
Improving (Revolutionary Search for Optimal Multiagent Behaviors

Liviu Panait
Department of Computer Science

George Mason University
Fairfax, VA 22030

lpanait@cs.gmu.edu

R. Paul Wiegand
Krasnow Institute

George Mason University
Fairfax, VA 22030
paul@tesseract.org

Sean Luke
Department of Computer Science

George Mason University
Fairfax, VA 22030
sean@cs.gmu.edu

Abstract

Evolutionary computation is a useful technique for
learning behaviors in multiagent systems. Among
the several types of evolutionary computation, one
natural and popular method is to coevolve multi-
agent behaviors in multiple, cooperating popula­
tions. Recenl research has suggested that r e v o ­
lutionary systems may favor stability rather than
performance in some domains. In order to im­
prove upon existing methods, this paper examines
the idea of modifying traditional coevolution, bias­
ing it to search for maximal rewards. We introduce
a theoretical justification of the improved method
and present experiments in three problem domains.
We conclude that biasing can help coevolution find
better results in some multiagent problem domains.

1 Introduction

Multi-agent learning is an area of intense research, and is
challenging because the problem dynamics are often com­
plex and fraught with local optima. These difficulties have
made evolutionary computation (EC) an attractive approach
to learning multiagent behaviors (for example, flba, 1996;
Luke et a/., 1998; Wu et a/., 1999; Bull et a/., 1995;
Bassett and De Jong, 2000; Bull, 1997]). This work has led to
interesting research questions in applying EC in a multiagent
setting, including communication, representation, generaliza­
tion, teamwork, and collaboration strategies.

As it is very general (and relatively knowledge-poor), evo­
lutionary computation is particularly useful in problems that
are of high dimensionality, are non-Markovian, or yield few
heuristic clues about the search space that otherwise would
make reinforcement learning or various supervised learning
methods good choices. We believe that multiagent learning
problem domains often exhibit such features. These problem
domains are often complex and "correct" actions cannot be
known beforehand in a given situation. Further, even rela­
tively simple problems can require large numbers of external
and, even more challenging, internal state variables. Last,
many such problems exhibit changing environments, even
ones that adapt to make the problem harder for the learner
(due to the presence of co-learning opponents).

EC fits nicely with multiagent systems because it is already
population-oriented: it searches over a set of multiple agents
(the individuals). Further, an EC population may be broken
down into distinct subpopulations, each yielding agents to be
tested together in a multiagent environment, with each sub-
population "evolving" in parallel. This notion of separately
evolving, interacting populations of agents is known as co-
evolution. Coevolution has proven a useful technique for
multiagent problems where the quality of agent is typically
assessed in the context of competing or cooperating peers.

But coevolution is no panacea. Recent research has shown
that a coevolutionary system does not necessarily search
for better teams of agents, but can instead search for agent
populations that represent stable equilibria in the coopera­
tive search space [Ficici and Pollack, 2000; Wiegand et a/.,
2002b]. This paper wil l explore this problem, then introduce
a method for biasing coevolution so that the search for stabil­
ity coincides with optimization for improvement.

We continue this paper with a brief description of coevo­
lution and present an experimental and a theoretical frame­
work. We then suggest a method for biasing the coevolu­
tionary process, describe a theoretical investigation on how
biasing modifies the search space, and discuss experimental
results on three problem domains. The paper ends with a set
of conclusions and directions for future work.

2 Evolutionary Computation and Coevolution
Evolutionary computation is a family of techniques, known
as evolutionary algorithms, widely used for learning agent
behaviors. In EC, abstract Darwinian models of evolution
are applied to refine populations of agents (known as indi­
viduals) representing candidate solutions to a given problem.
An evolutionary algorithm begins with an initial population
of randomly-generated agents. Each member of this popu­
lation is then evaluated and assigned a fitness (a quality as­
sessment). The EA then uses a fitness-oriented procedure
to select agents, breeds and mutates them to produce child
agents, which are then added to the population, replacing
older agents. One evaluation, selection, and breeding cycle
is known as a generation. Successive generations continue to
refine the population until time is exhausted or a sufficiently
fit agent is discovered.

