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Abstract 
This paper is about the evolutionary design of 
multi-agent systems. An important part of re­
cent research in this domain has been focusing 
on collaborative revolutionary methods. We ex­
pose possible drawbacks of these methods, and 
show that for a non-trivial problem called the 
"blind mice" problem, a classical GA approach in 
which whole populations are evaluated, selected 
and crossed together (with a few tweaks) finds an 
elegant and non-intuitive solution more efficiently 
than cooperative coevolution. The difference in ef­
ficiency grows with the number of agents within 
the simulation. We propose an explanation for 
this poorer performance of cooperative coevolu­
tion, based on the intrinsic fragility of the evalua­
tion process. This explanation is supported by the­
oretical and experimental arguments. 

1 Introduction 
Evolutionary algorithms are methods that apply the principles 
of darwinian evolution to the generation and adaptation of 
artificial, logical entities (function parameters, rulesets, pro­
grams. . . ) . Their usability as a search technique has been sup­
ported both analytically (e.g. the Schema Theorem [Gold­
berg, 1989] for genetic algorithms), and empirically by un­
countable applications. However, the overwhelming majority 
of these applications are about the generation of individuals. 

Collective evolution, that is, the generation and/or adapta­
tion of collaborating populations of agents, has attracted com­
paratively less attention. There has been significant research 
in this domain though, especially over the last decade. This 
research led to algorithms of ever-growing complexity. This 
paper will first describe some of the work in that field, and 
more particularily the principle of cooperative coevolution, 
which seems to be the most popular type of method today. 

We then expose what we feel are possible drawbacks of co­
operative evolution, and propose a simpler way to adapt the 
canonical genetic algorithm to the generation of populations. 
We describe an experiment, based on the "blind mice" prob­
lem, and show that while an adapted genetic algorithm works 
pretty well with that problem, cooperative coevolution has 
more difficulties. Finally, we give an explanation for these 

difficulties and for the difference in behaviour with the sim­
pler genetic algorithm. 

2 (Some of the) Related work 
The simplest way to evolve a team of collaborating agents is 
to have all agents be identical, that is, to have homogeneous 
populations. These methods are not really different from in­
dividual evolution, except at evaluation time: to evaluate a 
given genotype, N agents are created out of this genotype in­
stead of just one, and the resulting population is evaluated. 
Then start again with a different genotype, etc. While being 
very rigidly constrained, this method makes perfect sense in 
situations where one does not need heterogeneity at all. This 
method was used by [N.Zaera et «/., 1996) to evolve small 
groups of fish-like animats, controlled by neural networks, 
to perform extremely simple tasks (dispersion, aggregation, 
etc.). 

A similar method was used by [Luke, 1998] to evolve com­
petitive teams of soccer players for the Robocup competition 
[Kitano et a/., 1995]. The author used an adapted version of 
Genetic Programming [Koza, 19921. There was also an at­
tempt at introducing a limited degree of heterogeneity by de­
composing teams into small sub-teams (defenders, attackers, 
etc.) and evolving different program trees for each such sub-
teams. However, because of the enormous search space (and 
of the delays imposed by the Robocup server software), this 
approach proved intractable in practice: GP runs took days to 
produce meaningful results. Lack of time thus prevented the 
semi-heterogeneous teams from outperforming homogeneous 
teams. 

A way to obtain some degree of heterogeneity is to have 
only one population and make it change gradually over time, 
replacing some agents by others based on some evaluation 
method. These new agents can be obtained by crossover or 
by duplication with mutation. If there is a way to evaluate the 
impact of one given individual, it is perfectly possible to per­
form a simple genetic algorithm over the population. This is, 
in essence, the idea behind classifier systems (iHolland and 
Reitman, 1978]), where a set of rules cooperate to control an 
animat, and where individuals are evaluated after the animates 
performance through a credit-sharing system. 

In the same vein, we proposed a simple scheme in ( iMi-
coni, 2001]), in which all agents were given an arbitrary in­
dex, and agents of index K could only mate with agents whose 
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indices fell within the [K-r; K+r] range. Evaluation occured 
simply by replacing one of the two parents by the offspring, 
then the second parent, and keeping the best of these two pop­
ulations (with the possibility of discarding any changes if it 
decreased the performance of the system). This simple algo­
rithm led to the emergence of sub-species that appeared, grow 
and shrank according to the needs of the population. An inter­
esting feature of this algorithm was its incrementality, which 
allowed for long-term, adaptive evolution of the system. 

