
Approximating Game-Theoretic Optimal Strategies for Full-scale Poker 

D. Billings, N. Burch, A. Davidson, R. Holte, J. Schaeffer, T. Schauenberg, and D. Szafron 
Department of Computing Science, University of Alberta 

Edmonton, Alberta, T6G 2E8, Canada 
Email: {darse,burch,davidson,holte,jonathan,terence,duane}@cs.ualberta.ca 

Abstract 

The computation of the first complete approxima­
tions of game-theoretic optimal strategies for full-
scale poker is addressed. Several abstraction tech­
niques are combined to represent the game of 2-
player Texas Hold'em, having size O(1018), using 
closely related models each having size 0(1O7). 
Despite the reduction in size by a factor of 100 
billion, the resulting models retain the key prop­
erties and structure of the real game. Linear pro­
gramming solutions to the abstracted game are used 
to create substantially improved poker-playing pro­
grams, able to defeat strong human players and be 
competitive against world-class opponents. 

1 Introduction 
Mathematical game theory was introduced by John von Neu­
mann in the 1940s, and has since become one of the founda­
tions of modern economics [von Neumann and Morgenstern, 
19441. Von Neumann used the game of poker as a basic 
model for 2-player zero-sum adversarial games, and proved 
the first fundamental result, the famous minimax theorem. A 
few years later, John Nash added results for iV-player non-
cooperative games, for which he later won the Nobel Prize 
[Nash, 1950]. Many decision problems can be modeled using 
game theory, and it has been employed in a wide variety of 
domains in recent years. 

Of particular interest is the existence of optimal solutions, 
or Nash equilibria. An optimal solution provides a random­
ized mixed strategy, basically a recipe of how to play in each 
possible situation. Using this strategy ensures that an agent 
will obtain at least the game-theoretic value of the game, re­
gardless of the opponent's strategy. Unfortunately, finding 
exact optimal solutions is limited to relatively small problem 
sizes, and is not practical for most real domains. 

This paper explores the use of highly abstracted mathemat­
ical models which capture the most essential properties of the 
real domain, such that an exact solution to the smaller prob­
lem provides a useful approximation of an optimal strategy 
for the real domain. The application domain used is the game 
of poker, specifically Texas Hold'em, the most popular form 
of casino poker and the poker variant used to determine the 
world champion at the annual World Series of Poker. 

Due to the computational limitations involved, only simpli­
fied poker variations have been solved in the past (e.g. [Kuhn, 
1950; Sakaguchi and Sakai, 19921). While these are of the­
oretical interest, the same methods are not feasible for real 
games, which are too large by many orders of magnitude 
([Roller and Pfeffer, 1997J). 

[Shi and Littman, 2001] investigated abstraction tech­
niques to reduce the large search space and complexity of the 
problem, using a simplified variant of poker. [Takusagawa, 
2000] created near-optimal strategies for the play of three 
specific Hold'em flops and betting sequences. [Selby, 1999] 
computed an optimal solution for the abbreviated game of 
pre flop Hold1 em. 

Using new abstraction techniques, we have produced vi­
able "pseudo-optimal" strategies for the game of 2-player 
Texas Hold'em. The resulting poker-playing programs have 
demonstrated a tremendous improvement in performance. 
Whereas the previous best poker programs were easily beaten 
by any competent human player, the new programs are capa­
ble of defeating very strong players, and can hold their own 
against world-class opposition. 

Although some domain-specific knowledge is an asset in 
creating accurate reduced-scale models, analogous methods 
can be developed for many other imperfect information do­
mains and generalized game trees. We describe a general 
method of problem reformulation that permits the indepen­
dent solution of sub-trees by estimating the conditional prob­
abilities needed as input for each computation. 

This paper makes the following contributions: 

1. Abstraction techniques that can reduce an O(1018) 
poker search space to a manageable 0(1O7), without 
losing the most important properties of the game. 

2. A poker-playing program that is a major improvement 
over previous efforts, and is capable of competing with 
world-class opposition. 

2 Game Theory 
Game theory encompasses all forms of competition between 
two or more agents. Unlike chess or checkers, poker is a 
game of imperfect information and chance outcomes. It can 
be represented with an imperfect information game tree hav­
ing chance nodes and decision nodes, which are grouped into 
information sets. 

MULTIAGENT SYSTEMS 661 



Since the nodes in this tree are not independent, divide-
and-conquer methods for computing sub-trees (such as the 
alpha-beta algorithm) are not applicable. For a more detailed 
description of imperfect information game tree structure, see 
[Koller and Megiddo, 1992]. 

