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Abstract 

Most recent research of scalable inductive learn­
ing on very large dataset, decision tree construc­
tion in particular, focuses on eliminating memory 
constraints and reducing the number of sequen­
tial data scans. However, state-of-the-art decision 
tree construction algorithms still require multiple 
scans over the data set and use sophisticated control 
mechanisms and data structures. We first discuss a 
general inductive learning framework that scans the 
dataset exactly once. Then, we propose an exten­
sion based on Hoeffding's inequality that scans the 
dataset less than once. Our frameworks are appli­
cable to a wide range of inductive learners. 

1 Introduction 
Most recent research on scalable inductive learning over very 
large dataset focuses on eliminating memory-constraints and 
reducing the number of sequential data scans (or the total 
number of times that the training file is accessed from sec­
ondary storage), particularly for decision tree construction. 
State-of-the-art decision tree algorithms (SPRINT [Shafer 
et al, 1996], RainForest iGehrke et al 1998], and later 
BOAT [Gchrke et a/., 1999] among others) still scan the data 
multiple times, and employ rather sophisticated mechanisms 
in implementation. Most recent work iHulten and Domingos, 
20021 applies Hoeffding inequality to decision tree learning 
on streaming data in which a node is reconstructed iff it is sta­
tistically necessary. Besides decision tree, there hasn't been 
much research on reducing the number of data scans for other 
inductive learners. The focus of this paper is to propose a 
general approach for a wide range of inductive learning algo­
rithms to scan the dataset less than once from the secondary 
storage. Our approach is applicable not only to decision trees 
but also to other learners, e.g., rule and naive Bayes learners. 

Ensemble of classifiers has been studied as a general ap­
proach for scalable learning. Previously proposed meta-
learning [Chan, 1996] reduces the number of data scans to 
2. However, empirical studies have shown that the accuracy 
of the multiple model is sometimes lower than respective sin­
gle model. Bagging [Breiman, 1996] and boosting iFreund 
and Schapire, 1997] are not scalable since both methods scan 
the dataset multiple times. Our proposed method scans the 
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dataset less than once and has been empirically shown to have 
higher accuracy than a single classifier. 

Based on averaging ensemble, we propose a statistically-
based multiple model inductive learning algorithm that scans 
the dataset less than once. Previous research [Fan et al, 
2002bl on averaging ensemble has shown that it is more 
efficient and accurate than both bagging and meta-learning. 
In this paper, we apply Hoeffding inequality to estimate the 
probability that the partial and complete models are equal in 
accuracy. When the probability is higher than a threshold, 
the algorithm stops model construction and returns the cur­
rent model, resulting in less than one sequential scan of the 
dataset. Our objective is completely different from [Hulten 
and Domingos, 2002] on determining whether to change the 
shape of a decision tree. Unlike previous research [Hulten 
and Domingos, 2002; Gehrke et a/., 1999], our algorithm is 
not limited to decision tree, but is applicable to a wide range 
of inductive learners. When it is applied to decision tree 
learning, the accuracy is higher than a single decision tree. 
Another advantage is that the ensemble reduces the asymp­
totic complexity of the algorithm besides scanning less data. 
One important distinction is that we are interested in reduc­
ing sequential scan from secondary storage. Once the data 
can be held entirely in memory, the base learning algorithm 
is allowed to scan the data in memory multiple times. 

2 One Scan 
We first describe a strawman algorithm that scans the data 
set exactly once, then propose the extension that scans the 
data set less than once. The strawman algorithm is based on 
probabilistic modeling. 

2.1 Probabi l ist ic Mode l ing 

Suppose is the probability that x is an instance of 
class In addition, we have a benefit matrix that 
records the benefit received by predicting an example of class 

to be an instance of class . For traditional accuracy-
based problems, and 
For cost-sensitive application such as credit card fraud detec­
tion, assume that the overhead to investigate a fraud is $90 
and is the transaction amount, then b[fraud, fraud\ — 

and fraud, fraud] = Using benefit 
matrix and probability, the expected benefit received by pre-
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Train(S, Sy, A", p) 
Data : training set S, validation set partition 

number A', confidence p 
Result : multiple model with size  
begin 
I partition S into A' disjoint subsets of equal size 

train C\ from Si ; 
test C\ on SV; 

test Ck on SV; 
compute Hoeffding error 

confidence-satisfied true; 
for  

is the highest and is the 
second highest; 
if then 

confidence-satisfied «- false; 
break; 

end 
end 
if confidence satisfied then 

return  
else 

end 
end 
return  

end 

Algorithm 1: Less than one data scan 

dieting x to be an instance of class is 

Expected Benefit: — (1) 

Based on optimal decision policy, the best decision is the la­
bel with the highest expected benefit: 

max = argma* (2) 

Assuming that is the true label of x, the accuracy of 
the decision tree on a test data set is 

Accuracy: A = (3) 

For traditional accuracy-based problems, A is always normal­
ized by dividing for cost-sensitive problems, A is usu­
ally represented in some measure of benefits such as dollar 
amount. For cost-sensitive problems, we sometimes use "to­
tal benefits" to mean accuracy. 

