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Abstract 

Evolutionary computation is a useful technique for 
learning behaviors in multiagent systems. Among 
the several types of evolutionary computation, one 
natural and popular method is to coevolve multi-
agent behaviors in multiple, cooperating popula­
tions. Recenl research has suggested that r e v o ­
lutionary systems may favor stability rather than 
performance in some domains. In order to im­
prove upon existing methods, this paper examines 
the idea of modifying traditional coevolution, bias­
ing it to search for maximal rewards. We introduce 
a theoretical justification of the improved method 
and present experiments in three problem domains. 
We conclude that biasing can help coevolution find 
better results in some multiagent problem domains. 

1 Introduction 

Multi-agent learning is an area of intense research, and is 
challenging because the problem dynamics are often com­
plex and fraught with local optima. These difficulties have 
made evolutionary computation (EC) an attractive approach 
to learning multiagent behaviors (for example, flba, 1996; 
Luke et a/., 1998; Wu et a/., 1999; Bull et a/., 1995; 
Bassett and De Jong, 2000; Bull, 1997]). This work has led to 
interesting research questions in applying EC in a multiagent 
setting, including communication, representation, generaliza­
tion, teamwork, and collaboration strategies. 

As it is very general (and relatively knowledge-poor), evo­
lutionary computation is particularly useful in problems that 
are of high dimensionality, are non-Markovian, or yield few 
heuristic clues about the search space that otherwise would 
make reinforcement learning or various supervised learning 
methods good choices. We believe that multiagent learning 
problem domains often exhibit such features. These problem 
domains are often complex and "correct" actions cannot be 
known beforehand in a given situation. Further, even rela­
tively simple problems can require large numbers of external 
and, even more challenging, internal state variables. Last, 
many such problems exhibit changing environments, even 
ones that adapt to make the problem harder for the learner 
(due to the presence of co-learning opponents). 

EC fits nicely with multiagent systems because it is already 
population-oriented: it searches over a set of multiple agents 
(the individuals). Further, an EC population may be broken 
down into distinct subpopulations, each yielding agents to be 
tested together in a multiagent environment, with each sub-
population "evolving" in parallel. This notion of separately 
evolving, interacting populations of agents is known as co-
evolution. Coevolution has proven a useful technique for 
multiagent problems where the quality of agent is typically 
assessed in the context of competing or cooperating peers. 

But coevolution is no panacea. Recent research has shown 
that a coevolutionary system does not necessarily search 
for better teams of agents, but can instead search for agent 
populations that represent stable equilibria in the coopera­
tive search space [Ficici and Pollack, 2000; Wiegand et a/., 
2002b]. This paper wil l explore this problem, then introduce 
a method for biasing coevolution so that the search for stabil­
ity coincides with optimization for improvement. 

We continue this paper with a brief description of coevo­
lution and present an experimental and a theoretical frame­
work. We then suggest a method for biasing the coevolu­
tionary process, describe a theoretical investigation on how 
biasing modifies the search space, and discuss experimental 
results on three problem domains. The paper ends with a set 
of conclusions and directions for future work. 

2 Evolutionary Computation and Coevolution 
Evolutionary computation is a family of techniques, known 
as evolutionary algorithms, widely used for learning agent 
behaviors. In EC, abstract Darwinian models of evolution 
are applied to refine populations of agents (known as indi­
viduals) representing candidate solutions to a given problem. 
An evolutionary algorithm begins with an initial population 
of randomly-generated agents. Each member of this popu­
lation is then evaluated and assigned a fitness (a quality as­
sessment). The EA then uses a fitness-oriented procedure 
to select agents, breeds and mutates them to produce child 
agents, which are then added to the population, replacing 
older agents. One evaluation, selection, and breeding cycle 
is known as a generation. Successive generations continue to 
refine the population until time is exhausted or a sufficiently 
fit agent is discovered. 

Coevolutionary algorithms (CEAs) represent a natural ap­
proach to applying evolutionary computation to refine mul-
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tiagent behaviors. In a CEA, the fitness of an individual is 
based on its interaction with other individuals in the popula­
tion: thus the fitness assessment is context-sensitive and sub­
jective. In competitive systems, agents benefit at the expense 
of other agents; but in cooperative systems, agents succeed 
or fail together in collaboration. The focus of this paper is in 
cooperative coevolutionary algorithms. Interesting CEA is­
sues include communication [Bull et al., 1995], teamwork, 
and collaboration [Bull, 1997]. 

