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Abstract 
In multiagent environments, forms of social learn­
ing such as teaching and imitation have been shown 
to aid the transfer of knowledge from experts to 
learners in reinforcement learning (RL). We re­
cast the problem of imitation in a Bayesian frame-
work. Our Bayesian imitation model allows a 
learner to smoothly pool prior knowledge, data ob­
tained through interaction with the environment, 
and information inferred from observations of ex­
pert agent behaviors. Our model integrates well 
with recent Bayesian exploration techniques, and 
can be readily generalized to new settings. 

1 Introduction 
Reinforcement learning is a flexible, yet computationally 
challenging paradigm. Recent results demonstrating that un­
der certain assumptions the sample complexity of reinforce­
ment learning is polynomial in the number of problem states 
[Kearns and Singh, 1998] are tempered by the sober fact that 
the number of states is generally exponential in the number 
of the attributes defining a learning problem. With recent in-
terest in building interacting autonomous agents, reinforce-
ment learning is increasingly applied to multiagent tasks, a 
development which only adds to the complexity of learning 
[Littman, 1994; Hu and Wellman, 1998]. In this paper, we ex­
amine multi-agent reinforcement learning under the assump­
tion that other agents in the environment are not merely ar­
bitrary actors, but actors "like me". That is, the other agents 
may have similar action capabilities and similar objectives. 
This assumption radically changes the optimal learning strat­
egy. Information about other agents "like me" can give the 
learning agent additional information about its own capabili­
ties and how these capabilities relate to its own objectives. A 
number of techniques have been developed to exploit this, in­
cluding imitation [Demiris and Hayes, 1999; Mataric, 2002], 
learning by watching [Kuniyoshi et al., 1994], teaching or 
programming by demonstration [Atkeson and Schaal, 1997] 
behavioral cloning [Sammut et al., 1992], and inverse rein­
forcement learning [Ng and Russell, 2000]. 

Learning by observation of other agents has intuitive ap­
peal; however, explicit communication about action capabil­
ities between agents requires considerable infrastructure: a 
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communication channel, a sufficiently expressive represen­
tation language, a transformation between possibly different 
agent bodies, and an incentive to communicate. In dynamic, 
competitive domains, such as web-based trading, it is unreal­
istic to expect all agents to be designed with compatible rep­
resentations and altruistic intentions. Observation-based tech­
niques, in which the learning agent observes only the outward 
behaviors of another agent, can reduce the need for explicit 
communication. Implicit communication through passive ob­
servations has been implemented as implicit imitation [Price 
and Boutilier, 1999; 2001]. In this model, the effects of other 
agents' action choices on the state of the environment can be 
observed, but the internal state of other agents and their ac­
tion control signals are not observable. Independent explo­
ration on the part of the observer is used to adapt knowledge 
implicit in observations of other agents to the learning agent's 
own needs. Unlike classic imitation models, the learner is not 
required to explicitly duplicate the behavior of other agents. 

In this paper, we recast implicit imitation in a Bayesian 
framework. This new formulation offers several advantages 
over existing models. First it provides a more principled, 
and more elegant approach to the smooth pooling of infor­
mation from the agent's prior beliefs, its own experience and 
the observations of other agents (e.g., it eliminates the need 
for certain ad hoc tuning parameters in current imitation mod­
els). Second, it integrates well with state-of-the-art explo­
ration techniques, such as Bayesian exploration. Finally, the 
Bayesian imitation model can be extended readily to partially-
observable domains, though the derivation and implementa­
tion are considerably more complex and are not reported here. 

2 Background 
We assume a reinforcement learning (RL) agent is learning to 
control a Markov decision processes (MDP) 
with finite state and action sets S,Ao, reward function 
S R, and dynamics D. The dynamics D refers to a 
set of transition distributions The actions and 
rewards are subscripted to distinguish them from those 
of other agents (see below). We assume throughout that the 
agent knows but not the dynamics D of the MDP (thus 
we adopt the "automatic programming" perspective), and has 
the objective of maximizing discounted reward over an infi­
nite horizon. Any of a number of RL techniques can be used to 
learn an optimal policy We focus here on model-
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based RL methods, in which the observer maintains an esti­
mated MDP based on the set of experiences 

obtained so far. At each stage (or at suitable inter­
vals) this MDP can be solved exactly, or approximately using 
techniques such as prioritized sweeping [Moore and Atkeson, 
1993]. Since R0 is known, we focus on learning dynamics. 

