
When Evolving Populations is Better than Coevolving Individuals: The Blind Mice
Problem

Thomas Miconi
34 Rue Desbordes-Valmore

75016 Paris, France
thomas.miconi @free.fr

Abstract
This paper is about the evolutionary design of
multi-agent systems. An important part of re­
cent research in this domain has been focusing
on collaborative revolutionary methods. We ex­
pose possible drawbacks of these methods, and
show that for a non-trivial problem called the
"blind mice" problem, a classical GA approach in
which whole populations are evaluated, selected
and crossed together (with a few tweaks) finds an
elegant and non-intuitive solution more efficiently
than cooperative coevolution. The difference in ef­
ficiency grows with the number of agents within
the simulation. We propose an explanation for
this poorer performance of cooperative coevolu­
tion, based on the intrinsic fragility of the evalua­
tion process. This explanation is supported by the­
oretical and experimental arguments.

1 Introduction
Evolutionary algorithms are methods that apply the principles
of darwinian evolution to the generation and adaptation of
artificial, logical entities (function parameters, rulesets, pro­
grams. . .) . Their usability as a search technique has been sup­
ported both analytically (e.g. the Schema Theorem [Gold­
berg, 1989] for genetic algorithms), and empirically by un­
countable applications. However, the overwhelming majority
of these applications are about the generation of individuals.

Collective evolution, that is, the generation and/or adapta­
tion of collaborating populations of agents, has attracted com­
paratively less attention. There has been significant research
in this domain though, especially over the last decade. This
research led to algorithms of ever-growing complexity. This
paper will first describe some of the work in that field, and
more particularily the principle of cooperative coevolution,
which seems to be the most popular type of method today.

We then expose what we feel are possible drawbacks of co­
operative evolution, and propose a simpler way to adapt the
canonical genetic algorithm to the generation of populations.
We describe an experiment, based on the "blind mice" prob­
lem, and show that while an adapted genetic algorithm works
pretty well with that problem, cooperative coevolution has
more difficulties. Finally, we give an explanation for these

difficulties and for the difference in behaviour with the sim­
pler genetic algorithm.

2 (Some of the) Related work
The simplest way to evolve a team of collaborating agents is
to have all agents be identical, that is, to have homogeneous
populations. These methods are not really different from in­
dividual evolution, except at evaluation time: to evaluate a
given genotype, N agents are created out of this genotype in­
stead of just one, and the resulting population is evaluated.
Then start again with a different genotype, etc. While being
very rigidly constrained, this method makes perfect sense in
situations where one does not need heterogeneity at all. This
method was used by [N.Zaera et «/., 1996) to evolve small
groups of fish-like animats, controlled by neural networks,
to perform extremely simple tasks (dispersion, aggregation,
etc.).

A similar method was used by [Luke, 1998] to evolve com­
petitive teams of soccer players for the Robocup competition
[Kitano et a/., 1995]. The author used an adapted version of
Genetic Programming [Koza, 19921. There was also an at­
tempt at introducing a limited degree of heterogeneity by de­
composing teams into small sub-teams (defenders, attackers,
etc.) and evolving different program trees for each such sub-
teams. However, because of the enormous search space (and
of the delays imposed by the Robocup server software), this
approach proved intractable in practice: GP runs took days to
produce meaningful results. Lack of time thus prevented the
semi-heterogeneous teams from outperforming homogeneous
teams.

A way to obtain some degree of heterogeneity is to have
only one population and make it change gradually over time,
replacing some agents by others based on some evaluation
method. These new agents can be obtained by crossover or
by duplication with mutation. If there is a way to evaluate the
impact of one given individual, it is perfectly possible to per­
form a simple genetic algorithm over the population. This is,
in essence, the idea behind classifier systems (iHolland and
Reitman, 1978]), where a set of rules cooperate to control an
animat, and where individuals are evaluated after the animates
performance through a credit-sharing system.

