
We use the following notation throughout this paper. 

• x is a data instance such that 
• V is a subspace for positive class within U, from which 

positive data set P is sampled. 
• U (unlabeled data set) is a uniform sample of the univer­

sal set. 
• U is the feature space for the universal set such that U C 

Rm where m is the number of dimensions. 

For an example of Web page classification, the universal 
set is the entire Web, U is a uniform sample of the Web, P 
is a collection of Web pages of interest, and x € Rm is an 
instance of a Web page. 

2 Mapping Convergence (MC) Framework 
2.1 Mot iva t ion 
In machine learning theory, the "optimal" class boundary 
function (or hypothesis) h(x) given a limited number of train­
ing data set { ( x , / ) } (I is the label of x) is considered the 
one that gives the best generalization performance which de­
notes the performance on "unseen" examples rather than on 
the training data. The performance on the training data is not 
regarded as a good evaluation measure for a hypothesis be­
cause the hypothesis ends up overfitting when it tries to fit the 
training data too hard. (When a problem is easy (to classify) 
and the boundary function is complicated more than it needs 
to be, the boundary is likely overfitted. When a problem is 
hard and the classifier is not powerful enough, the boundary 
becomes undcrfit.) SVM is an excellent example of super­
vised learning that tries to maximize the generalization by 
maximizing the margin and also supports nonlinear separa­
tion using advanced kernels, by which SVM tries to avoid 
overfitting and underfitting [Burges, 1998]. 

The "optimal" SCC classifier without labeled negative data 
also needs to maximize the generalization somehow with 
highly expressive power to avoid ovcrfitting and undcrfitting. 
To illustrate an example of the "near-optimal" SCC bound­
ary without labeled negative data, consider the synthetic data 
set (Figure 2) simulating a real situation where within U, (1) 
the universal set is composed of multiple groups of data, (2) 

568 LEARNING 

http://www.csie.ntu.edu.tw/~cjlin/libsvm


Figure 2: Synthetic data set simulating a real situation. P: big 
dots, U: all dots (big and small dots) 

the positive class V is one of them (supposing V is the data 
group in the center), and (3) the positive data set P is a sam­
ple f rom V (assuming that the big dots are the sample P). 
O S V M draws V, a tight boundary around P, as shown in 
Figure 2(a), which overfits the true class area V due to the 
absence of the knowledge of the distribution of U. However, 
the "near-optimal" SCC classifiers must locate the boundary 
between V and U outside V (Figure 2(b)) and thus maximize 
the generalization. The MC framework using U systemati­
cally draws the boundary of Figure 2(b). 

2.2 Nega t i ve S t r e n g t h 

Let h(x) be the boundary function of the positive class in U, 
which outputs the distance from the boundary to the instance 
x in U such that 

if x is a positive instance, 

if x is a negative instance, 

if x is located farther than x' 

from the boundary in U. 

Defini t ion 1 (Strength of negative instances). For two neg­
ative instances x and x' such that h(x) < 0 and h(x') < 0, 
if\h(x)\ > \h(x')\, then x is stronger than x'. 

Example 1. Consider a resume page classification function 
h(x) from the Web (U). Suppose there are two negative data 
objects x and x' (non-resumepages) in U such that h(x) < 0 
and h(x') < 0: x is "how to write a resume" page, and 
x' is "how to write an article " page. In U, x' is considered 
more distant from the boundary of the resume class because x 
has more relevant features to the resume class (e.g., the word 
"resume " in text) though it is not a true resume page. 

2.3 M C F r a m e w o r k 

The MC framework is composed of two stages: the mapping 
stage and the convergence stage. In the mapping stage, the 
algorithm uses a weak classifier , which draws an init ial 
approximation of "strong negatives" - the negative data lo­
cated far f rom the boundary of the positive class in U (steps 
1 and 2 in Figure 4). Based on the init ial approximation, the 
convergence stage runs in iteration using a second base classi­
fier $ 2 , which maximizes the margin to make a progressively 
better approximation of negative data (steps 3 through 5 in 
Figure 4). Thus the class boundary eventually converges to 

Figure 3: Example of the spaces of the MC framework in U 

the boundary around the positive data set in the feature space 
which also maximizes the margin. 