Bayesian methods in model-based RL allow agents to in­
corporate priors and explore optimally. In general, we em­
ploy a prior density P over possible dynamics D, and update it 
with each data point (s, a, t). Letting H0) = 
denote the (current) state history of the observer, and A0 = 

_ be the action history, we use the poste­
rior to update the action Q-values, which are 
used in turn to select actions. The formulation of Dearden 
et al 1999 renders this update tractable by assuming a con­
venient prior: P is the product of local independent densi­
ties for each transition distribution and each den­
sity is a Dirichlet with parameters To model 

we require one parameter for each possible 
successor state . Update of a Dirichlet is straightforward: 
given prior and data vector (where is 
the number of observed transitions from s to t under a), the 
posterior is given by parameters Thus the poste­
rior in Eq. 1 can be factored into posteriors over local families: 

(1) 

where is the subset of history composed of transitions 
from state s due to action a, and the updates themselves are 
simple Dirichlet parameter updates. 

The Bayesian approach has several advantages over other 
approaches to model-based RL. First, it allows the natural in­
corporation of priors over transition and reward parameters. 
Second, approximations to optimal Bayesian exploration can 
take advantage of this approach, and the specific structural as­
sumptions on the prior discussed above [Dearden et al., 1999]. 

3 Bayesian Imitation 
In multiagent settings, observations of other agents can be 
used in addition to prior beliefs and personal experience to 
improve an agent's model of its environment. These obser­
vations can have enormous impact when they provide infor­
mation to an agent about parts of the state space it has not yet 
visited. The information can be used to bias exploration to­
wards the most promising regions of state space and thereby 
reduce exploration costs and speed convergence dramatically. 

The flexibility of the Bayesian formulation leads to an ele­
gant and principled mechanism for incorporating these obser­
vations into the agent's model updates. Following Price and 
Boutilier 1999, we assume two agents, a knowledgeable men­
tor 77i and a naive observer o, acting simultaneously, but in­
dependently, in a fixed environment.1 Like the observer, the 
mentor too is controlling an MDP with the 
same underlying state space and dynamics (that is, for any ac­
tion the dynamics are identical). The assump­
tion that the two agents have the same state space is not criti­
cal: more important is that there is some analogical mapping 

We assume that the agents are performing non-interacting tasks. 
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Figure 1: Dependencies among model and evidence sources 

between the two [Nehaniv and Dautenhahn, 1998]. Wc as­
sume full observability of the mentor's state space; but we do 
not assume the observer can identify the actions taken by the 
mentor—it simply observes state transitions. 

We make two additional assumptions regarding the men­
tor's dynamics: the mentor implements a stationary pol­
icy which induces a Markov chain = 
Pr ; and for each action taken by the mentor, 
there exists an action such that the distributions 

and are the same. This latter assump­
tion is the homogeneous action assumption and implies that 
the observer can duplicate the mentor's policy.2 As a con­
sequence we can treat the dynamics D as the same for both 
agents. Note that we do not assume that the learner knows 
a priori which of its actions duplicates the mentor's (for any 
given state s), nor that the observer wants to duplicate this pol­
icy (as the agents may have different objectives). 

Since the learner can observe the mentor's transitions 
(though not its actions directly), it can form estimates of the 
mentor's Markov chain, along with estimates of its own MDP 
(transition probabilities and reward function). In [Price and 
Boutilier, 1999], this estimate is used to augment the normal 
Bellman backup, treating the observed distribution Pr(s,.) as 
a model of an action available to the observer. Imitators using 
augmented backups based on their observations of a mentor 
often learn much more quickly, especially if the mentor's re­
ward function or parts of its policy overlap with that of the ob­
server. Techniques like interval estimation [Kaelbling, 1993] 
can be used to suppress augmented backups where their value 
has low "confidence." 

In the Bayesian approach, the observer incorporates obser­
vations of the mentor directly into an augmented model of its 
environment. Let Hm denote the history of mentor state tran­
sitions observed by the learner. As above, H0 and A0 repre-
sents the observer's state and action history respectively. Fig-
ure 1 illustrates the sources of information available to the im-
itator with which to constrain its beliefs about Z), and their 
probabilistic dependence. While the observer knows its own 
action history, A0 it has no direct knowledge of the actions 
taken by the mentor: at best it may have (often weak) prior 
knowledge about the mentor's policy The learner's be­
liefs over D can then be updated w.r.t. the joint observations: 

2The homogeneous action assumption can be relaxed [Price and 
Boutilier, 2001]. Essentially, the observer hypothesizes that viola-
tions can be "repaired" using a local search for a short sequence of 
actions that roughly duplicates a short subsequence of the mentor's 
actions. If a repair cannot be found, the observer discards the mentor 
influence (at this point in state space). 
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We assume that the prior P(D) has the factored Dirichlet 
form described above. Without mentor influence, a learner 
can maintain its posterior in the same factored form, updating 
each component of the model P independently. Unfor­
tunately, complications arise due to the unobservability of the 
mentor's actions. We show, however, that the model update 
in Eq. 2 can still be factored into convenient terms. 