A strategy is a set of Riles for choosing an action at ev­
ery decision node of the tree. In general, this will be a ran­
domized mixed strategy, which is a probability distribution 
over the various alternatives. A player must use the same pol­
icy across all nodes in the same information set, since from 
that player's perspective they are indistinguishable from each 
other (differing only in the hidden information component). 

The conventional method for solving such a problem is to 
convert the descriptive representation, or extensive form, into 
a system of linear equations, which is then solved by a lin­
ear programming (LP) system such as the Simplex algorithm. 
The optimal solutions are computed simultaneously for all 
players, ensuring the best worst-case outcome for each player. 

Traditionally, the conversion to normal form was accom­
panied by an exponential blow-up in the size of the prob­
lem, meaning that only very small problem instances could 
be solved in practice. [Roller et ai, 1994] described an alter­
nate LP representation, called sequence form, which exploits 
the common property of perfect recall (wherein all players 
know the preceding history of the game), to obtain a system 
of equations and unknowns that is only linear in the size of 
the game tree. This exponential reduction in representation 
has re-opened the possibility of using game-theoretic analy­
sis for many domains. However, since the game tree itself 
can be very large, the LP solution method is still limited to 
moderate problem sizes (normally less than a billion nodes). 

3 Texas HolcTem 
A game (or hand) of Texas Hold'em consists of four stages, 
each followed by a round of betting: 

Preflop: Each player is dealt two private cards face down 
(the hole cards). 

Flop: Three community cards (shared by all players) are 
dealt face up. 

T\irn: A single community card is dealt face up. 
River: A final community card is dealt face up. 
After the betting, all active players reveal their hole cards 

for the showdown. The player with the best five-card poker 
hand formed from their two private cards and the five public 
cards wins all the money wagered (ties are possible). 

The game starts off with two forced bets (the blinds) put 
into the pot. When it is a player's turn to act, they must ei­
ther bet/raise (increase their investment in the pot), check/call 
(match what the opponent has bet or raised), or fold (quit and 
surrender all money contributed to the pot). 

The best-known non-commercial Texas Hold'em program 
is Poki. It has been playing online since 1997 and has earned 
an impressive winning record, albeit against generally weak 
opposition [Billings et al.y 2002]. The system's abilities 
are based on enumeration and simulation techniques, expert 
knowledge, and opponent modeling. The program's weak­
nesses are easily exploited by strong players, especially in 
the 2-player game. 

Texas 
Hold'em 
0(1018) 

Figure 1: Branching factors for Hold'em and abstractions. 

4 Abstractions 
Texas Hold'em has an easily identifiable structure, alternat­
ing between chance nodes and betting rounds in four distinct 
stages. A high-level view of the imperfect information game 
tree is shown in Figure 1. 

Hold'em can be reformulated to produce similar but much 
smaller games. The objective is to reduce the scale of the 
problem without severely altering the fundamental structure 
of the game, or the resulting optimal strategies. There are 
many ways of doing this, varying in the overall reduction and 
in the accuracy of the resulting approximation. 

Some of the most accurate abstractions include suit equiv­
alence isomorphisms (offering a reduction of at most a factor 
of 4! = 24), rank equivalence (only under certain conditions), 
and rank near-equivalence. The optimal solutions to these ab­
stracted problems will either be exactly the same or will have 
a small bounded error, which we refer to as near-optimal so­
lutions. Unfortunately, the abstractions which produce an ex­
act or near-exact reformulation do not produce the very large 
reductions required to make full-scale poker tractable. 

A common method for controlling the game size is deck 
reduction. Using less than the standard 52-card deck greatly 
reduces the branching factor at chance nodes. Other methods 
include reducing the number of cards in a player's hand (e.g. 
from a 2-card hand to a 1-card hand), and reducing the num­
ber of board cards (e.g. a 1-card flop), as was done by IShi 
and Littman, 2001] for the game of Rhode Island Hold'em. 
[Koller and Pfeffer, 1997] used such parameters to generate a 
wide variety of tractable games to solve with their Gala sys­
tem. 

We have used a number of small and intermediate sized 
games, ranging from eight cards (two suits, four ranks) to 24 
cards (three suits, eight ranks) for the purpose of studying 
abstraction methods, comparing the results with known exact 
or near-optimal solutions. However, these smaller games are 
not suitable for use as an approximation for Texas Hold'em, 
as the underlying structures of the games are different. To 
produce good playing strategies for full-scale poker, we look 
for abstractions of the real game which do not alter that basic 

662 MULTIAGENT SYSTEMS 



structure. 
The abstraction techniques used in practice are powerful 

in terms of reducing the problem size, and subsume those 
previously mentioned. However, since they are also much 
cruder, we call their solutions pseudo-optimal, to emphasize 
that there is no guarantee that the resulting approximations 
will be accurate, or even reasonable. Some will be low-risk 
propositions, while others will require empirical testing to de­
termine if they have merit. 