Trying to obtain fully heterogeneous systems brings us to 
another level of complexity, right into the realm of coopera­
tive coevolution. While coevolution has been most frequently 
applied in a competitive way (by confronting individuals to 
each other and using the result of this confrontation as an 
evaluation for individuals), it can also be used in a cooper­
ative way, in order to evolve sets of collaborating agents. 

In cooperative coevolutionary iPotter and DeJong, 1994] 
methods, each agent within the system is actually taken from 
a hidden subpopulation, or pool. To evaluate a given indi­
vidual, it is associated with a set of collaborators (one from 
each other pool) and the resulting population is evaluated as a 
whole. The resulting score is then attributed to the currently 
evaluated individual. Based on this evaluation method, the 
classical GA cycle (evaluate, select and reproduce) is applied 
to each pool in turn, as many times as needed. In the first ver­
sion of the cooperative coevolutionary algorithm (CCGA-1) 
collaborators are chosen by taking the best individual from 
every pool. However, in the CCGA-2 version, evaluation is 
refined by re-evalluating every agent with random collabora­
tors, then taking the better score obtained between these two 
evaluations. The number of collaborators, the way these col­
laborators are chosen, the way the overall score is computed 
(averaging the different scores, or taking the best score, or 
taking the worst score, etc.) are important parameters that 
can influence the performance of the algorithms. The influ­
ence of these parameters has been studied to some extent by 
[Wiegand et ai, 2001], but this study applied only to simple 
function optimization problems with only two variables. 

As happens frequently with good ideas, cooperative coevo­
lution has been (re-)discovered a number of times under dif­
ferent names. Enforced subpopulations (ESP), for example, 
are exactly like cooperative coevolution, in which each agent 
is evaluated with only one set of collaborators: the best agents 
from all other pools. In other words, ESP is the CCGA-1 al­
gorithm. While this method was initially devised for the evo­
lution of neural networks [Gomez and Mikkulainen, 1997], 
it was successfully applied to multi-agent evolution by [Yong 
and Mikkulainen, 2001], who used it in a predator-prey sim­
ulation. The algorithm managed to find efficient strategies 
for predators, such as having two predators "chase" the prey 
while another one blocked it. 

For some reason, the idea of simply using the standard ge­
netic algorithm to whole populations seems to have fallen 
slightly out of fashion. The most probable reason is that it 
is simply too obvious to be talked about. The second rea­
son is that it does have intrinsic drawbacks, such as a more 
massive search space. The third one is that it requires a few 
modifications to be adapted to the evolution of populations. 
Al l these aspects are discussed in section 3.2. 

3 Two methods for evolving heterogeneous 
populations 

3.1 Cooperative coevolution 
Cooperative coevolution is quite an elaborate mechanism. In­
tuition indicates (and evidence confirms) that by focusing on 
each and every agent, it requires a huge number of evaluations 
to converge towards a solution. This algorithm concentrates 
on optimizing each individual agent in regard with the rest 
of the population; it is rather different from the more holistic 
approach of traditional GAs, in which full genomes are ma­
nipulated, and the (co-)adaptation of genes emerges naturally 
from selection, crossover and mutation - at least, in theory. 

Why would it not be possible to simply use traditional GAs 
for the generation of multi-agent systems, regarding whole 
systems (not just each agent within them) as individuals? A 
simple answer is that this approach leads to very large geno­
types, since the genotype for an "individual" has to code for 
several agents instead of just one, and the resulting search 
space might become intractable for GAs. Cooperative coevo­
lution can thus be seen as a simple way to decompose a big 
problem into several smaller ones, even though these smaller 
problems are still strongly interlaced with each other. 

However cooperative coevolutionary algorithms seem to 
have an important drawback: they basically evaluate each 
agent by assessing its impact on the performance of the whole 
system. The problem is that when the number of agents 
within the system grows, the influence of one single agent 
over the system's performance tends to decrease, thus possi­
bly making its assessment more difficult. This may become 
troublesome when the problem has a stochastic component, 
as is the case in many simulations. In this case, evaluating 
the same population several times can lead to different re­
sults. The consequence of this may be more important than 
one might think, as we will see below. 

But first, it might be interesting to see how classical genetic 
algorithms can be adapted to the evolution of populations, 
and whether these population-oriented genetic algorithms can 
compete with cooperative coevolution. 