We derive a factored update model for P describ­
ing the dynamics at state s under action a by considering two 
cases. In case one, the mentor's unknown action could be 
different than the action a. In this case, the model factor 
would be independent of the mentor's history, and we can em­
ploy the standard Bayesian update Eq. 1 without regard for the 
mentor. In case two, the mentor action is in fact the same 
as the observer's action a. Then the mentor observations are 
relevant to the update of P  

Let be the prior parameter vector for P , and 
denote the counts of observer transitions from state s 

via action a, and the counts of the mentor transitions 
from state s. The posterior augmented model factor density 
P is then a Dirichlet with parame­
ters that is, we simply update with the sum 
of the observer and mentor counts: 

Since the observer does not know the mentor's action we 
compute the expectation w.r.t. these two cases: 

This allows a factored update of the usual conjugate form, but 
where the mentor counts are distributed across all actions, 
weighted by the posterior probability that the mentor's policy 
chooses that action at state  

With a mechanism to calculate the posterior over the men­
tor's policy, Eq. 3 provides a complete factored update rule for 
incorporating evidence from observed mentors by a Bayesian 
model-based RL agent. To tackle this last problem—that of 
updating our beliefs about the mentor's policy—we have: 

If we assume that the prior over the mentor's policy is fac­
tored in the same way as the prior over models—that is, we 

3This assumes that at least one of the observer's actions is equiv­
alent to the mentor's, but our model can be generalized to the het­
erogeneous case. An additional term is required to represent "none 
of the above". 
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have independent distributions over Am for each s— 
this update can be factored as well, with history elements at 
state s being the only ones relevant to computing the posterior 
over , We still have the difficulty of evaluating the in­
tegral over models. Following Dearden et al. 1999, we tackle 
this by sampling models to estimate this quantity. Specif­
ically, we sample models from the factored Dirichlet 
P over P.4 Given a specific sample with 
parameter vector , and observed counts , the likelihood 
of is: 

We can combine the expression for expected model fac­
tor probability in Eq. 3 with our expression for mentor policy 
likelihood in Eq. 5 to obtain a tractable algorithm for updating 
the observer's beliefs about the dynamics model D based on 
its own experience, and observations of the mentor.5. 

A Bayesian imitator thus proceeds as follows. At each 
stage, it observes its own state transition and that of the men­
tor, using each to update its density over models as just de­
scribed. Efficient methods are used to update the agent's value 
function. Using this updated value function, it selects a suit­
able action, executes it, and repeats the cycle. 

Like any RL agent, an imitator requires a suitable explo­
ration mechanism. In the Bayesian exploration model [Dear-
den et al, 1999], the uncertainty about the effects of actions 
is captured by a Dirichlet, and is used to estimate a distribu-
tion over possible Q-values for each state-action pair.6 No-
tions such as value of information can then be used to approx­
imate the optimal exploration policy. This method is compu­
tationally demanding, but total reward including reward cap­
tured during training is usually much better than that provided 
by heuristic techniques. Bayesian exploration also eliminates 
the parameter tuning required by methods like -greedy, and 
adapts locally and instantly to evidence. These facts makes it 
a good candidate to combine with imitation. 

4 Experiments 
In this section we attempt to empirically characterize the 
applicability and expected benefits of Bayesian imitation 
through several experiments. Using domains from the liter­
ature and two unique domains, we compare Bayesian imi­
tation to non-Bayesian imitation [Price and Boutilier, 1999], 
and to several standard model-based RL (non-imitating) tech-
niques, including Bayesian exploration, prioritized sweeping 
and complete Bellman backups. We also investigate how 
Bayesian exploration combines with imitation. 

First, we describe the agents used in our experiments. The 
Oracle employs a fixed policy optimized for each domain, 

4Sampling is efficient as only one local model needs to be resam-
pled at any time step. 

5Scaling techniques such as those used in HMM's may be re­
quired to prevent underflow in the term in Eq. 5. 