Coevolutionary algorithms (CEAs) represent a natural ap­
proach to applying evolutionary computation to refine mul-

MULTIAGENT SYSTEMS 653

tiagent behaviors. In a CEA, the fitness of an individual is
based on its interaction with other individuals in the popula­
tion: thus the fitness assessment is context-sensitive and sub­
jective. In competitive systems, agents benefit at the expense
of other agents; but in cooperative systems, agents succeed
or fail together in collaboration. The focus of this paper is in
cooperative coevolutionary algorithms. Interesting CEA is­
sues include communication [Bull et al., 1995], teamwork,
and collaboration [Bull, 1997].

A standard approach iPotter, 1997] to applying coopera­
tive coevolutionary algorithms (or CCEAs) to an optimiza­
tion problem starts by identifying a static decomposition of
the problem representation into subcomponents, each repre­
sented by a separate population of individuals. For example,
if a task requires two agents whose collaboration must be op­
timized, one might choose to use two populations, one per
agent in the task. The fitness of an individual in a popula­
tion is then determined by testing the individual in collabo­
ration with one or more individuals from the other popula­
tion. Aside from this collaborative assessment, each popula­
tion follows its own independent evolution process in parallel
with other populations.

2.1 Formalizing the CCEA
An appealing abstract mathematical model for this system
comes from the Biology literature: Evolutionary Game The­
ory (EGT) [Maynard-Smith, 1982; Hofbauer and Sigmund,
1998]. EGT provides a formalism based on traditional game
theory and dynamical systems techniques to analyze the lim­
iting behaviors of interacting populations under long-term
evolution. For specifics about applying EGT to the analysis of
multi-population cooperative coevolutionary algorithms, see
[Wiegand et a/., 2002a].

In this paper, we consider only two-population models. In
such a model, a common way of expressing the rewards from
individual interactions is through a pair of payoff matrices
We assume a symmetric model such that when individuals
from the first population interact with individuals from the
second, one payoff matrix A is used, while individuals from
the second population receive rewards defined by the trans­
pose of this matrix (AT). In our theoretical exploration of
EGT in this paper, we will use an infinite population: thus
a population can be thought of not as a set of individuals,
but rather as a finite-length vector x of proportions, where
each element in the vector is the proportion of a given indi­
vidual configuration (popularly known as a genotype or, as
we will term it, a strategy) in the population. As the pro­
portions in a valid vector must sum to one, all legal vectors
make up what is commonly known as the unit simplex, de­
noted A", where n here is the number of distinct strategies
possible,

Formally we can model the effects of evaluation and pro­
portional selection over time using a pair of difference equa­
tions, one for each population. The proportion vectors for the
two populations are x and y respectively. Neglecting the is­
sue of mutation and breeding and concentrating only on the
effects of selection, we can define the dynamical system of a
two-population cooperative coevolutionary algorithm as:

...where x' and y' represent the new population distributions
for the next generation. Here it is assumed that an individ­
ual's fitness is assessed through pair-wise collaborations with
every member of the cooperating population. We call this
idea complete mixing. The equations above describe a two-
step process. First, the vectors u and w are derived; these
represent the fitness assessments of strategies in the genera­
tions x and y respectively. Note that an infinite population
model considers the fitness assessment for a strategy, and not
for a particular instance of that strategy (an individual). Then
selection is performed by computing the proportion of the fit­
ness of a specific strategy over the sum fitness of the entire
population.