4.1 Betting round reduction 
The standard rules of limit Hold'em allow for a maximum of 
four bets per player per round.l Thus in 2-player limit poker 
there are 19 possible betting sequences, of which two do not 
occur in practice.2 Of the remaining 17 sequences, 8 end in a 
fold (leading to a terminal node in the game tree), and 9 end 
in a call (carrying forward to the next chance node). Using 

and capital letters for the second player, the tree of possible 
betting sequences for each round is: 

We call this local collection of decision nodes a betting 
tree, and represent it diagramatically with a triangle. 

With betting round reduction, each player is allowed a 
maximum of three bets per round, thereby eliminating the last 
two sequences in each line. The effective branching factor of 
the betting tree is reduced from nine to seven. This does not 
appear to have a substantial effect on play, or on the expected 
value (EV) for each player. This observation has been verified 
experimentally. In contrast, we computed the corresponding 
postflop models with a maximum of two bets per player per 
round, and found radical changes to the optimal strategies, 
strongly suggesting that that level of abstraction is not safe. 

4.2 Elimination of betting rounds 
Large reductions in the size of a poker game tree can be ob­
tained by elimination of betting rounds. There are several 
ways to do this, and they generally have a significant impact 
on the nature of the game. First, the game may be truncated, 
by eliminating the last round or rounds. In Hold'em, ignor­
ing the last board card and the final betting round produces a 
3-round model of the actual 4-round game. The solution to 
the 3-round model loses some of the subtlety involved in the 
true optimal strategy, but the degradation applies primarily to 
advanced tactics on the turn. There is a smaller effect on the 
flop strategy, and the strategy for the first betting round may 
have no significant changes, since it incorporates all the out­
comes of two future betting rounds. We use this particular 
abstraction to define an appropriate strategy for play in the 
first round, and thus call it a preflop model (see Figure 2). 

'Some rules allow unlimited raises when only two players arc 
involved. However, occasions with more than three legitimate raises 
are relatively rare, and do not greatly alter an optimal strategy. 

technically, a player may fold even though there is no outstand­
ing bet. This is logically dominated by not folding, and therefore 
does not occur in an optimal strategy, and is almost never seen in 
practice. 

The effect of truncation can be lessened through the use 
of expected value leaf nodes. Instead of ending the game 
abruptly and awarding the pot to the strongest hand at that 
moment, we compute an average conclusion over all possible 
chance outcomes. For a 3-round model ending on the turn, 
we roll-out all 44 possible river cards, assuming no further 
betting (or alternately, assuming one bet per player for the 
last round). Each player is awarded a fraction of the pot, cor­
responding to their probability of winning the hand. In a 2-
round preflop model, we roll-out all 990 2-card combinations 
of the turn and river. 

The most extreme form of truncation results in a 1 -round 
model, with no foresight of future betting rounds. Since each 
future round provides a refinement to the approximation, this 
will not reflect a correct strategy for the real game. In par­
ticular, betting plans that extend over more than one round, 
such as deferring the raise of a very strong hand, are lost 
entirely. Nevertheless, even these simplistic models can be 
useful when combined with expected value leaf nodes. 

Alex Selby computed an optimal solution for the game of 
preflop Hold'em, which consists of only the first betting round 
followed by an EV roll-out of the five board cards to deter­
mine the winner [Selby, 1999]. Although there are some se­
rious limitations in the strategy based on this 1-round model, 
we have incorporated the Selby preflop system into one of our 
programs, PsOptil, as described later in this section. 

In contrast to truncating rounds, we can bypass certain 
early stages of the game. We frequently use postflop mod­
els, which ignore the preflop betting round, and use a single 
fixed flop of three cards (sec Figure 1). 

It is natural to consider the idea of independent betting 
rounds, where each phase of the game is treated in isolation. 
Unfortunately, the betting history from previous rounds will 
almost always contain contextual information that is critical 
to making appropriate decisions. The probability distribution 
over the hands for each player is strongly dependent on the 
path that led to that decision point, so it cannot be ignored 
without risking a considerable loss of information. However, 
the naive independence assumption can be viable in certain 
circumstances, and we do implicitly use it in the design of 
PsOptil to bridge the gap between the 1-round preflop model 
and the 3-round postflop model. 

Another possible abstraction we explored was merging two 
or more rounds into a single round, such as creating a com­
bined 2-card turn/river. However, it is not clear what the ap­
propriate bet size should be for this composite round. In any 
case, the solutions for these models (over a full range of possi­
ble bet sizes), all turned out to be substantially different from 
their 3-round counterparts, and the method was therefore re­
jected. 