In the same vein, we proposed a simple scheme in (iMi-
coni, 2001]), in which all agents were given an arbitrary in­
dex, and agents of index K could only mate with agents whose

MULTIAGENT SYSTEMS 647

indices fell within the [K-r; K+r] range. Evaluation occured
simply by replacing one of the two parents by the offspring,
then the second parent, and keeping the best of these two pop­
ulations (with the possibility of discarding any changes if it
decreased the performance of the system). This simple algo­
rithm led to the emergence of sub-species that appeared, grow
and shrank according to the needs of the population. An inter­
esting feature of this algorithm was its incrementality, which
allowed for long-term, adaptive evolution of the system.

Trying to obtain fully heterogeneous systems brings us to
another level of complexity, right into the realm of coopera­
tive coevolution. While coevolution has been most frequently
applied in a competitive way (by confronting individuals to
each other and using the result of this confrontation as an
evaluation for individuals), it can also be used in a cooper­
ative way, in order to evolve sets of collaborating agents.

In cooperative coevolutionary iPotter and DeJong, 1994]
methods, each agent within the system is actually taken from
a hidden subpopulation, or pool. To evaluate a given indi­
vidual, it is associated with a set of collaborators (one from
each other pool) and the resulting population is evaluated as a
whole. The resulting score is then attributed to the currently
evaluated individual. Based on this evaluation method, the
classical GA cycle (evaluate, select and reproduce) is applied
to each pool in turn, as many times as needed. In the first ver­
sion of the cooperative coevolutionary algorithm (CCGA-1)
collaborators are chosen by taking the best individual from
every pool. However, in the CCGA-2 version, evaluation is
refined by re-evalluating every agent with random collabora­
tors, then taking the better score obtained between these two
evaluations. The number of collaborators, the way these col­
laborators are chosen, the way the overall score is computed
(averaging the different scores, or taking the best score, or
taking the worst score, etc.) are important parameters that
can influence the performance of the algorithms. The influ­
ence of these parameters has been studied to some extent by
[Wiegand et ai, 2001], but this study applied only to simple
function optimization problems with only two variables.

As happens frequently with good ideas, cooperative coevo­
lution has been (re-)discovered a number of times under dif­
ferent names. Enforced subpopulations (ESP), for example,
are exactly like cooperative coevolution, in which each agent
is evaluated with only one set of collaborators: the best agents
from all other pools. In other words, ESP is the CCGA-1 al­
gorithm. While this method was initially devised for the evo­
lution of neural networks [Gomez and Mikkulainen, 1997],
it was successfully applied to multi-agent evolution by [Yong
and Mikkulainen, 2001], who used it in a predator-prey sim­
ulation. The algorithm managed to find efficient strategies
for predators, such as having two predators "chase" the prey
while another one blocked it.

For some reason, the idea of simply using the standard ge­
netic algorithm to whole populations seems to have fallen
slightly out of fashion. The most probable reason is that it
is simply too obvious to be talked about. The second rea­
son is that it does have intrinsic drawbacks, such as a more
massive search space. The third one is that it requires a few
modifications to be adapted to the evolution of populations.
Al l these aspects are discussed in section 3.2.

3 Two methods for evolving heterogeneous
populations

3.1 Cooperative coevolution
Cooperative coevolution is quite an elaborate mechanism. In­
tuition indicates (and evidence confirms) that by focusing on
each and every agent, it requires a huge number of evaluations
to converge towards a solution. This algorithm concentrates
on optimizing each individual agent in regard with the rest
of the population; it is rather different from the more holistic
approach of traditional GAs, in which full genomes are ma­
nipulated, and the (co-)adaptation of genes emerges naturally
from selection, crossover and mutation - at least, in theory.

Why would it not be possible to simply use traditional GAs
for the generation of multi-agent systems, regarding whole
systems (not just each agent within them) as individuals? A
simple answer is that this approach leads to very large geno­
types, since the genotype for an "individual" has to code for
several agents instead of just one, and the resulting search
space might become intractable for GAs. Cooperative coevo­
lution can thus be seen as a simple way to decompose a big
problem into several smaller ones, even though these smaller
problems are still strongly interlaced with each other.