A standard approach iPotter, 1997] to applying coopera­
tive coevolutionary algorithms (or CCEAs) to an optimiza­
tion problem starts by identifying a static decomposition of 
the problem representation into subcomponents, each repre­
sented by a separate population of individuals. For example, 
if a task requires two agents whose collaboration must be op­
timized, one might choose to use two populations, one per 
agent in the task. The fitness of an individual in a popula­
tion is then determined by testing the individual in collabo­
ration with one or more individuals from the other popula­
tion. Aside from this collaborative assessment, each popula­
tion follows its own independent evolution process in parallel 
with other populations. 

2.1 Formalizing the CCEA 
An appealing abstract mathematical model for this system 
comes from the Biology literature: Evolutionary Game The­
ory (EGT) [Maynard-Smith, 1982; Hofbauer and Sigmund, 
1998]. EGT provides a formalism based on traditional game 
theory and dynamical systems techniques to analyze the lim­
iting behaviors of interacting populations under long-term 
evolution. For specifics about applying EGT to the analysis of 
multi-population cooperative coevolutionary algorithms, see 
[Wiegand et a/., 2002a]. 

In this paper, we consider only two-population models. In 
such a model, a common way of expressing the rewards from 
individual interactions is through a pair of payoff matrices 
We assume a symmetric model such that when individuals 
from the first population interact with individuals from the 
second, one payoff matrix A is used, while individuals from 
the second population receive rewards defined by the trans­
pose of this matrix (AT). In our theoretical exploration of 
EGT in this paper, we will use an infinite population: thus 
a population can be thought of not as a set of individuals, 
but rather as a finite-length vector x of proportions, where 
each element in the vector is the proportion of a given indi­
vidual configuration (popularly known as a genotype or, as 
we will term it, a strategy) in the population. As the pro­
portions in a valid vector must sum to one, all legal vectors 
make up what is commonly known as the unit simplex, de­
noted A", where n here is the number of distinct strategies 
possible,  

Formally we can model the effects of evaluation and pro­
portional selection over time using a pair of difference equa­
tions, one for each population. The proportion vectors for the 
two populations are x and y respectively. Neglecting the is­
sue of mutation and breeding and concentrating only on the 
effects of selection, we can define the dynamical system of a 
two-population cooperative coevolutionary algorithm as: 

...where x' and y' represent the new population distributions 
for the next generation. Here it is assumed that an individ­
ual's fitness is assessed through pair-wise collaborations with 
every member of the cooperating population. We call this 
idea complete mixing. The equations above describe a two-
step process. First, the vectors u and w are derived; these 
represent the fitness assessments of strategies in the genera­
tions x and y respectively. Note that an infinite population 
model considers the fitness assessment for a strategy, and not 
for a particular instance of that strategy (an individual). Then 
selection is performed by computing the proportion of the fit­
ness of a specific strategy over the sum fitness of the entire 
population. 

2.2 Optimization versus Balance 
CCEA researchers apply these algorithms hoping to optimize 
the collaborations between the populations, but it isn't clear 
that this system is meant to do this. In fact, the system seeks 
a form of balance between strategies, which may not corre­
spond with what we, as external viewers of the system, would 
consider optimal. In the context of a payoff matrix, an op­
timal position is the pair of strategies that yield the highest 
payoff for the cooperating agents. This position is a stable 
attracting fixed point of such a system; but it is also the case 
that there are other suboptimal points, which can also attract 
trajectories [Wiegand et al., 2002b]. Indeed, it is possible that 
most, if not all, trajectories can be pulled toward suboptimal 
spots. These points correspond to Nash equilibria: subopti­
mal combinations of strategies where if any one strategy is 
changed, the net reward for both agents will decrease. 

As a result, individuals in a CCEA are not necessarily re­
fined to be the optimal subcomponent of the optimal com­
ponent; instead they are refined to be jacks-of-all-trades that 
dovetail nicely with the current individuals from the other 
population. What does this mean for practitioners wanting 
to coevolve "optimal" (or perhaps, even "good") cooperative 
strategies using a coevolutionary algorithm? It means that 
CEAs are not necessarily optimizers in the sense that one 
might intuitively expect them to be. Something must be done 
to modify the existing algorithms or our expectations of what 
these algorithms really do. 