2.2 Optimization versus Balance
CCEA researchers apply these algorithms hoping to optimize
the collaborations between the populations, but it isn't clear
that this system is meant to do this. In fact, the system seeks
a form of balance between strategies, which may not corre­
spond with what we, as external viewers of the system, would
consider optimal. In the context of a payoff matrix, an op­
timal position is the pair of strategies that yield the highest
payoff for the cooperating agents. This position is a stable
attracting fixed point of such a system; but it is also the case
that there are other suboptimal points, which can also attract
trajectories [Wiegand et al., 2002b]. Indeed, it is possible that
most, if not all, trajectories can be pulled toward suboptimal
spots. These points correspond to Nash equilibria: subopti­
mal combinations of strategies where if any one strategy is
changed, the net reward for both agents will decrease.

As a result, individuals in a CCEA are not necessarily re­
fined to be the optimal subcomponent of the optimal com­
ponent; instead they are refined to be jacks-of-all-trades that
dovetail nicely with the current individuals from the other
population. What does this mean for practitioners wanting
to coevolve "optimal" (or perhaps, even "good") cooperative
strategies using a coevolutionary algorithm? It means that
CEAs are not necessarily optimizers in the sense that one
might intuitively expect them to be. Something must be done
to modify the existing algorithms or our expectations of what
these algorithms really do.

3 Biasing for Optimal Cooperation
One reason CCEAs tend toward "balance" is that an individ­
ual's fitness is commonly assessed based on how well it per­
forms with immediate individuals from the other population.
To find optimal cooperation, the search process may need to
be more optimistic than this: assessing fitness based more
on the highest-reward interactions between an individual and
various members of the other population. A previous investi­
gation in this direction is reported in [Wiegand et al, 2001]:

654 MULTIAGENT SYSTEMS

(1)
(2)

(3)

(4)

Table 1: Joint reward matrixes for the Climb (left) and
Penalty (right) domains.

assessing an individual's fitness based on its maximum perfor­
mance with other agents in a collaborative domain was shown
to yield better results than when using the mean or minimum
performance. The idea presented in this paper is relatively
simple: base an individual's fitness on a combination of its
immediate reward while interacting with individuals in the
population, and on an estimate for the reward it would have
received had it interacted with its ideal collaborators. The
fraction of reward due to the immediate (as opposed to the
ideal) interaction changes during the course of the run.

We note that this notion of bias towards maximum possible
reward has also been used in the reinforcement learning litera­
ture in subtly different ways than we use it here. For example,
maximum reward was used by lOaus and Boutilier, 19981 to
modify the exploration strategy of the agent, and by lLauer
and Riedmiller, 2000] to modify the update rule for the Q ta­
ble. To some extent, the "Hall of Fame" method introduced
by [Rosin and Belew, 1997] for competitive coevolution is
also related to biased cooperative coevolution.

We justify the use of such a bias in a CCEA as follows.
Recall that if an individual's fitness is based on its immediate
interaction with individuals from the other population, then
u = Ay and w — ATx as described in equations 1 and 2. Now,
let us consider a function maxA that returns a column vector
corresponding to the maximum value of each row in matrix
A. Now, if an individual's fitness is based on its maximum
possible performance in conjunction with any individual from
the other population, then we may modify equations 1 and 2
to be w = maxA

T and w = max^r'.
In this modified system, the tendency to optimize perfor­

mance is clear. At each iteration of the model, the fitness of
each strategy will be its best possible fitness. If there is a
unique maximum, that result will have the highest fitness and
so the proportion of the corresponding strategy will increase
in the next step. When the global maxima are not unique, the
resulting fixed point is a mixed strategy, with weights split
between those maxima.

The reason for this is straightforward: the problem has lost
the dimensionality added due to the nature of the interactions
between the agents. Without this, the problem reduces to a
simple evolutionary algorithm: regardless of the content of
the opposing population, the fitness measure for a given strat­
egy is the same. As shown in [Vose, 1999], an infinite popu­
lation model of this reduced evolutionary algorithm will con­
verge to a unique global maximum.