However cooperative coevolutionary algorithms seem to
have an important drawback: they basically evaluate each
agent by assessing its impact on the performance of the whole
system. The problem is that when the number of agents
within the system grows, the influence of one single agent
over the system's performance tends to decrease, thus possi­
bly making its assessment more difficult. This may become
troublesome when the problem has a stochastic component,
as is the case in many simulations. In this case, evaluating
the same population several times can lead to different re­
sults. The consequence of this may be more important than
one might think, as we will see below.

But first, it might be interesting to see how classical genetic
algorithms can be adapted to the evolution of populations,
and whether these population-oriented genetic algorithms can
compete with cooperative coevolution.

3.2 Populat ion-oriented genetic algor i thms
Genetic algorithms work by evaluating individuals, selecting
some of them according to their performance, crossing them
together and mutating them, and starting over again. is pos­
sible to apply exactly the same method to whole multi-agent
systems. We can evaluate populations, cross them together
(thus creating new populations that inherit agents from both
parents), mutate them by changing one of their agents, etc.

However, the fact is that multi-agent systems are not simple
individuals. They do have an obvious level of decomposition
(the agent), and this can be exploited in several ways.

The most obvious idea is that in order to cover the search
space efficiently, one must not only make new populations
out of existing agents, one must also create new agents. To
do this, we may introduce an inner crossover operator that
allows us to cross two agents together. Thus, when creating a
new population by importing agents from both parents, some
of these imported agents would actually the result of an inner
crossover between agents from the parents.

648 MULTIAGENT SYSTEMS

Figure 1: Normal crossover (top) can be "spiced up" with
inner crossover between individual agents (bottom). This al­
lows for the creation of new agents, which is necessary to
cover the search space efficiently

It is possible to make an analogy with traditional GAs:
from the viewpoint of the whole population, these "crossed"
agents have some similarity with bit-wise mutations in the
standard genetic algorithm. They are part of the children's
genotype, yet they were not present in any of the parents'
genotypes. However, these are not exactly random mutations,
since the genetic material still comes from the parents' geno­
types. This suggests that at first sight, "inner crossover" rate
should be slightly higher than the usual mutation rate in a
classical GA (usually about 2%-5% for each bit).

Another possibility is to enhance traditional crossover by
occasionally swapping agents between populations in the fi­
nal offspring. This, too, could allow for a better covering of
the search space. However, we will not explore that possibil­
ity in the present paper.

4 Appl icat ion: The B l ind Mice problem
4.1 Description of the experiment
The experiment presented here is based on the "blind mice"
problem. A flock of mice, controlled by simple feed-forward
neural networks, have to escape a number of cats running af­
ter them in a toroidal world.

Now the "game" has three very simple rules:

1. The cats can see the mice and always run after the closest
mouse around.

2. The mice run faster than the cats.

3. The mice can not see the cats. Neither can they see each
other (they are "blind"). Their only input is a pair of
numbers: the X and Y coordinates of the center of the
flock.

When a cat touches a mouse, the cat is teleported to an­
other, random location, and the population's "catch counter"
is increased; nothing else is changed, and the simulation is
not interrupted in any way.

Let us consider these rules: they seem to make the prob­
lem extremely difficult for the mice. How is it possible to
escape predators that can see you, but that you can't sec?
Running around as fast as possible wil l just make them bump
into any cat coming from the opposite direction. The same
is true for random movement strategies. Given the enormous
asymmetry of information between mice and cats, the sur­
vival chances of the poor rodents appear to be desperately
thin. Even for a human designer, finding a solution to this

Figure 2: The successful strategy. Mouse D attracts the cats,
mouse B plays a "balancing'* role, and other mice move to­
gether in a tight flock

problem is not a trivial task. Yet, as we will sec below, evo­
lution managed to come up with an elaborate solution to this
problem.

In our experiments, the mice are controlled by simple feed­
forward neural networks with 2 inputs, 2 outputs and 5 hidden
neurons. The two inputs are the coordinates of the center of
gravity of the flock, that is, the sum of the X- (resp. Y-) co­
ordinates of all mice, divided by the number of mice. The
two outputs are two real numbers in the [-3.0; +3.0] range,
indicating the horizontal and vertical speed of the mouse. Al l
weights are real numbers in the [-1.0; +1.0] range. All simu­
lations use 4 cats.