3 Biasing for Optimal Cooperation 
One reason CCEAs tend toward "balance" is that an individ­
ual's fitness is commonly assessed based on how well it per­
forms with immediate individuals from the other population. 
To find optimal cooperation, the search process may need to 
be more optimistic than this: assessing fitness based more 
on the highest-reward interactions between an individual and 
various members of the other population. A previous investi­
gation in this direction is reported in [Wiegand et al, 2001]: 
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Table 1: Joint reward matrixes for the Climb (left) and 
Penalty (right) domains. 

assessing an individual's fitness based on its maximum perfor­
mance with other agents in a collaborative domain was shown 
to yield better results than when using the mean or minimum 
performance. The idea presented in this paper is relatively 
simple: base an individual's fitness on a combination of its 
immediate reward while interacting with individuals in the 
population, and on an estimate for the reward it would have 
received had it interacted with its ideal collaborators. The 
fraction of reward due to the immediate (as opposed to the 
ideal) interaction changes during the course of the run. 

We note that this notion of bias towards maximum possible 
reward has also been used in the reinforcement learning litera­
ture in subtly different ways than we use it here. For example, 
maximum reward was used by lOaus and Boutilier, 19981 to 
modify the exploration strategy of the agent, and by lLauer 
and Riedmiller, 2000] to modify the update rule for the Q ta­
ble. To some extent, the "Hall of Fame" method introduced 
by [Rosin and Belew, 1997] for competitive coevolution is 
also related to biased cooperative coevolution. 

We justify the use of such a bias in a CCEA as follows. 
Recall that if an individual's fitness is based on its immediate 
interaction with individuals from the other population, then 
u = Ay and w — ATx as described in equations 1 and 2. Now, 
let us consider a function maxA that returns a column vector 
corresponding to the maximum value of each row in matrix 
A. Now, if an individual's fitness is based on its maximum 
possible performance in conjunction with any individual from 
the other population, then we may modify equations 1 and 2 
to be w = maxA

T and w = max^r'. 
In this modified system, the tendency to optimize perfor­

mance is clear. At each iteration of the model, the fitness of 
each strategy will be its best possible fitness. If there is a 
unique maximum, that result will have the highest fitness and 
so the proportion of the corresponding strategy will increase 
in the next step. When the global maxima are not unique, the 
resulting fixed point is a mixed strategy, with weights split 
between those maxima. 

The reason for this is straightforward: the problem has lost 
the dimensionality added due to the nature of the interactions 
between the agents. Without this, the problem reduces to a 
simple evolutionary algorithm: regardless of the content of 
the opposing population, the fitness measure for a given strat­
egy is the same. As shown in [Vose, 1999], an infinite popu­
lation model of this reduced evolutionary algorithm will con­
verge to a unique global maximum. 

But it is difficult to imagine how a real CCEA algorithm 
would know the maximum possible reward for a given indi­
vidual a priori. One approach is to use historical information 
during the run to approximate the maximum possible collabo-

Figure 1: Probability of converging to the optimum as the 
bias parameter 5 is varied between 0 and 1. 

rative fitness for an individual. However, if the approximation 
is too large (or has too strong an effect on the overall fitness), 
and if it appears too early in the evolutionary run, then it can 
deform the search space to drive search trajectories into sub-
optimal parts of the space from which they cannot escape. On 
the other hand, if the approximation affects the fitness mea­
surement very weakly, and too late in the run, then it may not 
be of much help, and the system will still gravitate towards 
"balance". 

To better see this tradeoff, we again alter equations 1 
and 2, this time adding a bias weight parameter 5. Now, 
u = (1 -8)-i4y+8-max,i7 ' andvT'= (1 -5)ATx+5m'd*ArT. 
Varying 8 between 0 and 1 will control the degree to which 
the model makes use of the bias. Consider the Climb payoff 
matrix on the left side of Table 1. We select 500 initial points 
of the dynamical system uniformly at random from A" x Am, 
and iterate the system until it converges. While convergence 
is virtually guaranteed in traditional two-matrix EGT games 
LHofbauer and Sigmund, 19981, it is not necessarily guar­
anteed in our modified system. In our experimental results, 
however, we obtained convergence in all cases to within some 
degree of machine precision. Figure 1 shows the probability, 
for various levels of 8, of the dynamical system converging 
to the optimum when the penalty is set to -30 , -300, -3000 
or -30000. Notice that, as the penalty worsens, the transition 
between optimal and suboptimal convergence becomes more 
severe. This suggests that for some problems, any benefits 
provided by this type of bias may be quite sensitive to the 
degree of bias. 

4 Experiments 
While this theoretical discussion helps justify our intuition 
for including a performance bias in fitness evaluation, it is 
not immediately applicable to real problems. In a more real­
istic setting, simplifying model assumptions such as infinite 
populations, lack of variational operators, complete mixing, 
and a priori knowledge of the maximum payoff are not pos­
sible. To convert theory into practice, we have adopted an 
approximation to the performance bias that is based on his­
torical information gathered during the evolutionary run. We 
also decreased the bias through the course of a run to take ad­
vantage of the fact that initial partners are likely to be weak, 
while later partners are stronger. 