Input: - positive data set P, unlabeled data set U 
Output: - a boundary function h, 

: an algorithm identifying "strong negatives" from U 
: a supervised learning algorithm that maximizes the margin 

Algorithm: 
1. Use to construct a classifier ho from P and U which classifies 

only "strong negatives" as negative and the others as positive 
2. Classify U by h0 

examples from U classified as negative by ho 
:= examples from U classified as positive by ho 

3. Set TV := and i := 0 
4. Do loop 

4.1. N := NUN, 
4.2. Use to construct hi 1 from P and TV 
4.3. Classify < 

:= examples from Pi classified as negative by hi+1 

examples from Px classified as positive by hi+1 
4.4. i := i + 1 
4.5. Repeat until 

5. return hi 

Figure 4: MC framework 

Assume that V is a subspace t ightly subsuming P wi th in 
U where the class of the boundary function for V is f rom the 
algorithm (e.g., SVM) . In Figure 4, let No be the negative 
space and be the positive space with in U divided by h0 

(a boundary drawn by ), and let Ni be the negative space 
and be the positive space wi th in divided by h i (a 
boundary drawn by Then, we can induce the fol low­
ing formulae f rom the MC framework of Figure 4. (Figure 3 
illustrates an example of the spaces of the framework in U.) 

(1) 

(2) 

where I is the number of iterations in the MC framework. 

Theorem 1 (Boundary Convergence). Suppose U is uni­
formly distributed in U. If algorithm does not generate 
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false negatives, and algorithm maximizes margin, then (I) 
the class boundary of the MC framework converges into the 
boundary that maximally separates P and U outside and 
(2) I (the number of iterations) is logarithmic in the margin 
between and 

Proof , because a classifier constructed by the 
algorithm does not generate false negative. A classifier h\ 
constructed by the algorithm trained from the separated 
space and divides the rest of the space 
which is equal to into two classes with a boundary 
that maximizes the margin between and The first part 
becomes and the other becomes Repeatedly, a 
classifier constructed by the same algorithm trained 
from the separated space and divides the rest of 
the space into and with equal 
margins. Thus, always has the margin of half of 
(for Therefore, I will be logarithmic in the margin 
between and 

The iteration stops when where there exists no 
sample of U outside Therefore, the final boundary will 
be located between P and U outside while maximizing the 
margin between them. 

Theorem 1 proves that under certain conditions, the final 
boundary will be located between P and U outside How­
ever, in the example of Figure 2(b), our framework generates 
the "better" boundary located between P and U outside V 
because in theorem 1, we made a somewhat strong assump­
tion, i.e., U is uniformly distributed, to guarantee the bound­
ary convergence. In a more realistic situation where there is 
some distance S between classes-Figure 2 shows some gaps 
between classes-if the margin between and becomes 
smaller than at some iteration, the convergence stops be­
cause becomes empty. The margin b e t w e e n a n d 

reduces by half at each iteration as the boundary ap­
proaches to and thus the boundary is not likely to stop con­
verging when it is far from unless U is severely sparse. 
Thus, we have the following claim: 
Claim 1. The boundary of MC is located between P and U 
outside V if U and P are not severely sparse and there exists 
visible gaps between V and U. 

Validity of the component algorithms 

J. must not generate false negatives. 

Most classification methods have a threshold to control the 
trade-off between precision and recall. We can adjust the 
threshold of so that it makes near 100% recall by sacrific­
ing precision. (Some violations of this can be handled by the 
soft constraint of (e.g., SVM).) Determining the threshold 
can be intuitive or automatic when not concerning the pre­
cision quality much. The precision quality of does not 
affect the accuracy of the final boundary as far as it approxi­
mates a certain amount of negative data because the boundary 
wil l converge eventually. Figure 5 visualizes the boundary af­
ter each iteration of SVMC. The mapping stage only identi­
fies very strong negatives by covering a wide area around the 
positive data (Figure 5(a)). (We used OSVM for the algorithm 

of the mapping stage. We intuitively set the parameters of 
OSVM such that it covers all the positive data without much 
concern for false positives.) Although the precision quality 
of mapping is poor, the boundary at each iteration converges 
(Figures 5(b) and (c)), and the final boundary is very close 
to the true boundary drawn by SVM with P and N (Figure 
1(a) and 5(d)). Our experiments in Section 4 also show that 
the final boundary becomes very accurate although the initial 
boundary of the mapping stage is very rough by the "loose" 
setting of the threshold of . 

2. 2 must maximize margin. 