4.3 Composition of preflop and postflop models 

Although the nodes of an imperfect information game tree are 
not independent in general, some decomposition is possible. 
For example, the sub-trees resulting from different preflop 
betting sequences can no longer have nodes that belong to the 

MULTIAGENT SYSTEMS 663 



same information set.3 The sub-trees for our postflop models 
can be computed in isolation, provided that the appropriate 
preconditions are given as input. Unfortunately, knowing the 
correct conditional probabilities would normally entail solv­
ing the whole game, so there would be no advantage to the 
decomposition. 

For simple postflop models, we dispense with the prior 
probabilities. For the postflop models used in PsOptiO and 
PsOptil, we simply ignore the implications of the preflop 
betting actions, and assume a uniform distribution over all 
possible hands for each player. Different postflop solutions 
were computed for initial pot sizes of two, four, six, and eight 
bets (corresponding to preflop sequences with zero, one, two, 
or three raises, but ignoring which player initially made each 
raise). In PsOptil, the four postflop solutions are simply ap­
pended to the Selby preflop strategy (Figure 2). Although 
these simplifying assumptions are technically wrong, the re­
sulting play is still surprisingly effective. 

A better way to compose postflop models is to estimate 
the conditional probabilities, using the solution to a preflop 
model. With a tractable preflop model, we have a means of 
estimating an appropriate strategy at the root, and thereby de­
termine the consequent probability distributions. 

In PsOptil, a 3-round preflop model was designed and 
solved. The resulting pseudo-optimal strategy for the pre­
flop (which was significantly different from the Selby strat­
egy) was used to determine the corresponding distribution of 
hands for each player in each context. This provided the nec­
essary input parameters for each of the seven preflop betting 
sequences that carry over to the flop stage. Since each of 
these postflop models has been given (an approximation of) 
the perfect recall knowledge of the full game, they are fully 
compatible with each other, and are properly integrated un­
der the umbrella of the preflop model (Figure 2). In theory, 
this should be equivalent to computing the much larger tree, 
but it is limited by the accuracy and appropriateness of the 
proposed preflop betting model. 

4.4 Abstract ion by bucket ing 
The most important method of abstraction for the computa­
tion of our pseudo-optimal strategies is called bucketing. This 
is an extension of the natural and intuitive concept that has 
been applied many times in previous research (e.g. [Sklansky 
and Malmuth, 1994] [Takusagawa, 2000] iShi and Littman, 
2001]). The set of all possible hands is partitioned into equiv­
alence classes (also called buckets or bins). A many-to-one 
mapping function determines which hands will be grouped 
together. Ideally, the hands should be grouped according to 
strategic similarity, meaning that they can all be played in a 
similar manner without much loss in EV. 

If every hand was played with a particular pure strategy 
(ie. only one of the available choices), then a perfect mapping 
function would group all hands that follow the same plan, and 

3To see this, each decision node of the tree can be labeled with 
all the cards known to that player, and the full path that led to that 
node. Nodes with identical labels differ only in the hidden informa­
tion, and are therefore in the same information set. Since the betting 
history is different for these sub-trees, none of the nodes are inter­
dependent. 

Preflop 

Flop 

Turn 

River 

PsOptil 

Bet 

Figure 2: Composition of PsOptil and PsOptil. 

17 equivalence classes for each player would be sufficient for 
each betting round. However, since a mixed strategy may be 
indicated for optimal play in some cases, we would like to 
group hands that have a similar probability distribution over 
action plans. 

One obvious but rather crude bucketing function is to group 
all hands according to strength (ie. its rank with respect to all 
possible hands, or the probability of currently being in the 
lead). This can be improved by considering the roll-out of all 
future cards, giving an (unweighted) estimate of the chance 
of winning the hand. 

However, this is only a one-dimensional view of hand 
types, in what can be considered to be an iV-dimensional 
space of strategies, with a vast number of different ways 
to classify them. A superior practical method would be to 
project the set of all hands onto a two-dimensional space con­
sisting of (roll-out) hand strength and hand potential (sim­
ilar to the hand assessment used in Poki, [Billings et al, 
2002]). Clusters in the resulting scattergram suggest reason­
able groups of hands to be treated similarly. 

We eventually settled on a simple compromise. With n 
available buckets, we allocate n - 1 to roll-out hand strength. 
The number of hand types in each class is not uniform; the 
classes for the strongest hands are smaller than those for 
mediocre and weak hands, allowing for better discrimination 
of the smaller fractions of hands that should be raised or re­
raised. 