3.2 Populat ion-oriented genetic algor i thms 
Genetic algorithms work by evaluating individuals, selecting 
some of them according to their performance, crossing them 
together and mutating them, and starting over again. is pos­
sible to apply exactly the same method to whole multi-agent 
systems. We can evaluate populations, cross them together 
(thus creating new populations that inherit agents from both 
parents), mutate them by changing one of their agents, etc. 

However, the fact is that multi-agent systems are not simple 
individuals. They do have an obvious level of decomposition 
(the agent), and this can be exploited in several ways. 

The most obvious idea is that in order to cover the search 
space efficiently, one must not only make new populations 
out of existing agents, one must also create new agents. To 
do this, we may introduce an inner crossover operator that 
allows us to cross two agents together. Thus, when creating a 
new population by importing agents from both parents, some 
of these imported agents would actually the result of an inner 
crossover between agents from the parents. 
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Figure 1: Normal crossover (top) can be "spiced up" with 
inner crossover between individual agents (bottom). This al­
lows for the creation of new agents, which is necessary to 
cover the search space efficiently 

It is possible to make an analogy with traditional GAs: 
from the viewpoint of the whole population, these "crossed" 
agents have some similarity with bit-wise mutations in the 
standard genetic algorithm. They are part of the children's 
genotype, yet they were not present in any of the parents' 
genotypes. However, these are not exactly random mutations, 
since the genetic material still comes from the parents' geno­
types. This suggests that at first sight, "inner crossover" rate 
should be slightly higher than the usual mutation rate in a 
classical GA (usually about 2%-5% for each bit). 

Another possibility is to enhance traditional crossover by 
occasionally swapping agents between populations in the fi­
nal offspring. This, too, could allow for a better covering of 
the search space. However, we will not explore that possibil­
ity in the present paper. 

4 Appl icat ion: The B l ind Mice problem 
4.1 Description of the experiment 
The experiment presented here is based on the "blind mice" 
problem. A flock of mice, controlled by simple feed-forward 
neural networks, have to escape a number of cats running af­
ter them in a toroidal world. 

Now the "game" has three very simple rules: 

1. The cats can see the mice and always run after the closest 
mouse around. 

2. The mice run faster than the cats. 

3. The mice can not see the cats. Neither can they see each 
other (they are "blind"). Their only input is a pair of 
numbers: the X and Y coordinates of the center of the 
flock. 

When a cat touches a mouse, the cat is teleported to an­
other, random location, and the population's "catch counter" 
is increased; nothing else is changed, and the simulation is 
not interrupted in any way. 

Let us consider these rules: they seem to make the prob­
lem extremely difficult for the mice. How is it possible to 
escape predators that can see you, but that you can't sec? 
Running around as fast as possible wil l just make them bump 
into any cat coming from the opposite direction. The same 
is true for random movement strategies. Given the enormous 
asymmetry of information between mice and cats, the sur­
vival chances of the poor rodents appear to be desperately 
thin. Even for a human designer, finding a solution to this 

Figure 2: The successful strategy. Mouse D attracts the cats, 
mouse B plays a "balancing'* role, and other mice move to­
gether in a tight flock 

problem is not a trivial task. Yet, as we will sec below, evo­
lution managed to come up with an elaborate solution to this 
problem. 

In our experiments, the mice are controlled by simple feed­
forward neural networks with 2 inputs, 2 outputs and 5 hidden 
neurons. The two inputs are the coordinates of the center of 
gravity of the flock, that is, the sum of the X- (resp. Y-) co­
ordinates of all mice, divided by the number of mice. The 
two outputs are two real numbers in the [-3.0; +3.0] range, 
indicating the horizontal and vertical speed of the mouse. Al l 
weights are real numbers in the [-1.0; +1.0] range. All simu­
lations use 4 cats. 

4.2 The evolved strategy 
There seems to be an optimal strategy for this problem. This 
strategy emerged in all successful runs, sometimes with vari­
ants. This strategy is described in Figure 2. No other strategy 
led to a really efficient behaviour. 

Let us explain this strategy: as we can see, most mice are 
aggregated together and move in a tight flock. This minimizes 
the probability that a "stray" cat might touch them, but it is 
not sufficient in itself to ensure a minimal catch rate. The 
really important behaviour is that of the mouse labelled D 
(the "Dancer"). 