SVM and Boosting are currently the most popular supervised 
learning algorithms that maximize the margin. With a strong 
mathematical foundation, SVM automatically finds the opti­
mal boundary without a validation process and without many 
parameters to tune. The small numbers of theoretically moti­
vated parameters also work well for an intuitive setting. For 
these reasons, we use SVM for for our research. In prac­
tice, the soft constraint of SVM is necessary to cope with 
noise or outliers. The soft constraint of SVM can affect / 
and the accuracy of the final boundary. However, P is not 
likely to have a lot of noise in practice because it is usually 
carefully collected by users. In our experiments, a low setting 
(i.e., v = 0.01) of (the parameter to control the rate of noise 
in the training data) performs well for all cases for this reason. 
(We used I/-SVM for the semantically meaningful parameter 
[Chang and Lin, 2001].) 
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3 Support Vector Mapping Convergence 
(SVMC) 

3.1 Motivation 
The classification time of the final boundary of SMC ("Sim­
ple" MC with = SVM) is equal to that of SVM because 
the final boundary is a boundary function of The training 
time of SMC can be very long if is very large because the 
training time of SVM highly depends on the size of data set 

and SMC runs iteratively. 
assuming the number of iterations andtsvM = 
0( | f / | 2 ) where is the training time of a classifier 
(tsvM is known to be at least quadratic to and linear to 
the number of dimensions). Refer to [Chang and Lin, 2001] 
for more discussion on the complexity of SVM. However, de­
creasing the sampling density of U to reduce the training time 
hurts the accuracy of the final boundary because the density 
of U will directly affect the quality of the SVs of the final 
boundary. 

3.2 S V M C 

SVMC prevents the training time from increasing dramat­
ically as the sample size grows. We prove that although 
SVMC iterates under the MC framework for the "near-
optimal" result, its training time is independent of the number 
of iterations, and thus its training time is asymptotically equal 
to that of a SVM. 

The approach of SVMC is to use minimally required data 
set at each iteration such that the data set does not degrade 
the accuracy of the boundary while it saves the training time 
of each SVM maximally. To illustrate how SVMC achieves 
this, consider the point of starting the third iteration (when 

in SMC. (See step 4.1 in Figure 4.) After we merge 
into N, we may not need all the data from N in order to 

construct h3 because the data far from h3 may not contribute 
to the SVs. The set of negative SVs of h2 is the representative 
data set for and so we only keep the negative SVs of 
h2 and the newly induced data set to support the negative 
side of/13. 

Claim 2 (Minimally required negative data). Minimally 
required negative data at th iterationthat 
makes h{+1 is as accurate as the boundary constructed from 

and negative support vectors of h{. 

Rationale. The negative SVs of will be f r o m a n d 
the negative SVs of hi because is the closest data set to 
/ i j+ i and because the directions not supported by in the 
feature space wil l be supported by the negative SVs of h^ 
which are the representing data set for However, 
if any of the negative SVs of hi is excluded in constructing 

might suffer because the negative SVs of hi need 
to support the direction that TVj does not support in the feature 
space. Thus, negative support vectors of hi are the 
minimally required negative data set at (i + l ) th iteration. 

□ 
For the minimally required data set for the positive side, 

we cannot definitely exclude any data object from P at each 

iteration because positive SVs are determined depending on 
negative SVs, and it is hard to determine the positive data that 
cannot be SVs independent of negative SVs or SVM parame­
ters. 

Surprisingly, adding the following statement between step 
4.4 and 4.5 of the original MC framework of Figure 4 com­
pletes the SVMC algorithm. 

Reset N w i t h nega t i ve SVs of 
Theorem 2 (Training time of SVMC). Suppose 

Proof. For simplicity of the proof, we approximate each 
value as follows. 

Theorem 2 states that the training complexity of SVMC 
is asymptotically equal to that of SVM. Our experiments in 
Section 4 also show that SVMC trains much faster than SMC 
while it remains the same accuracy. Figure 5 visualizes the 
boundary after each iteration of SVMC on the same data set 
of Figure 1. 

4 Empirical Results 
In this section, we show the empirical verification of our anal­
ysis on SVMC by extensive experiments on various domains 
of real data sets - Web page classification, letter recognition, 
and diagnosis of breast cancer - which show the outstand­
ing performance of SVMC in a wide spectrum of SCC prob­
lems (with nominal or continuous attributes, linear or nonlin­
ear separation, and low or high dimensions). 

4.1 Datasets and Methodology 
Due to space limitations, we reports only the main results. 
Our evaluation is based on the F\ measure 
r ) , p is precision and r is recall) as was used in [Liu et al, 
2002] - one of the most recent works on SCC from positive 
and unlabeled data2. We also report the accuracy. 