We performed several experiments to compare simple co-
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Figure 2: Joint reward in the continuous Two Peaks domain 

evolution (SC) with biased coevolution (BC) in three prob­
lem domains detailed later. Both SC and BC base fitness on 
the immediate performance of an individual in the context of 
individuals from one other cooperating population. BC ad­
ditionally includes a bias factor: part of the fitness is based 
on an approximation of what an individual's fitness would be 
were it to cooperate with its ideal partners. 

We compared these two techniques in combination with 
two approaches to representing an individual. In the Pure 
Strategy Representation (PSR), an individual represented a 
single strategy. PSR individuals stored a single integer repre­
senting the strategy in question. A PSR individual bred chil­
dren through mutation: a coin was repeatedly tossed, and the 
individual's integer was increased or decreased (the direction 
chosen at random beforehand) until the coin came up heads. 
In the Mixed Strategy Representation (MSR), an individual 
represented not a single strategy but a probability distribu­
tion over all possible strategies. When evaluating an MSR 
individual with a partner agent, 50 independent trials were 
performed, and each time each agent's strategy was chosen 
at random from the the agent's probability distribution. MSR 
individuals used one-point crossover, followed by adding ran­
dom Gaussian noise (ju — 0, a = 0.05) to each of the distribu­
tion values, followed by renormalization of the distribution. 
Observe that using MSR creates a potentially more difficult 
problem domain than using PSR, for reasons of search space 
size and stochasticity of the fitness result. 

We chose a common approach to cooperative coevolution 
fitness assessment. An individual is assessed twice to deter­
mine fitness: once with a partner chosen at random, then once 
partnered with the individual in the other population that had 
received the highest fitness in the previous generation. An in­
dividual's fitness is set to the maximum of these two assess­
ments. During a fitness assessment, an individual receives 
some number of rewards for trying certain strategies in the 
context of partners. For a PSR individual, the assessment was 
simply the single reward it received for trying its strategy with 
its partners. As an MSR individual tried fifty strategies, its as­
sessment was the mean of the fifty rewards it received. 

SC and BC differ in that BC adds into the reward a bias 
term, that is, Reward <— (1 - 5) • Reward 4- 5 • MaxReward, 
where 5 is a decreasing bias rate that starts at 1.0 and lin­
early decreases until it reaches 0 when 3/4 of the maximal run 
length has passed. Ideally, the MaxReward bias factor would 
be the highest possible reward received for trying that partic-

Table 2: Proportion of runs that converged to global optimum 
and average best individual fitness, Climbing Domain 

Penalty 

Table 3: Proportion of runs that converged to global optimum 
and average best individual fitness, Penalty Domain 

ular strategy, over all possible partner strategies. In the exper­
iments in this paper, we chose to approximate MaxReward by 
setting it to the maximum reward seen so far in the run for the 
given strategy. 

In all experiments, the most fit individual survived auto­
matically from one generation to the next. To select an in­
dividual for breeding, we chose two individuals at random 
with replacement from the population, then selected the fitter 
of the two. Each experiment was repeated 100 times. The 
experiments used the ECJ9 software package [Luke, 2002]. 

4 .1 P r o b l e m Domains 
We experimented with three different single-stage game do­
mains: two simpler ones (Climb and Penalty) introduced in 
[Claus and Boutilier, 1998], and a more complex artificial 
problem (Two Peaks). Evolutionary runs in the Climb and 
Penalty problem domain lasted 200 generations and used 20 
individuals per population. Runs in the Two Peaks domain 
lasted 500 generations and used populations of 100 individu­
als each. 

The joint reward matrices for the Climb and the Penalty 
domains are presented in Table 1. The domains are difficult 
because of the penalties associated with miscoordinated ac­
tions and the presence of suboptimal collaborations that avoid 
penalties. Figure 2 presents a continuous version of a the Two 
Peaks coordination game, where the x and y axes represent the 
continuous range of actions for the two agents, and the z axis 
shows the joint reward. The reward surface has two peaks, 
one lower but spread over a large surface, and the other one 
higher but covering a small area. Because an agent's strategy 
space is continuous over [0,1], we discretized it into increas­
ingly difficult sets of 8, 16, 32, 64 or 128 strategies. The 
discretizations result in slightly different optimal values. 