But it is difficult to imagine how a real CCEA algorithm
would know the maximum possible reward for a given indi­
vidual a priori. One approach is to use historical information
during the run to approximate the maximum possible collabo-

Figure 1: Probability of converging to the optimum as the
bias parameter 5 is varied between 0 and 1.

rative fitness for an individual. However, if the approximation
is too large (or has too strong an effect on the overall fitness),
and if it appears too early in the evolutionary run, then it can
deform the search space to drive search trajectories into sub-
optimal parts of the space from which they cannot escape. On
the other hand, if the approximation affects the fitness mea­
surement very weakly, and too late in the run, then it may not
be of much help, and the system will still gravitate towards
"balance".

To better see this tradeoff, we again alter equations 1
and 2, this time adding a bias weight parameter 5. Now,
u = (1 -8)-i4y+8-max,i7 ' andvT'= (1 -5)ATx+5m'd*ArT.
Varying 8 between 0 and 1 will control the degree to which
the model makes use of the bias. Consider the Climb payoff
matrix on the left side of Table 1. We select 500 initial points
of the dynamical system uniformly at random from A" x Am,
and iterate the system until it converges. While convergence
is virtually guaranteed in traditional two-matrix EGT games
LHofbauer and Sigmund, 19981, it is not necessarily guar­
anteed in our modified system. In our experimental results,
however, we obtained convergence in all cases to within some
degree of machine precision. Figure 1 shows the probability,
for various levels of 8, of the dynamical system converging
to the optimum when the penalty is set to -30 , -300, -3000
or -30000. Notice that, as the penalty worsens, the transition
between optimal and suboptimal convergence becomes more
severe. This suggests that for some problems, any benefits
provided by this type of bias may be quite sensitive to the
degree of bias.

4 Experiments
While this theoretical discussion helps justify our intuition
for including a performance bias in fitness evaluation, it is
not immediately applicable to real problems. In a more real­
istic setting, simplifying model assumptions such as infinite
populations, lack of variational operators, complete mixing,
and a priori knowledge of the maximum payoff are not pos­
sible. To convert theory into practice, we have adopted an
approximation to the performance bias that is based on his­
torical information gathered during the evolutionary run. We
also decreased the bias through the course of a run to take ad­
vantage of the fact that initial partners are likely to be weak,
while later partners are stronger.

We performed several experiments to compare simple co-

MULTIAGENT SYSTEMS 655

Figure 2: Joint reward in the continuous Two Peaks domain

evolution (SC) with biased coevolution (BC) in three prob­
lem domains detailed later. Both SC and BC base fitness on
the immediate performance of an individual in the context of
individuals from one other cooperating population. BC ad­
ditionally includes a bias factor: part of the fitness is based
on an approximation of what an individual's fitness would be
were it to cooperate with its ideal partners.

We compared these two techniques in combination with
two approaches to representing an individual. In the Pure
Strategy Representation (PSR), an individual represented a
single strategy. PSR individuals stored a single integer repre­
senting the strategy in question. A PSR individual bred chil­
dren through mutation: a coin was repeatedly tossed, and the
individual's integer was increased or decreased (the direction
chosen at random beforehand) until the coin came up heads.
In the Mixed Strategy Representation (MSR), an individual
represented not a single strategy but a probability distribu­
tion over all possible strategies. When evaluating an MSR
individual with a partner agent, 50 independent trials were
performed, and each time each agent's strategy was chosen
at random from the the agent's probability distribution. MSR
individuals used one-point crossover, followed by adding ran­
dom Gaussian noise (ju — 0, a = 0.05) to each of the distribu­
tion values, followed by renormalization of the distribution.
Observe that using MSR creates a potentially more difficult
problem domain than using PSR, for reasons of search space
size and stochasticity of the fitness result.

We chose a common approach to cooperative coevolution
fitness assessment. An individual is assessed twice to deter­
mine fitness: once with a partner chosen at random, then once
partnered with the individual in the other population that had
received the highest fitness in the previous generation. An in­
dividual's fitness is set to the maximum of these two assess­
ments. During a fitness assessment, an individual receives
some number of rewards for trying certain strategies in the
context of partners. For a PSR individual, the assessment was
simply the single reward it received for trying its strategy with
its partners. As an MSR individual tried fifty strategies, its as­
sessment was the mean of the fifty rewards it received.