We used the letter recognition and breast cancer data sets 
from the UC1 machine learning repository3 for direct com­
parisons with OSVM. (OSVM is often used for letter or digit 

2Refer to [Liu et al., 2002] for the justification of using the Fl 
measure for SCC. 

3 http://www.ics.uci.cdu/~mlcarn/M LRepository.html 
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Class 

letter A 
'B ' 
'C' 
'D ' 
'E ' 

b-canccr 
course 
faculty 
student 

\P\ 

521 
571 
485 
525 
518 
135 
482 
532 
816 

\u\ 
10007 
10004 
9996 
10050 
10026 
259 

4179 
4209 
4154 

I'VI 
384 
377 
371 
402 
392 
77 

448 
592 
825 

TSVM 
0.9929, 99.96 
0.9651,99.83 
0.9860, 99.23 
0.9820,99.91 
0.9798, 99.90 
0.9628, 98.87 
0.8969, 97.82 
0.9032, 97.68 
0.9240, 97.27 

SMC 
0.9840, 99.91 
0.9046, 99.50 
0.9641, 99.82 
0.9300, 99.63 
0.9419, 99.70 
0.9585, 98.75 
0.8259, 96.65 
0.8420, 95.89 
0.8495, 94.29 

F1, Accuracy (%) 
SVMC 

0.9840, 99.91 
0.9204, 99.59 
0.9641, 99.82 
0.9300, 99.63 
0.9396, 99.69 
0.9585, 98.75 
0.8434, 96.89 
0.8705, 96.58 
0.8505,94.15 

OSVM 
0.8457, 99.22 
0.7207, 98.69 
0.7354, 98.82 
0.6921,98.60 
0.7112,98.78 
0.6315,83.32 
0.2028, 36.59 
0.2621,50.11 
0.3384, 32.52 

SVM.NN 
0.0811,97.26 
0.0834, 97.58 
0.0758, 97.55 
0.0902, 97.52 
0.1333,97.64 
0.2434, 36.06 
0.0880, 89.30 
0.0168,86.05 
0.0000,80.14 

T-Time (sec.) 
SMC 
171.77 
75.61 
155.70 
80.47 
98.13 
0.131 
636.70 
749.63 
1181.59 

SVMC 
45.37 
14.34 
29.93 
16.06 
21.57 
0.025 
143.29 
217.85 
296.50 

Table 1: Performance results. \Pu\' # of positives in U\ T-Time: Training Time 

recognition [Tax and Duin, 2001].) We also used Webkb4 for 
Web page classification as used in [L iu et ai, 2002] for the 
indirect comparison wi th it. We set up the experiment en­
vironment in the same way as [L iu et ai, 2002], except our 
setup is more realistic: In [L iu et ai, 2002], U is composed 
of b% of positives (e.g., student) and samples from another 
class (e.g., course). Our U is b% of positives (e.g., student) 
and the remainder is f rom all other classes. (Refer to [L iu et 
ai, 2002] for the rest of the data set description.) 

4.2 Results 

Table 4 shows the performance results. T S V M (Traditional 
SVM) shows the ideal performance using S V M from P and 
manually classified N f rom U. SVMJMN ( S V M with Noisy 
Negatives) is S V M from P, wi th U as a substitute for N. (U 
can be thought of as a good approximation of N.) Note that 
for T S V M , SVMJMN, and MC (SMC and SVMC), we used 
theoretically motivated fixed parameters without performing 
explicit optimization or validation process. For O S V M , we 
thoroughly searched for the best parameters based on the test­
ing data set since optimizing parameters as specified in [Tax 
and Duin, 2001] is infeasibly inefficient especially in high di­
mensional spaces. 

MC (SMC and SVMC) without labeled negative data show 
performance close to that of T S V M . SVMC trains much 
faster than SMC for most data sets. The performance of SMC 
and SVMC is comparable. (They differ a little because of the 
soft constraints of S V M and noise in the data.) O S V M per­
forms fairly well on letter recognition and breast cancer (of 
low dimensionality wi th large amounts of data) but poor on 
Webkb (of high dimensionality). S V M . N N suffers from very 
low F\ scores because negative prediction dominates due to 
many false positives in the training data. 

5 Conclusion 
We present the MC framework and its instance algorithm 
SVMC, a new SCC method from positive and unlabeled data 
(without labeled negative data). SVMC without labeled nega­
tive data computes an accurate classification boundary around 
the positive data using the distribution of unlabeled data in a 
systematic way. 
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