This mouse has a strange behaviour: it seems to revolve 
around the rest of the flock, but not in a strictly circular fash­
ion. Instead, it constantly bounces around the flock, always 
staying at a respectable distance from it, and moving very fast 
along its path. The purpose of this behaviour becomes obvi­
ous when one sees the position of the cats: they are all fol­
lowing this "dancing" mouse, because it is simply the closest 
to them, thus leaving the rest of the flock alone. 

In other words, the purpose of this dancing behaviour is 
simply to attract all the cats. The dancer moves very fast (so 
that it cannot be touched by cats), but along a sinuous path, 
so that: 
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- It can "drag" cats more efficiently in the initial stage, 
when cats and mice are at random position 

- It never gets too far from the cats, which allows the cats 
to follow it endlessly even though it runs much faster 
than them. 

The final touch of this strategy can be seen in the be­
haviour of the mouse labelled B (as "Balance"), even though 
it didn't appear in all successful runs. This mouse also re­
volves around the flock, but much closer to it. In some runs 
it moves around the flock in a circular fashion, in other runs 
it bounces around it, but it usually stays on the opposite side 
of the flock with respect to the dancer. We believe that this 
mouse has a ''balancing" role, in that it counterbalances the 
effect of the Dancer on the position of the center of gravity of 
the population, thus allowing the flock to be more stable. 

Many variants appeared, such as having several dancers, 
or no balancer. But the essential traits of the strategy were 
consistent: aggregation of most mice, except for one or a few 
to attract the cats away from the flock. 

Note that this strategy is very interdependent: each agent's 
performance is highly dependant on other agents' behaviour. 
This is even more true when you consider that in oider to 
behave that way, they must calculate their trajectories out of 
only one input: the position of the center of gravity of the 
whole flock, which is based on the position of all other agents. 
This fact plays a significant role in the results described be­
low. 

5 Experimental results 
5.1 Experimental settings 
We used two algorithms for this problem: a simple genetic 
algorithm, adapted with an inner crossover operator (as de­
scribed above), and a full-featured cooperative revolution­
ary algorithm. Both methods were used with 7, then with 15 
mice. We used 100 populations of 7 (resp. 15) mice for the 
first algorithm, and 7 (resp. 15) pools of 100 mice for the sec­
ond one. Each algorithm was run several times with different 
random seeds. 

In the first algorithm, reproduction of populations occured 
through tournament selection and 1-point crossover at a rate 
of 60%. Every time two populations were thus crossed to­
gether, an inner crossover rate of 10% was applied, mean­
ing that each mouse in the offspring had a 10% chance to be 
the result of the crossing of the parents' corresponding mice. 
In the second algorithm, reproduction within each pool oc­
cured by tournament selection and 1-point crossover at a rate 
of 30%, which proved to be the most efficient. In both al­
gorithms, mutation appeared only when crossing two mice 
together, by choosing a new random value for a connection 
weight with a 5% probability. 

Note that in both method, we use a limited form of elitism, 
in that the best individual from a given generation was pre­
served in the next generation. This ensured better perfor­
mance - and made the obtained results even more puzzling, 
as explained below. 

Finally, cooperative coevolution specifies that each agent 
must be evaluated with a set of collaborators. Several sets of 

Figure 3: Performance of a population-adapted genetic algo­
rithm, with 7 mice (top) and 15 mice (bottom). The y-axis 
indicates the number of mice catched during this evaluation 
round, while the x-axis indicates the number of evaluations. 
Both the fitness of the best population and the average fitness 
of all populations are shown. 

collaborators can be used in turn in order to refine the evalua­
tion, and the final result can be calculated from these succes­
sive evaluations in various ways (average, best, random...) 
However, we found that with this problem, increasing the 
number of collaborators (and thus the number of evaluation 
rounds) brought absolutely nothing, and was even damag­
ing if the final score was anything else than the best score 
found. The most successful method was simply to evaluate 
each mouse by joining it with the best individual from each 
pool, exactly as in the enforced subpopulations algorithm. 
This is not a surprising result, however, as we will explain 
it below. 

5.2 Comparison of results 

The first algorithm (simple genetic algorithm with two levels 
of crossover) proved remarkably efficient with this problem. 
All runs led to the strategy described in section 4.2, whatever 
the number of mice within the simulation, although of course 
it took more time with 15 mice than with 7. Two typical runs, 
with respectively 7 and 15 mice, are described in Figure 3. 