6The Q-value distribution changes very little with each update 
and can be repaired efficiently using prioritized sweeping. In fact, the 
Bayesian learner is cheaper to run than a full Bellman backup over 
all states. 
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Figure 2: Flagworld Domain 

Figure 3: Flag world results (50 runs) 

Figure 4: Flag World Moved Goal (50 runs) 
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providing both a baseline and a source of expert behavior 
for the observers. The EGBS agent combines greedy ex­
ploration (EG) with a full Bellman backup (i.e., sweep) at 
each time step. It provides an example of a generic model-
based approach to learning. The EGPS agent is a model-based 
RL agent, using e-greedy (EG) exploration with prioritized 
sweeping (PS). EGPS use fewer backups, but applies them 
where they are predicted to do the most good. EGPS does not 
have a fixed backup policy, so it can propagate value multiple 
steps across the state space in situations where EGBS would 
not. The BE agent employs Bayesian exploration (BE) with 
prioritized sweeping for backups. BEBI combines Bayesian 
exploration (BE) with Bayesian imitation (Bi). EGBI com-
bines c-greedy exploration (EG) with Bayesian imitation (Bl). 
The EGNB1 agent combines e-greedy exploration with non-
Bayesian imitation. 

In each experiment, agents begin at the start state. The 
agents do not interact within the state space. When an agent 
achieves the goal, it is reset to the beginning. The other agents 
continue unaffected. Each agent has a fixed number of steps 
(which may be spread over varying numbers of runs) in each 
experiment. In each domain, agents are given locally uniform 
priors (i.e., every action has an equal probability of resulting 
in any of the local neighbouring states; e.g., in a grid world 
there are 8 neighbours). Imitators observe the expert oracle 
agent concurrently with their own exploration. Results are re­
ported as the total reward collected in the last 200 steps. This 
sliding window integrates the rewards obtained by the agent 
making it easier to compare performance of various agents. 
During the first 200 steps, the integration window starts off 
empty causing the oracle's plot to jump from zero to optimal in 
the first 200 steps. The Bayesian agents use 5 sampled MDPs 
for estimating Q-value distributions and 10 samples for esti­
mating the mentor policy from the Dirichlet distribution. Ex­
ploration rates for e-greedy agents were tuned for each exper­
imental domain. 

Our first test of the agents was on the "Loop" and "Chain" 
examples (designed to show the benefits of Bayesian explo­
ration), taken from [Dearden et al, 1999]. In these experi-
ments, the imitation agents performed more or less identically 
to the optimal oracle agent and no separation could be seen 
amongst the imitators. 

Using the more challenging "FlagWorld" domain [Dearden 
et al., 1999], we see meaningful differences in performance 
amongst the agents. In FlagWorld, shown in Figure 2, the 
agent starts at state S and searches for the goal state G l . The 
agent may pick up any of three flags by visiting states F l , 
F2 and F3. Upon reaching the goal state, the agent receives 
1 point for each flag collected. Each action (N,E,S,W) suc­
ceeds with probability 0.9 if the corresponding direction is 
clear, and with probability 0.1 moves the agent perpendicu­
lar to the desired direction. Figure 3 shows the reward col­
lected in over the preceding 200 steps for each agent. The Or­
acle demonstrates optimal performance. The Bayesian imita­
tor using Bayesian exploration (BEBI) achieves the quickest 
convergence to the optimal solution. The e-greedy Bayesian 
imitator (EGBI) is next, but is not able to exploit informa­
tion locally as well as BEBI. The non-Bayesian imitator (EG-
NBI) does better than the unassisted agents early on but fails 
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Figure 5: Tutoring domain results (50 runs) 

Figure 6: No-south domain 

Figure 7: No South results (50 runs) 
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to find the optimal policy in this domain. A slower ex-
ploration rate decay would allow the agent to find the opti­
mal policy, but would also hurt its early performance. The 
non-imitating Bayesian explorer fares poorly compared to the 
Bayesian imitators, but outperforms the remaining agents, as 
it exploits prior knowledge about the connectivity of the do­
main. The other agents show poor performance (though with 
high enough exploration rates they would converge eventu­
ally). We conclude that Bayesian imitation makes the best use 
of the information available to the agents, particularly when 
combined with Bayesian exploration. 

We altered the Flag World domain so that the mentor and the 
learners had different objectives. The goal of the expert Ora­
cle remained at location G1, while the learners had goal loca­
tion G2 (Figure 2). Figure 4 shows that transfer due to imita­
tion is qualitatively similar to the case with identical rewards. 
We see that imitation transfer is robust to modest differences 
in mentor and imitator objectives. This is readily explained by 
the fact that the mentor's policy provides model information 
over most states in the domain, which can be employed by the 
observer to achieve its own goals. 