SC and BC differ in that BC adds into the reward a bias
term, that is, Reward <— (1 - 5) • Reward 4- 5 • MaxReward,
where 5 is a decreasing bias rate that starts at 1.0 and lin­
early decreases until it reaches 0 when 3/4 of the maximal run
length has passed. Ideally, the MaxReward bias factor would
be the highest possible reward received for trying that partic-

Table 2: Proportion of runs that converged to global optimum
and average best individual fitness, Climbing Domain

Penalty

Table 3: Proportion of runs that converged to global optimum
and average best individual fitness, Penalty Domain

ular strategy, over all possible partner strategies. In the exper­
iments in this paper, we chose to approximate MaxReward by
setting it to the maximum reward seen so far in the run for the
given strategy.

In all experiments, the most fit individual survived auto­
matically from one generation to the next. To select an in­
dividual for breeding, we chose two individuals at random
with replacement from the population, then selected the fitter
of the two. Each experiment was repeated 100 times. The
experiments used the ECJ9 software package [Luke, 2002].

4 .1 P r o b l e m Domains
We experimented with three different single-stage game do­
mains: two simpler ones (Climb and Penalty) introduced in
[Claus and Boutilier, 1998], and a more complex artificial
problem (Two Peaks). Evolutionary runs in the Climb and
Penalty problem domain lasted 200 generations and used 20
individuals per population. Runs in the Two Peaks domain
lasted 500 generations and used populations of 100 individu­
als each.

The joint reward matrices for the Climb and the Penalty
domains are presented in Table 1. The domains are difficult
because of the penalties associated with miscoordinated ac­
tions and the presence of suboptimal collaborations that avoid
penalties. Figure 2 presents a continuous version of a the Two
Peaks coordination game, where the x and y axes represent the
continuous range of actions for the two agents, and the z axis
shows the joint reward. The reward surface has two peaks,
one lower but spread over a large surface, and the other one
higher but covering a small area. Because an agent's strategy
space is continuous over [0,1], we discretized it into increas­
ingly difficult sets of 8, 16, 32, 64 or 128 strategies. The
discretizations result in slightly different optimal values.

5 Results
Tables 2-4 present the proportion (out of 100 runs) that con­
verged to the global optimum, plus the mean fitness of the
best individuals in the runs. MSR individuals were consid­
ered optimal if and only if the optimal strategy held over 50

656 MULTIAGENT SYSTEMS

Table 4: Proportion of runs that converged to global optimum
and average best individual fitness, Two Peaks Domain

Figure 3: Distance from best-of-generation individuals to op­
timal strategy for the 8 actions Two Peaks domain using SC
(top) and BC (bottom).

percent of the distribution (in fact, most optimal MSR indi­
viduals had over 90 percent).

Biased coevolution consistently found the global optima
as often as, or more often than, standard coevolution. The
only times where standard coevolution held its own was in
the Climbing and Penalty domains, where PSR individuals
found the optimum 100% of the time, as well as in the harder
Two Peaks domain, where no MSR individuals found the op­
timum. For those problems when individuals found the op­
timum less than 100% of the time, we also compared dif­
ferences in mean best fitness of a run, using a two-factor
ANOVA with repetitions, factored over the method used and
the problem domain.

The ANOVA results allow us to state with 95% confi­
dence that biased coevolution is better than simple coevolu­
tion when MSR is used in the Climbing domain, and also
in the Two Peaks domain when PSR is used; the tests give
only a 90% confidence for stating that BC+MSR is better than
SC+MSR in the Penalty domain.