Cooperative coevolution led to different results. With 7 
mice, in some runs, the algorithm failed to evolve any com­
petitive behaviour. In other runs it managed to find the good 
strategy, but took more evaluations than with the previous al­
gorithm. Many runs, however, achieved performance compa­
rable with that of the simple genetic algorithm. With 15 mice, 
the success rate was much lower. Most runs did not converge 
after 10000 evaluations. Others converged, then suddenly di­
verged quickly. All the runs, with 7 or 15 mice, exhibited a 
intriguing pattern of oscillation. 
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Figure 4: Performance of the best run for a cooperative co-
evolutionary algorithm. The curves indicate the performance 
of the best individual in the currently evaluated pool, and the 
average fitness of individuals in this pool. Notice the brutal 
variations in the curves. 

The fitness curve described in Figure 4 shows a good ex­
ample of this pattern. It is the result of the most successful 
run with 15 mice. The population seems to converge towards 
a better behaviour, but then it suddenly diverges and seems to 
loose all that had been found. The pattern starts again a few 
cycles later. 

This is not what one could expect. In this algorithm, 
the population remains quite stable, being composed of the 
best individual from each pool. Only one individual can be 
changed at each cycle, and only for a better one, since the best 
individual from previous generation is preserved. So how do 
we explain these brutal changes in fitness happening every 
now and then? 

Our explanation is that this pattern is the result of coop­
erative revolution's main drawback: when the number of 
agents grow, and when the result of evaluation undergoes im­
portant stochastic variations, its performance is bound to de­
crease. 

What happens is that at some point, the algorithm does find 
a "good" population, and keeps optimizing it by replacing 
each agent by a better one in turn - as it should do. But then at 
some point, because of the stochastic variations in the evalu­
ation process, one of these "good" agents is found to perform 
not as well as another, non-optimal one. In classical evo­
lutionary algorithms, these occasional mistakes arc blurred 
over a large number of trials and errors, and besides, one 
population's performance has no impact on another's. But 
in cooperative coevolution, this exceptional case is sufficient 
to wreck the behaviour of the whole population, because it 
can replace an essential agent (say, a Dancer) by a poorly 
performing agent (say, a random wanderer). 

Then other agents from other pools are evaluated in turn, 
but since the conditions have changed dramatically, other 
agents are selected instead of the previous, quasi-optimal 
ones. Thus, an error in the selection of one agent has an 
influence over all other pools. When the evaluation cycle 
comes back to the first pool, the previously essential agent 

may not be selected again, because the rest of the population 
has co-adapted towards a different state. However, it is pos­
sible that the this agent is selected again, thus resulting in a 
sharp increase in performance - until the next "error" in the 
evolutionary process. This seems to cause the up-and-down 
oscillations in the fitness curve. 

There is little we can do about this problem. As we said, 
increasing the number of collaborators in a classical way (that 
is, by selecting random sets of collaborators) simply does not 
work, which is understandable: in this problem, the solution 
requires highly interdependent behaviours. An agent's per­
formance can only be good if other agents play their role. 
Evaluating each agent by fitting it in a random population is 
not likely to help reach this state. In a problem with many 
strongly interdependant agents, adding random collaborators 
doesn't seem to be a helpful solution. * 

We could devise more elaborate schemes (e.g. using the 
second-best from each pool as a second set of evaluators) but 
that would not suppress the problem. It seems that in prob­
lems with a non-deterministic component, cooperative coevo­
lution is essentially fragile, or at least, more so than the stan­
dard genetic algorithm. 

6 Conclusion 
We have described possible pitfalls in cooperative coevolu­
tion, and we have proposed a way to apply the canonical ge­
netic algorithm to populations of agents. We have applied 
both algorithms to a non-trivial problem, the blind mice prob­
lem, that is both conceptually simple and non-trivial to solve. 
For this problem, the populations-oriented genetic algorithm 
significantly outperformed cooperative coevolution. We pro­
posed an explanation for the difference in results, based on 
the intrinsic fragility of cooperative coevolution in regard to 
excessive stochastic variations in the evaluation proces. 

As a final note, an old French proverb goes: "Quand le 
chat n'est pas la, les souris dansent" (When the cat is away, 
the mice dance). Artificial evolution has demonstrated that 
the opposite can be true as well. 
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