One special bucket is designated for hands that are low in 
strength but have high potential, such as good draws to a flush 
or straight. This plays an important role in identifying good 
hands to use for bluffing (known as semi-bluffs in [Sklansky 
and Malmuth, 1994]). Comparing postflop solutions that use 
six strength buckets to solutions with five strength plus one 
high-potential bucket, we see that most bluffs in the latter are 
taken from the special bucket, which is sometimes played in 
the same way as the strongest bucket. This confirmed our 
expectations that the high-potential bucket would improve the 
selection of hands for various betting tactics, and increase the 
overall EV. 

664 MULTIAGENT SYSTEMS 



Original 
Bucketing 

Figure 3: Transition probabilities (six buckets per player). 

The number of buckets that can be used in conjunction with 
a 3-round model is very small, typically six or seven for each 
player (ie. 36 or 49 pairs of bucket assignments). Obviously 
this results in a very coarse-grained abstract game, but it may 
not be substantially different from the number of distinctions 
an average human player might make. Regardless, it is the 
best we can currently do given the computational constraints 
of this approach. 

The final thing needed to sever the abstract game from the 
underlying real game tree are the transition probabilities. The 
chance node between the flop and turn represents a particular 
card being dealt from the remaining stock of 45 cards. In the 
abstract game, there are no cards, only buckets. The effect of 
the turn card in the abstract game is to dictate the probability 
of moving from one pair of buckets on the flop to any pair of 
buckets on the turn. Thus the collection of chance nodes in 
the game tree is represented by an (n x n) to (n x n) tran­
sition network as shown in Figure 3. For postflop models, 
this can be estimated by walking the entire tree, enumerating 
all transitions for a small number of characteristic flops. For 
preflop models, the full enumeration is more expensive (en­
compassing all {48 choose 3} = 17296 possible flops), so it 
is estimated either by sampling, or by (parallel) enumeration 
of a truncated tree. 

For a 3-round postflop model, we can comfortably solve 
abstract games with up to seven buckets for each player in 
each round. Changing the distribution of buckets, such as six 
for the flop, seven for the turn, and eight for the river, does 
not appear to significantly affect the quality of the solutions, 
better or worse. 

The final linear programming solution produces a large ta­
ble of mixed strategies (probabilities for fold, call, or raise) 
for every reachable scenario in the abstract game. To use this, 
the poker-playing program looks for the corresponding situa­
tion based on the same hand strength and potential measures, 
and randomly selects an action from the mixed strategy. 

The large LP computations typically take less than a day 
(using CPLEX with the barrier method), and use up to two 
Gigabytes of RAM. Larger problems will exceed available 
memory, which is common for large LP systems. Certain 
LP techniques such as constraint generation could potentially 
extend the range of solvable instances considerably, but this 
would probably only allow the use of one or two additional 
buckets per player. 

5 Experiments 
5.1 Testing against computer players 

A series of matches between computer programs was con­
ducted, with the results shown in Table 1. Win rates are mea­
sured in small bets per hand (sb/h). Each match was run for at 
least 20,000 games (and over 100,000 games in some cases). 
The variance per game depends greatly on the styles of the 
two players involved, but is typically +/- 6 sb. The standard 
deviation for each match outcome is not shown, but is nor­
mally less than +/- 0.03 sb/h. 

The "bot players" were: 
PsOptil, composed of a hand-crafted 3-round preflop 

model, providing conditional probability distributions to each 
of seven 3-round postflop models (Figure 2). Al l models in 
this prototype used six buckets per player per round. 

PsOptil, composed of four 3-round postflop models un­
der the naive uniform distribution assumption, with 7 buck­
ets per player per round. Selby's optimal solution fox preflop 
Hold'em is used to play the preflop ([Selby, 1999]). 

PsOptiO, composed of a single 3-round postflop model, 
wrongly assuming uniform distributions and an initial pot size 
of two bets, with seven buckets per player per round. This 
program used an always-call policy for the preflop betting 
round. 

Poki, the University of Alberta poker program. This older 
version of Poki was not designed to play the 2-player game, 
and can be defeated rather easily, but is a useful benchmark. 

Anti-Poki, a rule-based program designed to beat Poki by 
exploiting its weaknesses and vulnerabilities in the 2-player 
game. Any specific counter-strategy can be even more vul­
nerable to adaptive players. 

Aadapti, a relatively simple adaptive player, capable of 
slowly learning and exploiting persistent patterns in play. 

Always Call, very weak benchmark strategy. 
Always Raise, very weak benchmark strategy. 
It is important to understand that a game-theoretic optimal 

player is, in principle, not designed to win. Its purpose is to 
not lose. An implicit assumption is that the opponent is also 
playing optimally, and nothing can be gained by observing 
the opponent for patterns or weaknesses. 