4.2 The evolved strategy
There seems to be an optimal strategy for this problem. This
strategy emerged in all successful runs, sometimes with vari­
ants. This strategy is described in Figure 2. No other strategy
led to a really efficient behaviour.

Let us explain this strategy: as we can see, most mice are
aggregated together and move in a tight flock. This minimizes
the probability that a "stray" cat might touch them, but it is
not sufficient in itself to ensure a minimal catch rate. The
really important behaviour is that of the mouse labelled D
(the "Dancer").

This mouse has a strange behaviour: it seems to revolve
around the rest of the flock, but not in a strictly circular fash­
ion. Instead, it constantly bounces around the flock, always
staying at a respectable distance from it, and moving very fast
along its path. The purpose of this behaviour becomes obvi­
ous when one sees the position of the cats: they are all fol­
lowing this "dancing" mouse, because it is simply the closest
to them, thus leaving the rest of the flock alone.

In other words, the purpose of this dancing behaviour is
simply to attract all the cats. The dancer moves very fast (so
that it cannot be touched by cats), but along a sinuous path,
so that:

MULTIAGENT SYSTEMS 649

Cat
Mouse

- It can "drag" cats more efficiently in the initial stage,
when cats and mice are at random position

- It never gets too far from the cats, which allows the cats
to follow it endlessly even though it runs much faster
than them.

The final touch of this strategy can be seen in the be­
haviour of the mouse labelled B (as "Balance"), even though
it didn't appear in all successful runs. This mouse also re­
volves around the flock, but much closer to it. In some runs
it moves around the flock in a circular fashion, in other runs
it bounces around it, but it usually stays on the opposite side
of the flock with respect to the dancer. We believe that this
mouse has a ''balancing" role, in that it counterbalances the
effect of the Dancer on the position of the center of gravity of
the population, thus allowing the flock to be more stable.

Many variants appeared, such as having several dancers,
or no balancer. But the essential traits of the strategy were
consistent: aggregation of most mice, except for one or a few
to attract the cats away from the flock.

Note that this strategy is very interdependent: each agent's
performance is highly dependant on other agents' behaviour.
This is even more true when you consider that in oider to
behave that way, they must calculate their trajectories out of
only one input: the position of the center of gravity of the
whole flock, which is based on the position of all other agents.
This fact plays a significant role in the results described be­
low.

5 Experimental results
5.1 Experimental settings
We used two algorithms for this problem: a simple genetic
algorithm, adapted with an inner crossover operator (as de­
scribed above), and a full-featured cooperative revolution­
ary algorithm. Both methods were used with 7, then with 15
mice. We used 100 populations of 7 (resp. 15) mice for the
first algorithm, and 7 (resp. 15) pools of 100 mice for the sec­
ond one. Each algorithm was run several times with different
random seeds.

In the first algorithm, reproduction of populations occured
through tournament selection and 1-point crossover at a rate
of 60%. Every time two populations were thus crossed to­
gether, an inner crossover rate of 10% was applied, mean­
ing that each mouse in the offspring had a 10% chance to be
the result of the crossing of the parents' corresponding mice.
In the second algorithm, reproduction within each pool oc­
cured by tournament selection and 1-point crossover at a rate
of 30%, which proved to be the most efficient. In both al­
gorithms, mutation appeared only when crossing two mice
together, by choosing a new random value for a connection
weight with a 5% probability.

Note that in both method, we use a limited form of elitism,
in that the best individual from a given generation was pre­
served in the next generation. This ensured better perfor­
mance - and made the obtained results even more puzzling,
as explained below.