In order to better understand what happens when using
MSR in the Two Peaks domains, we plotted the average eu-
clidian distance from the best individual per generation to the
known global optima (Figures 3 and 4). The graphs present
the 95% confidence interval for the mean of the fitnesses. In­
vestigations showed that SC converged to suboptimal interac­
tions (the lower, wider peak in Figure 2) in all cases. On the
other hand, the trajectories of the search process are radically
different when using BC. Let's take a closer look as to why
this might be so.

As we learned from our discussion surrounding Figure 1,

200 300
Generations

Figure 4: Distance from best-of-generation individuals to op­
timal strategy for the 32 actions Two Peaks domain using SC
(top) and BC (bottom).

successful applications of this biasing method are tied to suc­
cessfully determining the appropriate degree of bias to apply.
Due to MSR's increased difficulty, it may be more challeng­
ing to find an appropriate balance for the bias. Figure 3 sug­
gests exactly this. Notice that, in the early part of the run
(when 8 is strong), the algorithm tends towards the optimal
solution; however, as the bias is reduced, it becomes over­
whelmed and the trajectories are eventually drawn toward the
suboptimal local attractor. Moreover, as the problem becomes
larger (i.e., Figure 4, as well as others not shown), this failure
occurs earlier in the run. This suggests more careful attention
is needed to set the parameters and to adjust the bias rate when
using MSR versus PSR. Indeed, by running longer and allow­
ing for more interactions during evaluation, we were able to
obtain convergence to the global optimum when using MSR
(not shown).

6 Conclusions and Future Work
Although cooperative coevolution has been successfully ap­
plied to the task of learning multiagent behaviors, as re­
search about these algorithms advances, it becomes increas­
ingly clear that these algorithms may favor stability over opti-
mality for some problem domains. In this paper, we develop
a very simple idea: improve coevolution through the use of
a maximum reward bias. We introduce a theoretical justifi­
cation for the idea, then present experimental evidence that
confirms that biasing coevolution can yield significantly bet­
ter results than standard coevolution when searching for op­
timal collaborations. Our work further reveals that domain
features greatly influence the levels of biasing necessary for
convergence to optima: for some problems the performance
changes slowly when the level of bias is modified, while for
other domains there is a rapid degradation in results. This
suggests that, while adding some kind of maximum reward
bias can be helpful, there is still work to be done in under­
standing how best to apply this bias in different problem do­
mains.

Our initial experimental results in this paper suggest that
it is effective to use a history as an approximation to the true
maximal collaborative reward for a given strategy. For future

MULTIAGENT SYSTEMS 657

work we intend to extend these experiments to problem do­
mains with search spaces much larger than the ones used in
these experiments. In such domains, the number of strate­
gies may be very large, even infinite. Keeping an effective
history of strategies may thus be infeasible in certain circum­
stances; we intend to explore ways to sample the space or
cache the most significant strategy results. Repeated games,
such as the Iterated Prisoner's Dilemma, or stochastic games,
may also require different approaches to biasing coevolution.
Understanding these issues, we hope, can lead to significant
improvements in cooperative revolution's effectiveness as a
multi-agent optimization technique.

7 Acknowledgements
This research was partially supported through Department of
Army grant DAAB07-01-9-L504, ONR grant N00014-01-1-
0703, and a gift from SRA International.

References
[Bassett and De Jong, 2000] Jeffrey K. Bassett and Ken­

neth A. De Jong. Evolving behaviors for cooperating
agents. In Z. Ras, editor, Proceedings from the Twelfth
International Symposium on Methodologies for Intelligent
Systems, pages 157-165, Charlotte, N C , 2000. Springer-
Verlag.

[Bull etal, 1995] Lawrence Bull, Terrence C. Fogarty, and
M. Snaith. Evolution in multi-agent systems: Evolving
communicating classifier systems for gait in a quadrupedal
robot. In L. Eshelman, editor, Proceedings of the Sixth
International Conference on Genetic Algorithms (ICGA),
pages 382-388. Morgan Kaufmann, 1995.