In a simple game like RoShamBo (also known as Rock-
Paper-Scissors), playing the optimal strategy ensures a break­
even result, regardless of what the opponent does, and is 
therefore insufficient to defeat weak opponents, or to win a 
tournament ([Billings, 2000]). Poker is more complex, and 
in theory an optimal player can win, but only if the oppo­
nent makes dominated errors. Any time a player makes any 
choice that is part of a randomized mixed strategy of some 
game-theoretic optimal policy, that decision is not dominated. 
In other words, it is possible to play in a highly sub-optimal 
manner, but still break even against an optimal player, be­
cause those choices are not strictly dominated. 

Since the pseudo-optimal strategies do no opponent model­
ing, there is no guarantee that they wil l be especially effective 
against very bad or highly predictable players. They must rely 
only on these fundamental strategic errors, and the margin of 
victory might be relatively modest as a result. 

MULTIAGENT SYSTEMS 665 

Transition 
Probabilities 

Next Round 
Bucketing 



Table 1: Computer v.v computer matches (sb/h). 

The critical question is whether such errors are common in 
practice. There is no definitive answer to this question yet, 
but preliminary evidence suggests that dominated errors oc­
cur often enough to gain a measurable EV advantage over 
weaker players, but may not be very common in the play of 
very good players. 

The first tests of the viability of pseudo-optimal solutions 
were done with PsOptiO playing postflop Hold'em, where 
both players agree to simply call in the preflop (thereby 
matching the exact pre-conditions for the postflop solution). 
In those preliminary tests, a poker master (the first author) 
played more than 2000 hands, and was 'inable to defeat the 
pseudo-optimal strategy. In contrast, Poki had been beaten 
consistently at a rate of over 0.8 sb/h (which is more than 
would be lost by simply folding every hand). 

Using the same no-bet preflop policy, PsOptiO was able to 
defeat Poki at a rate of+0.144 sb/h (compared to +0.001 sb/h 
for the full game including preflop), and defeated Aadapti at 
+0.410 sb/h (compared to +0.163 sb/h for the full game). 

All of the pseudo-optimal players play substantially bet­
ter than any previously existing computer programs. Even 
PsOptiO, which is not designed to play the full game, earns 
enough from the postflop betting rounds to offset the EV 
losses from the preflop round (where it never raises good 
hands, nor folds bad ones). 

It is suspicious that PsOptil outperformed PsOptil, which 
in principle should be a better approximation. Subsequent 
analysis of the play of PsOptil revealed some programming 
errors, and also suggested that the bucket assignments for the 
preflop model were flawed. This may have resulted in an in­
accurate pseudo-optimal preflop strategy, and consequent im­
balances in the prior distributions used as input for the post-
flop models. We expect that this will be rectified in future 
versions, and that the PsOptil design will surpass PsOptil in 
performance. 

5.2 Testing against human players 
While these results are encouraging, none of the non-pseudo-
optimal computer opponents are better than intermediate 
strength at 2-player Texas Hold'em. Therefore, matches were 
conducted against human opponents. 

More than 100 participants volunteered to play against the 
pseudo-optimal players on our public web applet (www. cs . 
u a l b e r t a . c a / " 'games/poker/) , including many expe­
rienced players, a few masters, and one world-class player. 
The programs provided some fun opposition, and ended up 
with a winning record overall. The results are summa-

Table 3: Human vs PsOptil matches. 

rized in Table 2 and Table 3. (Master-1 is the first author, 
Experienced-1 is the third author). 

In most cases, the relatively short length of the match 
leaves a high degree of uncertainty in the outcome, limit­
ing how much can be safely concluded. Nevertheless, some 
players did appear to have a definite edge, while others were 
clearly losing. 

A number of interesting observations were made over the 
course of these games. It was obvious that most people had a 
lot of difficulty learning and adjusting to the computer's style 
of play. In poker, knowing the basic approach of the oppo­
nent is essential, since it will dictate how to properly handle 
many situations that arise. Some players wrongly attributed 
intelligence where none was present. After losing a 1000-
game match, one experienced player commented "the bot has 

666 MULTIAGENT SYSTEMS 



Hand6 Played 

Figure 4: Progress of the "thecount" vs PsOptiJ 

mc figured out now", indicating that its opponent model was 
accurate, when in fact the pseudo-optimal player is oblivious 
and does no modeling at all. 