2.2 The Straw man Algorithm 
The strawman algorithm is based on averaging ensemble iFan 
et al., 2002b]. Assume that a data set S is partitioned into K 
disjoint subsets with equal size. A base level model 
is trained from each Given an example x, each classi­
fier outputs individual expected benefit based on probability 

(4) 

The averaged expected benefit from all base classifiers is 
therefore 

(5) 
We then predict the class label with the highest expected re­
turn as in Eq[2]. 

Optimal Decision: (6) 
The obvious advantage is that the strawman algorithm 

scans the dataset exactly once as compared to two scans by 
meta-learning and multiple scans by bagging and boosting. 
In previous research [Fan et al, 2002b], the accuracy by 
the strawman algorithm is also significantly higher than both 
meta-learning and bagging. [Fan et al., 2002b] explains the 
statistical reason why the averaging ensemble is also more 
likely to have higher accuracy than a single classifier trained 
from the same dataset. 

3 Less Than One Scan 
The less-than-one-scan algorithm returns the current ensem­
ble with number of classifiers when the accuracy 
of current ensemble is the same as the complete ensemble 
with high confidence. For a random variable y in the range 
of with observed mean of Y after n observations, 
without any assumption about the distribution of y, Hoeffd-
ing's inequality states that with probabilit> , the error of 

to the true mean is at most 

(7) 

For finite population of size TV, the adjusted error is 

(8) 

The range R of expected benefit for class label can be 
found from the index to the data, or predefined. When k 
base models are constructed, the Hoeffding error e^ can be 
computed by using Eq[8]. For data example x, assume than 

is the highest expected benefit and is the 
secondhighest, and are the Hoeffding errors. If 

with confidence p, the prediction on x by 
the complete multiple model and the current multiple model 
is the same. Otherwise, more base models will be trained. 
The algorithm is summarized in Algorithm 1. 

Scan of validation set S V 
If an example x satisfies the confidence p when k classifiers 
are computed, there is no utility to check its satisfaction when 
more classifiers are computed. This is because that an ensem­
ble with more classifiers is likely to be a more accurate model. 
In practice, we can only read and keep one example x from 
the validation set in memory at one time. We only read a new 
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end 
return 



instance from the validation set if the current set of classi­
fiers satisfy the confidence test. In addition, we keep only the 
predictions on one example at any given time. This guaran­
tees that the algorithm scans the validation dataset once with 
nearly no memory requirement. 

Training Efficiency 
The extra overhead of the Hoeffding-based less than one scan 
algorithm is the cost for the base classifiers to predict on the 
validation set and calculate the statistics. Al l these can be 
done in main memory. As discussed above, we can predict 
on one example from the validation set at any given time. As­
sume that we have k classifiers at the end and n is the size of 
the validation set, the total number of predictions is approx­
imately on average. The calculation of both mean and 
standard deviation can be done incrementally. We only need 
to keep and for just one example at anytime and 
calculate as follows: 

(9) 

(10) 

The average number of arithmetic operation is approximately 

The problem that the proposed algorithm solves is one in 
which the training set is very large and the I/O cost of data 
scan is the major overhead. When I/O cost is the bottleneck, 
the extra cost of prediction and statistical analysis is mini­
mum. 

4 Experiment 
In empirical evaluation, we first compare the accuracy of the 
complete multiple model (one scan as well as less than one 
scan) and the accuracy of the single model trained from the 
same data set. We then evaluate the amount of data scan and 
accuracy of the less than one scan algorithm as compared to 
the one scan models. Additionally, we generate a dataset with 
biased distribution and study the results of the less than one 
scan algorithm. 

4.1 Datasets 
The first one is the well-known donation data set that first ap­
peared in KDDCUP'98 competition. Suppose that the cost 
of requesting a charitable donation from an individual x is 
$0.68, and the best estimate of the amount that x will donate 
is Y(x). Its benefit matrix is: 

As a cost-sensitive problem, the total benefit is the total 
amount of received charity minus the cost of mailing. The 
data has already been divided into a training set and a test 
set. The training set consists of 95412 records for which it is 
known whether or not the person made a donation and how 
much the donation was. The test set contains 96367 records 
for which similar donation information was not published un­
til after the KDD'98 competition. We used the standard train­
ing/test set splits to compare with previous results. The fea­
ture subsets were based on the KDD'98 winning submission. 