5 Results 
Tables 2-4 present the proportion (out of 100 runs) that con­
verged to the global optimum, plus the mean fitness of the 
best individuals in the runs. MSR individuals were consid­
ered optimal if and only if the optimal strategy held over 50 
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Table 4: Proportion of runs that converged to global optimum 
and average best individual fitness, Two Peaks Domain 

Figure 3: Distance from best-of-generation individuals to op­
timal strategy for the 8 actions Two Peaks domain using SC 
(top) and BC (bottom). 

percent of the distribution (in fact, most optimal MSR indi­
viduals had over 90 percent). 

Biased coevolution consistently found the global optima 
as often as, or more often than, standard coevolution. The 
only times where standard coevolution held its own was in 
the Climbing and Penalty domains, where PSR individuals 
found the optimum 100% of the time, as well as in the harder 
Two Peaks domain, where no MSR individuals found the op­
timum. For those problems when individuals found the op­
timum less than 100% of the time, we also compared dif­
ferences in mean best fitness of a run, using a two-factor 
ANOVA with repetitions, factored over the method used and 
the problem domain. 

The ANOVA results allow us to state with 95% confi­
dence that biased coevolution is better than simple coevolu­
tion when MSR is used in the Climbing domain, and also 
in the Two Peaks domain when PSR is used; the tests give 
only a 90% confidence for stating that BC+MSR is better than 
SC+MSR in the Penalty domain. 

In order to better understand what happens when using 
MSR in the Two Peaks domains, we plotted the average eu-
clidian distance from the best individual per generation to the 
known global optima (Figures 3 and 4). The graphs present 
the 95% confidence interval for the mean of the fitnesses. In­
vestigations showed that SC converged to suboptimal interac­
tions (the lower, wider peak in Figure 2) in all cases. On the 
other hand, the trajectories of the search process are radically 
different when using BC. Let's take a closer look as to why 
this might be so. 

As we learned from our discussion surrounding Figure 1, 

200 300 
Generations 

Figure 4: Distance from best-of-generation individuals to op­
timal strategy for the 32 actions Two Peaks domain using SC 
(top) and BC (bottom). 

successful applications of this biasing method are tied to suc­
cessfully determining the appropriate degree of bias to apply. 
Due to MSR's increased difficulty, it may be more challeng­
ing to find an appropriate balance for the bias. Figure 3 sug­
gests exactly this. Notice that, in the early part of the run 
(when 8 is strong), the algorithm tends towards the optimal 
solution; however, as the bias is reduced, it becomes over­
whelmed and the trajectories are eventually drawn toward the 
suboptimal local attractor. Moreover, as the problem becomes 
larger (i.e., Figure 4, as well as others not shown), this failure 
occurs earlier in the run. This suggests more careful attention 
is needed to set the parameters and to adjust the bias rate when 
using MSR versus PSR. Indeed, by running longer and allow­
ing for more interactions during evaluation, we were able to 
obtain convergence to the global optimum when using MSR 
(not shown). 

6 Conclusions and Future Work 
Although cooperative coevolution has been successfully ap­
plied to the task of learning multiagent behaviors, as re­
search about these algorithms advances, it becomes increas­
ingly clear that these algorithms may favor stability over opti-
mality for some problem domains. In this paper, we develop 
a very simple idea: improve coevolution through the use of 
a maximum reward bias. We introduce a theoretical justifi­
cation for the idea, then present experimental evidence that 
confirms that biasing coevolution can yield significantly bet­
ter results than standard coevolution when searching for op­
timal collaborations. Our work further reveals that domain 
features greatly influence the levels of biasing necessary for 
convergence to optima: for some problems the performance 
changes slowly when the level of bias is modified, while for 
other domains there is a rapid degradation in results. This 
suggests that, while adding some kind of maximum reward 
bias can be helpful, there is still work to be done in under­
standing how best to apply this bias in different problem do­
mains. 

Our initial experimental results in this paper suggest that 
it is effective to use a history as an approximation to the true 
maximal collaborative reward for a given strategy. For future 
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work we intend to extend these experiments to problem do­
mains with search spaces much larger than the ones used in 
these experiments. In such domains, the number of strate­
gies may be very large, even infinite. Keeping an effective 
history of strategies may thus be infeasible in certain circum­
stances; we intend to explore ways to sample the space or 
cache the most significant strategy results. Repeated games, 
such as the Iterated Prisoner's Dilemma, or stochastic games, 
may also require different approaches to biasing coevolution. 
Understanding these issues, we hope, can lead to significant 
improvements in cooperative revolution's effectiveness as a 
multi-agent optimization technique. 
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