It was also evident that these programs do considerably 
better in practice than might be expected, due to the emo­
tional frailty of their human opponents. Many players com­
mented that playing against the pseudo-optimal opponent was 
an exasperating experience. The bot routinely makes uncon­
ventional plays that confuse and confound humans. Invari­
ably, some of these "bizarre" plays happen to coincide with a 
lucky escape, and several of these bad beats in quick succes­
sion will often cause strong emotional reactions (sometimes 
referred to as "going on tilt"). The level of play generally 
goes down sharply in these circumstances. 

This suggests that a perfect game-theoretic optimal poker 
player could perhaps beat even the best humans in the long 
run, because any EV lost in moments of weakness would 
never be regained. However, the win rate for such a program 
could still be quite small, giving it only a slight advantage. 
Thus it would be unable to exert its superiority convincingly 
over the short term, such as the few hundred hands of one 
session, or over the course of a world championship tourna­
ment. Since even the best human players arc known to have 
biases and weaknesses, opponent modeling wil l almost cer­
tainly be necessary to produce a program that surpasses all 
human players. 

5.3 Testing against a world-class player 
The elite poker expert was Gautam Rao, who is known as 
"thecount" or "CountDracula" in the world of popular online 
poker rooms. Mr. Rao is the #1 all-time winner in the history 
of the oldest online game, by an enormous margin over all 
other players, both in total earnings and in dollar-per-hand 
rate. His particular specialty is in short-handed games with 
five or fewer players. He is recognized as one of the best 
players in the world in these games, and is also exceptional 
at 2-player Hold'em. Like many top-flight players, he has a 
dynamic ultra-aggressive style. 

Mr. Rao agreed to play an exhibition match against 

PsOptil, playing more than 7000 hands over the course of 
several days. The graph in Figure 4 shows the progression of 
the match. 

The pseudo-optimal player started with some good fortune, 
but lost at a rate of about -0.2 sb/h over the next 2000 hands. 
Then there was a sudden reversal, following a series of for­
tuitous outcomes for the program. Although "thecount" is 
renown for his mental toughness, an uncommon run of bad 
luck can be very frustrating even for the most experienced 
players. Mr. Rao believes he played below his best level dur­
ing that stage, which contributed to a dramatic drop where he 
lost 300 sb in less than 400 hands. Mr. Rao resumed play the 
following day, but was unable to recover the losses, slipping 
further to -200 sb after 3700 hands. At this point he stopped 
play and did a careful reassessment. 

It was clear that his normal style for maximizing income 
against typical human opponents was not effective against the 
pseudo-optimal player. Whereas human players would nor­
mally succumb to a lot of pressure from aggressive betting, 
the bot was willing to call all the way to the showdown with 
as little as a Jack or Queen high card. That kind of play would 
be folly against most opponents, but is appropriate against an 
extremely aggressive opponent. Most human players fail to 
make the necessary adjustment under these atypical condi­
tions, but the program has no sense of fear. 

Mr. Rao changed his approach to be less aggressive, with 
immediate rewards, as shown by the +600 sb increase over 
the next 1100 hands (some of which he credited to a good run 
of cards). Mr. Rao was able to utilize his knowledge that the 
computer player did not do any opponent modeling. Knowing 
this allows a human player to systematically probe for weak­
nesses, without any fear of being punished for playing in a 
methodical and highly predictable manner, since an oblivious 
opponent does not exploit those patterns and biases. 

Although he enjoyed much more success in the match from 
that point forward, there were still some "adventures", such as 
the sharp decline at 5400 hands. Poker is a game of very high 
variance, especially between two opponents with sharp styles, 
as can be seen by the dramatic swings over the course of this 
match. Although 7000 games may seem like a lot, Mr. Rao's 
victory in this match was still not statistically conclusive. 

We now believe that a human poker master can eventu­
ally gain a sizable advantage over these pseudo-optimal pro­
totypes (perhaps -1-0.20 sb/h or more is sustainable). However, 
it requires a good understanding of the design of the program 
and its resulting weaknesses. That knowledge is difficult to 
learn during normal play, due to the good information hiding 
provided by an appropriate mixture of plans and tactics. This 
"cloud of confusion" is a natural barrier to opponent learning. 
It would be even more difficult to learn against an adaptive 
program with good opponent modeling, since any methodical 
testing by the human would be easily exploited. This is in 
stark contrast to typical human opponents, who can often be 
accurately modeled after only a small number of hands. 

6 Conclusions and Future Work 
The pseudo-optimal players presented in this paper are the 
first complete approximations of a game-theoretic optimal 
strategy for a full-scale variation of real poker. 

MULTIAGENT SYSTEMS 667 



Several abstraction techniques were explored, resulting in 
the reasonably accurate representation of a large imperfect 
information game tree having O(1018) nodes with a small 
collection of models of size O(107). Despite these massive 
reductions and simplifications, the resulting programs play 
respectably. For the first time ever, computer programs are 
not completely outclassed by strong human opposition in the 
game of 2-player Texas Hold'em. 