To estimate the donation amount, we employed the multiple 
linear regression method. 

The second data set is a credit card fraud detection prob­
lem. Assuming that there is an overhead $90 to dispute and 
investigate a fraud and is the transaction amount, the fol­
lowing is the benefit matrix: 

As a cost-sensitive problem, the total benefit is the sum of 
recovered frauds minus investigation costs. The data set was 
sampled from a one year period and contained a total of 5M 
transaction records. We use data of the last month as test 
data (40038 examples) and data of previous months as train­
ing data (406009 examples). 

The third data set is the adult data set from UC1 repository. 
For cost-sensitive studies, we artificially associate a benefit 
of $2 to class label F and a benefit of $1 to class label N, as 
summarized below: 

We use the natural split of training and test sets, so the re­
sults can be easily replicated. The training set contains 32561 
entries and the test set contains 16281 records. 

4.2 Exper imental Setup 
We have selected three learning algorithms, decision tree 
learner C4.5, rule builder RIPPER, and naive Bayes learner. 
We have chosen a wide range of partitions, K 
{8,16,32,64,128,256}. The validation dataset SV is the 
complete training set. Al l reported accuracy results were run 
on the test dataset. 

4.3 Exper imental Results 
In Tables 1 and 2, we compare the results of the single classi­
fier (which is trained from the complete dataset as a whole), 
one scan algorithm, and the less than one scan algorithm. We 
use the original "natural order" of the dataset. Later on in 
Section 4.4, we use a biased distribution. Each data set under 
study is treated both as a traditional and cost-sensitive prob­
lem. The less than one scan algorithm is run with confidence 
p = 99.7%. 

Accuracy Comparison 
The baseline traditional accuracy and total benefits of the sin­
gle model are shown in the two columns under "single" in 
Tables 1 and 2. These results are the baseline that the one 
scan and less than one scan algorithms should achieve. For 
the one scan and less than one scan algorithm, each reported 
result is the average of different multiple models with K' rang-
ing from 2 to 256. In Tables 1 and 2, the results are shown in 
two columns under accuracy and benefit. As we compare the 
respective results in Tables 1 and 2, the multiple model either 
significantly beat the accuracy of the single model or have 
very similar results. The most significant increase in both ac-
curacy and total benefits is for the credit card data set. The 
total benefits have been increased by approximately $7,000 ~ 
$10,000; the accuracy has been increased by approximately 
1% ~ 3%. For the KDDCUP'98 donation data set, the total 
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C4.5 

RIPPER 

Table 1: Comparison of single model, one scan ensemble, and 
less than one scan ensemble for accuracy-based problems 

benefit has been increased by $1400 for C4.5 and $250 for 
NB. 

We next study the trends of accuracy when the number of 
partitions K increases. In Figure 1, we plot the accuracy and 
total benefits for the credit card data sets, and the total benefits 
for the donation data set with increasing number of partitions 
K. C4.5 was the base learner for this study. As we can sec 
clearly that for the credit card data set, the multiple model 
consistently and significantly improve both the accuracy and 
total benefits over the single model by at least 1 % in accuracy 
and $40000 in total benefits for all choices of K. For the 
donation data set, the multiple model boosts the total benefits 
by at least $1400. Nonetheless, when K increases, both the 
accuracy and total benefits show a slow decreasing trend. It 
would be expected that when K is extremely large, the results 
will eventually fall below the baseline. 

Another important observation is that the accuracy and to­
tal benefit of the less than one scan algorithm are very close 
to the one scan algorithm. Their results are nearly identical. 

Data Scan 
In both Tables 1 and 2, we show the amount of data scanned 
for the less than one scan algorithm. It ranges from 40% (0.4) 
to about 70% (0.7). The adult dataset has the most amount 
of data scanned since the training set is the smallest and it 
requires more data partitions to compute an accurate model. 
C4.5 scans more data than both RIPPER and NB. This is be­
cause we generate the completely unpruned tree for C4.5, and 
there are wide variations among different models. 