Finally, cooperative coevolution specifies that each agent
must be evaluated with a set of collaborators. Several sets of

Figure 3: Performance of a population-adapted genetic algo­
rithm, with 7 mice (top) and 15 mice (bottom). The y-axis
indicates the number of mice catched during this evaluation
round, while the x-axis indicates the number of evaluations.
Both the fitness of the best population and the average fitness
of all populations are shown.

collaborators can be used in turn in order to refine the evalua­
tion, and the final result can be calculated from these succes­
sive evaluations in various ways (average, best, random...)
However, we found that with this problem, increasing the
number of collaborators (and thus the number of evaluation
rounds) brought absolutely nothing, and was even damag­
ing if the final score was anything else than the best score
found. The most successful method was simply to evaluate
each mouse by joining it with the best individual from each
pool, exactly as in the enforced subpopulations algorithm.
This is not a surprising result, however, as we will explain
it below.

5.2 Comparison of results

The first algorithm (simple genetic algorithm with two levels
of crossover) proved remarkably efficient with this problem.
All runs led to the strategy described in section 4.2, whatever
the number of mice within the simulation, although of course
it took more time with 15 mice than with 7. Two typical runs,
with respectively 7 and 15 mice, are described in Figure 3.

Cooperative coevolution led to different results. With 7
mice, in some runs, the algorithm failed to evolve any com­
petitive behaviour. In other runs it managed to find the good
strategy, but took more evaluations than with the previous al­
gorithm. Many runs, however, achieved performance compa­
rable with that of the simple genetic algorithm. With 15 mice,
the success rate was much lower. Most runs did not converge
after 10000 evaluations. Others converged, then suddenly di­
verged quickly. All the runs, with 7 or 15 mice, exhibited a
intriguing pattern of oscillation.

650 MULTIAGENT SYSTEMS

0 2000 4000 6000 8000 1000012000140001600C

Figure 4: Performance of the best run for a cooperative co-
evolutionary algorithm. The curves indicate the performance
of the best individual in the currently evaluated pool, and the
average fitness of individuals in this pool. Notice the brutal
variations in the curves.

The fitness curve described in Figure 4 shows a good ex­
ample of this pattern. It is the result of the most successful
run with 15 mice. The population seems to converge towards
a better behaviour, but then it suddenly diverges and seems to
loose all that had been found. The pattern starts again a few
cycles later.

This is not what one could expect. In this algorithm,
the population remains quite stable, being composed of the
best individual from each pool. Only one individual can be
changed at each cycle, and only for a better one, since the best
individual from previous generation is preserved. So how do
we explain these brutal changes in fitness happening every
now and then?

Our explanation is that this pattern is the result of coop­
erative revolution's main drawback: when the number of
agents grow, and when the result of evaluation undergoes im­
portant stochastic variations, its performance is bound to de­
crease.

What happens is that at some point, the algorithm does find
a "good" population, and keeps optimizing it by replacing
each agent by a better one in turn - as it should do. But then at
some point, because of the stochastic variations in the evalu­
ation process, one of these "good" agents is found to perform
not as well as another, non-optimal one. In classical evo­
lutionary algorithms, these occasional mistakes arc blurred
over a large number of trials and errors, and besides, one
population's performance has no impact on another's. But
in cooperative coevolution, this exceptional case is sufficient
to wreck the behaviour of the whole population, because it
can replace an essential agent (say, a Dancer) by a poorly
performing agent (say, a random wanderer).

Then other agents from other pools are evaluated in turn,
but since the conditions have changed dramatically, other
agents are selected instead of the previous, quasi-optimal
ones. Thus, an error in the selection of one agent has an
influence over all other pools. When the evaluation cycle
comes back to the first pool, the previously essential agent

may not be selected again, because the rest of the population
has co-adapted towards a different state. However, it is pos­
sible that the this agent is selected again, thus resulting in a
sharp increase in performance - until the next "error" in the
evolutionary process. This seems to cause the up-and-down
oscillations in the fitness curve.

There is little we can do about this problem. As we said,
increasing the number of collaborators in a classical way (that
is, by selecting random sets of collaborators) simply does not
work, which is understandable: in this problem, the solution
requires highly interdependent behaviours. An agent's per­
formance can only be good if other agents play their role.
Evaluating each agent by fitting it in a random population is
not likely to help reach this state. In a problem with many
strongly interdependant agents, adding random collaborators
doesn't seem to be a helpful solution. *

We could devise more elaborate schemes (e.g. using the
second-best from each pool as a second set of evaluators) but
that would not suppress the problem. It seems that in prob­
lems with a non-deterministic component, cooperative coevo­
lution is essentially fragile, or at least, more so than the stan­
dard genetic algorithm.