Useful abstractions included betting tree reductions, trun­
cation of betting rounds combined with EV leaf nodes, and 
bypassing betting rounds. A 3-round model anchored at 
the root provided a pseudo-optimal strategy for the preflop 
round, which in turn provided the proper contextual informa­
tion needed to determine conditional probabilities for post-
flop models. The most powerful abstractions for reducing the 
problem size were based on bucketing, a method for parti­
tioning all possible holdings according to strategic similarity. 
Although these methods exploit the particular structure of the 
Texas Hold'em game tree, the principles are general enough 
to be applied to a wide variety of imperfect information do­
mains. 

Many refinements and improvements will be made to the 
basic techniques in the coming months. Further testing will 
also continue, since accurate assessment in a high variance 
domain is always difficult. 

The next stage of the research will be to apply these tech­
niques to obtain approximations of Nash equilibria for TV-
player Texas Hold'em. This promises to be a challenging ex­
tension, since multi-player games have many properties that 
do not exist in the 2-player game. 

Finally, having reasonable approximations of optimal 
strategies does not lessen the importance of good oppo­
nent modeling. Learning against an adaptive adversary in a 
stochastic game is a challenging problem, and there will be 
many ideas to explore in combining the two different forms 
of information. That will likely be the key difference between 
a program that can compete with the best, and a program that 
surpasses all human players. 

Quoting "thecount": 
"You have a very strong program. Once you add 
opponent modeling to it, it will kill everyone."' 

Acknowledgments 
The authors would like to thank Gautam Rao, Sridhar 
Mutyala, and the other poker players for donating their valu­
able time. We also wish to thank Daphne Roller, Michael 
Littman, Matthew Ginsberg, Rich Sutton, David McAllester, 
Mason Malmuth, and David Sklansky for their valuable in­
sights in past discussions. 

This research was supported in part by grants from the Nat­
ural Sciences and Engineering Research Council of Canada 
(NSERC), the Alberta Informatics Circle of Research Excel­
lence (iCORE), and an Izaak Walton Killam Memorial post­
graduate scholarship. 

References 
[Billings et al, 2002] D. Billings, A. Davidson, J. Schaeffer, 

and D. Szafron. The challenge of poker. Artificial Intelli­
gence, 134(l-2):201-240, 2002. 

[Billings, 20001 D. Billings. The first international roshambo 
programming competition. International Computer 
Games Association Journal, 23(l):3-8, 42-50, 2000. 

[Roller and Megiddo, 1992J D. Roller and N. Megiddo. The 
complexity of two-person zero-sum games in extensive 
form. Games and Economic Beh., 4(4):528-552, 1992. 

[Roller and Pfeffer, 1997J D. Roller and A. Pfeffer. Repre­
sentations and solutions for game-theoretic problems. Ar­
tificial Intelligence, pages 167-215, 1997. 

[Roller et«/., 1994J D. Roller, N. Megiddo, and B. von Sten­
gel. Fast algorithms for finding randomized strategies in 
game trees. STOC, pages 750-759, 1994. 

[Ruhn, 1950] H. W. Ruhn. A simplified two-person poker. 
Contributions to the Theory of Games, 1:97-103, 1950. 

iNash, 1950] J. Nash. Equilibrium points in n-person games. 
National Academy of Sciences, 36:48-49, 1950. 

[Sakaguchi and Sakai, 19921 M. Sakaguchi and S. Sakai. 
Solutions of some three-person stud and draw poker. 
Mathematics Japonica, pages 1147-1160, 1992. 

[Selby, 19991 A. Selby. Optimal heads-up preflop poker. 
1999. www.archduke .demon.co .uk /s implex . 

[Shi and Littman, 2001] J. Shi and M. Littman. Abstrac­
tion models for game theoretic poker. In Computers and 
Games, pages 333-345. Springer-Verlag, 2001. 

[Sklansky and Malmuth, 1994] D. Sklansky and M. Mal­
muth. Texas Hold'em for the Advanced Player. Two Plus 
Two Publishing, 2nd edition, 1994. 

[Takusagawa, 2000] R. Takusagawa. Nash equilibrium of 
Texas Hold'em poker, 2000. Undergraduate thesis, Com­
puter Science, Stanford University. 

[von Neumann and Morgenstem, 19441 J. von Neumann and 
O. Morgenstem. Theory of Games and Economic Behav­
ior. Princeton University Press, 1944. 

668 MULTIAGENT SYSTEMS 

http://www.archduke
http://demon.co.uk/simplex