In Table 3, we compare the differences in accuracy and 
amount of training data when the validation set is either read 
completely by every classifier (under "Batch") or sequentially 
only by newly computed base classifiers (under "Seq") (as 
discussed in Section 3). Our empirical studies have found that 
"Batch" mode usually scans approximately 1% to 2% more 
training data, and the models computed by both methods are 
nearly identical in accuracy. The extra training data from the 

C4.5 

RIPPER 

Table 2: Comparison of single model, one scan ensemble, 
and less than one scan ensemble for cost-sensitive problems 

"batch" method is due to the fact that some examples satis­
fied by previously learned classifiers have high probability, 
but may not necessarily be satisfied by more base classifiers. 
However, our empirical studies have shown that the differ­
ence in how the validation set is handled doesn't significantly 
influence the final model accuracy. 

4.4 Biased Dist r ibut ion 
When a data is biased in its distribution, the less than one 
scan algorithm need to scan more data than uniform distri­
bution to produce an accurate model. With the same amount 
of datascan, it may not have the same accuracy as uniform 
distribution. We have created a "trap" using the credit card 
dataset. We sorted the training data with increasing transac­
tion amount. The detailed results are shown in Table 4(a) and 
(b). The accuracy (and total benefits) in Table 4(a) are nearly 
identical to the results of "natural distribution" as reported in 
Tables 1 and 2. However, the amount of datascan by the less 
than one scan algorithm is over 0.9 as compared to approxi­
mately 0.6 for natural distribution. As shown in Table 4(b), 
when the datascan is less than 0.9 (the confidence is not satis­
fied and less one scan will continue to compute more model), 
the total benefits are much lower. When distribution is biased, 
the variations in base classifiers' prediction are wider. It re­
quires more data to compute an accurate model and the less 
than one scan algorithm is performing in the correct way. 

4.5 Training Efficiency 
We recorded both the training time of the batch mode sin­
gle model, and the training time of both the one scan al­
gorithm and less than one scan algorithm plus the time to 
classify the validation set multiple times and statistical es­
timation. We then computed serial improvement, which is 
the ratio that the one scan and less than one scan algo­
rithm are faster than training the single model. In Figure 2, 
we plot results for the credit card dataset using C4.5. Our 
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Figure 1: Plots of accuracy and total benefits for credit card data sets, and plot of total benefits for donation data set wi th respect 
to K when using C4.5 as the base learner 

C4.5 
1 Accuracy | 1 Data Scan 
1 Batch Seq | 1 Batch Seq 

Donation 94.94% 94.94% 0.64 0.6l 

90.39% 90.41% 0.62 0.62 

Adult 85.1% 85.0% 0.78 0.76 
RIPPER 

NB 

Table 3: Comparison of accuracy and amount of datascan us­
ing the batch (or all in memory) and sequential method for 
accuracy-based problems 

training data can fit into the main memory of the machine. 
Any single classifier algorithm that reduces the number of 
data scan [Shafer et al 1996; Gehrke et al. 1998; 1999; 
Hulten and Domingos, 2002] w i l l not have training time less 
than this result. As shown in Figure 2, both one scan and less 
than one scan algorithm are significantly faster than the single 
classifier, and the less than one scan algorithm is faster than 
the one scan algorithm. 

5 Related Work 
To scale up decision tree learning, SPRINT [Shafer et ai, 
1996J generates mult iple sorted attribute files. Decision tree 
is constructed by scanning and splitt ing attribute lists, which 
eliminates the need for large main memory. Since each at­
tribute list is sorted, for a data file wi th / attributes and 
N examples, the total cost to produce the sorted lists is 
/ 0(N - log(N)). External sort is used to avoid the need for 
main memory. Each attribute list has three columns-a unique 
record number, the attribute value and the class label; the to­
tal size of attribute lists is approximately three times the size 
of the original data set. When a split takes places at a node, 

Figure 2: Serial improvement for credit card dataset using 
one scan and less than one scan 

Numbar at parthona 

(a). Performance for different classifier for biased distribution 

(b). Performance of C4.5 with different amount of data scanned 
under the biased distribution 