6 Conclusion
We have described possible pitfalls in cooperative coevolu­
tion, and we have proposed a way to apply the canonical ge­
netic algorithm to populations of agents. We have applied
both algorithms to a non-trivial problem, the blind mice prob­
lem, that is both conceptually simple and non-trivial to solve.
For this problem, the populations-oriented genetic algorithm
significantly outperformed cooperative coevolution. We pro­
posed an explanation for the difference in results, based on
the intrinsic fragility of cooperative coevolution in regard to
excessive stochastic variations in the evaluation proces.

As a final note, an old French proverb goes: "Quand le
chat n'est pas la, les souris dansent" (When the cat is away,
the mice dance). Artificial evolution has demonstrated that
the opposite can be true as well.

References
[Goldberg, 1989] David E. Goldberg. Genetic Algorithms in

Search, Optimization and Machine Learning. Addison-
Wesley, 1989.

[Gomez and Mikkulainen, 1997] F. Gomez and R. Mikku-
lainen. Incremental evolution of complex general behav­
ior. Adaptive Behavior, 5:317-342, 1997.

[Holland and Reitman, 1978] J. H. Holland and J. S. Reit-
man. Cognitive systems based on adaptive algorithms. In

'Strangely enough, in [Potter and DeJong, 1994], random collab­
orators were introduced precisely for problems with strongly inter­
acting variables, such as the Roscnbrock function; however, for this
kind of problem, this idea was only applied to two-variables func­
tions. In this case, choosing a random collaborator in addition to the
better one may allow the algorithm to escape a local minima. But as
the number of agents grows, it seems that evaluating one agent with
a set of totally random collaborators could hardly bring any valuable
information.

MULTIAGENT SYSTEMS 651

D. A. Waterman and F. Hayes-Roth, editors, Pattern Di­
rected Inference Systems, pages 313-329. Academic Press,
1978.

[Kitanoe/a/., 1995] H. Kitano, M. Asada, Y. Kuniyoshi,
1. Noda, and E. Osawa. Robocup: The robot world cup
initiative. In Proceedings of IJCAI-95 Workshop on Enter­
tainment and AI/ALife y 1995.

iKoza, 1992] JohnKoza. Genetic Programming. MIT Press,
1992.

[Luke, 1998] Sean Luke. Genetic programming produced
competitive soccer softbot teams for robocup97. In John
Koza, editor, Proceedings of the Third Annual Genetic
Programming Conference (GP98), pages 204-222, 1998.

[Miconi, 2001] Thomas Miconi. A collective genetic al­
gorithm. In Proceedings of the Genetic and Evolution­
ary Computation Conference (GECCO-200J), pages 876-
883. Morgan Kaufmann, 2001.

[N.Zaerae/a/., 1996] N.Zaera, D.Cliff, and J.Bruten. (not)
evolving collective behaviours in synthetic fish. In Pro­
ceedings of the Fourth International Conference on Simu­
lation of Adaptive Behavior (SAB96), pages 635-644. MIT
Press, 1996.

[Potter and DeJong, 1994] M. A. Potter and K. A. DeJong. A
cooperative revolutionary approach to function optimiza­
tion. In Proceedings of The Third Parallel Problem Solving
from Nature, pages 249-257. Springer-Verlag, 1994.

[Wiegand etal, 2001] R. Paul Wiegand, William C. Liles,
and Kenneth A. DeJong. An empirical analysis of collab­
oration methods in cooperative coevolutionary algorithms.
In Proceedings of the Genetic and Evolutionary Computa­
tion Conference (GECCO-2001), pages 1235-1242. Mor­
gan Kaufmann, 2001.

[Yong and Mikkulainen, 2001] C.H. Yong and R. Mikku-
lainen. Cooperative coevolution of multi-agent systems.
Technical Report AI01-287, University of Texas at Austin,
2001.

652 MULTIAGENT SYSTEMS