[Bull, 1997] L. Bull. Evolutionary computing in multi-agent
environments: Partners. In Thomas Baeck, editor, Pro-
ceedings of the Seventh International Conference on Ge­
netic Algorithms (ICGA), pages 370-377. Morgan Kauf­
mann, 1997.

[Claus and Boutilier, 1998] Caroline Claus and Craig
Boutilier. The dynamics of reinforcement learning in
cooperative multiagent systems. In Proceedings of the
Sixteenth National Conference on Artificial Intelligence
(AAAl-98). MIT Press, 1998.

[Ficici and Pollack, 2000] S. Ficici and J. Pollack. A game-
theoretic approach to the simple revolutionary algorithm.
In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lut-
ton, J.J. Merelo, and H.-P. Schwefel, editors, Proceedings
of the Sixth International Conference on Parallel Problem
Solving from Nature (PPSN VI), pages 467-476. Springer-
Verlag, 2000.

[Hofbauer and Sigmund, 1998] Josef Hofbauer and Karl
Sigmund. Evolutionary Games and Population Dynamics.
Cambridge University Press, 1998.

[Iba, 1996] H. Iba. Emergent cooperation for multiple agents
using genetic programming. In J. Koza, editor, Late Break­
ing Papers of the Genetic Programming Conference, pages
66-74, Stanford, CA, 1996. Stanford University Book­
store.

[Lauer and Riedmiller, 2000] M. Lauer and M. Riedmiller.
An algorithm for distributed reinforcement learning in co­
operative multi-agent systems. In Proceedings of the Sev­
enteenth International Conference in Machine Learning,
2000.

[Luke et al, 1998] S. Luke, C. Hohn, J. Farris, G. Jackson,
and J. Hendler. Co-evolving soccer softbot team coordi­
nation with genetic programming. In RoboCup-97: Robot
Soccer World Cup I (Lecture Notes in AI No. 1395), pages
398-411, Berlin, 1998. Springer-Verlag.

[Luke, 2002] Sean Luke. ECJ 9: A Java EC research system.
http://www.cs.umd.edu/projects/plus/ec/ecj/, 2002.

[Maynard-Smith, 1982] John Maynard-Smith. Evolution
and the Theory of Games. Cambridge University Press,
1982.

[Potter, 1997] M. Potter. The Design and Analysis of a Com­
putational Model of Cooperative CoEvolution. PhD thesis,
George Mason University, Fairfax, Virginia, 1997.

[Rosin and Belew, 1997] C. Rosin and R. Belew. New meth­
ods for competitive coevolution. Evolutionary Computa­
tion, 5(1):1 -29,1997.

[Vose, 1999] M. Vose. The Simple Genetic Algorithm. MIT
Press, 1999.

[Wiegand etal, 2001] R. Paul Wiegand, William Liles, and
Kenneth De Jong. An empirical analysis of collabora­
tion methods in cooperative coevolutionary algorithms. In
L. Spector et al, editor, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO) 2001,
pages 1235-1242. Morgan Kaufmann, 2001.

[Wiegand et al, 2002a] R. Paul Wiegand, William Liles, and
Kenneth De Jong. Analyzing cooperative coevolution with
evolutionary game theory. In D. Fogel, editor, Proceedings
ofCEC 2002, pages 1600-1605. IEEE Press, 2002.

[Wiegand et al, 2002b] R. Paul Wiegand, William Liles, and
Kenneth De Jong. Modeling variation in cooperative co-
evolution using evolutionary game theory. In Richardo
Poli, Jonathan Rowe, and Kenneth De Jong, editors, Foun­
dations of Genetic Algorithms (FOGA) VII, pages 231 —
248. Morgan Kaufmann, 2002.

[WuetaL, 1999] Annie Wu, Alan C. Schultz, and Arvin
Agah. Evolving control for distributed micro air vehi­
cles. In IEEE International Symposium on Conference
on Computational Intelligence in Robotics and Automa­
tion (C1RA-99), 1999.

658 MULTIAGENT SYSTEMS