Table 4: Performance of less than one scan under biased dis­
tribution 

SPRINT reads the attribute lists at this node and breaks them 
into r sets of attribute lists for r chi ld nodes, for a total of 
/ file read and r • / file writes. Later, RainForest [Gehrke 
et ai, 1998] improves the performance of SPRINT by pro­
ject ing attribute list on each unique attribute value into an 
AVC-set. The complete AVC-sets of all attributes are called 
AVC-group. When the AVC-group can be held in main mem­
ory, the selection of predictor attribute can be done efficiently. 
To construct the init ial AVC-group, it incurs the same cost as 
SPRINT to construct ini t ial attribute lists plus one more scan 
over the sorted lists to project into AVC-sets. Whenever a 
split happens, RainForest has to access the data file again and 
reconstruct the AVC-group for chi ld nodes. The exact num­
ber of read and write is based on variations of RainForest that 
is chosen. In the best scenario where the AVC-group of ev­
ery node in the tree fit in memory, the RF-read version sti l l 
has to scan the whole data once at each level of the tree and 
write it into r files. When this condition is not met, Rain­
Forest solves the problem by mult iple read and write. More 
recently, BOAT [Gehrke et ai, 1999] constructs a "coarse" 
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tree from a data sample that can fit into main memory. The 
splitting criterion in each node of the tree is tested against 
multiple decision trees trained from bootstrap samples of the 
sampled data. It refines the tree later by scanning the com­
plete data set, resulting in a total of two complete data read. 

Meta-learning [Chan, 1996] builds a tree of classifiers and 
combine class label outputs from base classifiers. It is based 
on heuristics and the total number of datascan is two. The im­
provements by our methods are in many folds. We combine 
probabilities instead of class labels. The combining technique 
is straightforward and can estimate the final accuracy prior 
to full construction. The total amount of sequential scan is 
less than once. There is a strong statistical reason to support 
why the multiple model method works [Fan et ai, 2002bl. 
Besides meta-learning, both bagging [Breiman, 19961 and 
boosting [Freund and Schapire, 1997J have been shown to 
have higher accuracy than a single model. However, bagging 
and boosting scan the dataset many times, and are not scal­
able for large dataset. Previous research [Fan et ai, 2002b] 
has shown the our combining method is more accurate than 
bagging. 

One earlier work to use Hoeffding\s inequality is online ag­
gregation [Hellerstein et ai, 1997] to estimate the accuracy of 
aggregate queries. When the confidence about the accuracy 
of the partial query is sufficient, the user jan terminate the 
query to avoid a complete scan. One recent work using Ho-
effding inequality is on building decision tree from streaming 
data [Hulten and Domingos, 2002]. They keep the number 
of examples that satisfy or fail the predicate of a node in the 
tree. When it is confident that the current node is not accu­
rate for the new data, it wil l be reconstructed. One limitation 
of [Hulten and Domingos, 2002] is that it is only applicable 
to decision tree learning. Our ensemble method using Ho-
effding's inequality is applicable to a wide range of induc­
tive learners. Empirically, we have applied it to decision tree, 
rule learner as well as naive Bayes learner. Beside its gen­
erality, the proposed one scan and less than one scan algo­
rithms have been shown to have potentially higher accuracy 
than the single model (existing approaches are single model 
method [Hulten and Domingos, 2002; Gehrke et ai, 1999; 
Shafer et ai, 1996; Gehrke et ai, 1998]). Another advantage 
is the asymptotic complexity using the less than one scan al­
gorithm is approximately while computing a sin­
gle model is still 0(n). Our empirical studies have shown 
that both the one scan and less than one scan algorithms are 
significantly faster than learning a single model. In previous 
work [Fan et ai, 2002a], we have used Central limit theo­
rem (CLT) to implement a concept of progressive modeling 
where we estimate the range of accuracy of the final model. 
The learning stops when the estimated accuracy of the final 
falls within a tolerable range with confidence p. CLT requires 
the data distribution to be uniform. Hoeffding inequality has 
a different implication, in which we estimate the probability 
that the partial and final models are exactly the same. 

6 Conclusion 
In this paper, we propose two scalable inductive learning al­
gorithms. The strawman multiple model algorithm scans the 
data set exactly once. We then propose a less than one scan 
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extension based on Hoeffding's inequality. It returns a partial 
multiple model when its accuracy is the same as the com­
plete multiple model with confidence Since Hoeffding 
inequality makes no assumption about the data distribution, 
the advantage of this method is that the data items can be re­
trieved sequentially. We have also discussed how to sequen­
tially read the validation set exactly once using minimal mem­
ory. We have evaluated these methods on several data sets as 
both traditional accuracy-based and cost-sensitive problems 
using decision tree, rule and naive Bayes learners. We have 
found that the accuracy of all our methods are the same or far 
higher than the single model. The amount of data scan by the 
less than one scan algorithms range from 0.45 to 0.7 for the 
original natural distribution of data. For a significantly biased 
dataset, the amount of datascan by the less than one scan al­
gorithm is over 0.9. It needs extra data to resolve the bias in 
data distribution in order to compute an accurate model. In 
addition, our empirical studies have shown that both methods 
are significantly faster than computing a single model even 
when the training data can be held in main memory, and the 
less than one scan algorithm is faster than the one scan algo­
rithm. 
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