The tutoring domain requires agents to schedule the presen­
tation of simple patterns to human learners in order to min­
imize training time. To simplify our experiments, we have 
the agents teach a simulated student. The student's perfor-
mance is modeled by independent, discretely approximated, 
exponential forgetting curves for each concept. The agent's 
action will be its choice of concept to present. The agent re­
ceives a reward when the student's forgetting rate has been 
reduced below a predefined threshold for all concepts. Pre-
senting a concept lowers its forgetting rate, leaving it unpre-
sented increases its forgetting rate. Our model is too simple to 
serve as a realistic cognitive model of a student, but provides 
a qualitatively different problem to tackle. We note that the 
action space grows linearly with the number of concepts, and 
the state space exponentially. 

The results presented in Figure 5 are based on the presen­
tation of 5 concepts to a student. (EGBS has been left out as 
it is time-consuming and generally fares poorly.) We see that 
all of the imitators learn quickly, but with the Bayesian imita­
tors BEBI and EGBI outperforming EGNBI (which converges 
to a suboptimal policy).7 The generic Bayesian agent (BE) 
also chooses a suboptimal solution (which often occurs in BE 
agents if its priors prevent adequate exploration). Thus, we 
see that imitation mitigates one of the drawbacks of Bayesian 
exploration: mentor observations can be used to overcome 
misleading priors. We see also that Bayesian imitation can 
also be applied to practical problems with factored state and 
action spaces and non-geometric structure. 

The next domain provides further insight into the combina­
tion of Bayesian imitation and Bayesian exploration. In this 
grid world (Figure 6), agents can move south only in the first 
column. In this domain, the optimal Oracle agent proceeds 
due south to the bottom corner and then east across to the goal. 
The Bayesian explorer (BE) chooses a path based on its prior 
beliefs that the space is completely connected. The agent can 

Increasing exploration allows EGNBI to find the optimal policy, 
but further depresses short term performance. 
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easily be guided down one of the long "tubes" in this sce­
nario, only to have to retrace it steps. The results in this do­
main, shown in Figure 7, clearly differentiate the early per­
formance of the imitation agents (BEBI , EGB1 and EGNB1) 
from the Bayesian explorer (BE) and other independent learn­
ers. The initial value function constructed from the learner's 
prior beliefs about the connectivity in the grid world lead it 
to over-value many of the states that lead to a dead end. This 
results in a costly misdirection of exploration and poor perfor­
mance. We see that the ability of the Bayesian imitator BEBI 
to adapt to the local quality of information allows it to ex-
ploit the additional information provided by the mentor more 
quickly than agents using generic exploration strategies like 
e-greedy. Again, mentor information is used to great effect to 
overcome misleading priors. 

5 Conclusions 

Bayesian imitation, like the non-Bayesian implementation of 
implicit imitation, accelerates reinforcement learning in the 
presence of other agents with relevant knowledge without re-
quiring either explicit communication with or the cooperation 
of these other agents. The Bayesian formulation is built on an 
elegant pooling mechanism which optimally combines prior 
knowledge, model observations from the imitator's own expe­
rience and model observations derived from other agents. The 
combination of Bayesian imitation with Bayesian exploration 
eliminates parameter tuning and yields an agent that rapidly 
exploits mentor observations to reduce exploration and in­
crease exploitation. In addition, imitation often overcomes 
one of the drawbacks of Bayesian exploration, the possibil­
ity of converging to a suboptimal policy due to misleading 
priors. Bayesian imitation can easily be extended to multiple 
mentors, and though we did not present the derivation here, 
it can also be extended to partially observable environments 
with known state spaces. Though the Bayesian formulation is 
difficult to implement directly, we have shown that reasonable 
approximations exist that result in tractable algorithms. 

There are several very promising areas of future research 
that can benefit from the current formulation of Bayesian imi­
tation. One obvious need is to extend the model to the hetero­
geneous action setting by incorporating the notions of feasibil­
ity testing and repair described in [Price and Boutilier, 2001 ]. 
We are particularly excited by the prospects of its generaliza-
tion to richer environmental and interaction models. We have 
also derived one possible mechanism for using the Bayesian 
approach in domains with continuous attributes. We hope to 
extend this work to include methods for discovering corre-
spondences between the state and action spaces of various 
agents. We also plan to introduce game-theoretic considera­
tions into imitation so that agents can learn solutions to inter­
acting tasks from experts and reason about both the reward-
oriented aspects of their action choices as well as the infor­
mation it reveals to others. 
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