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Abstract 
This paper introduces a new distinctive class 
of combinatorial auction protocols called price-
oriented, rationing-free (PORF) protocols. The 
outline of a PORF protocol is as follows: (i) for 
each bidder, the price of each bundle of goods is de­
termined independently of his/her own declaration 
(while it can depend on the declarations of other 
bidders), (ii) we allocate each bidder a bundle that 
maximizes his/her utility independently of the allo­
cations of other bidders (i.e., rationing-free). 
Although a PORF protocol appears quite different 
from traditional protocol descriptions, surprisingly, 
it is a sufficient and necessary condition for a proto­
col to be strategy-proof. Furthermore, we show that 
a PORF protocol satisfying additional conditions 
is false-name-proof; at the same time, any false-
name-proof protocol can be described as a PORF 
protocol that satisfies the additional conditions. A 
PORF protocol is an innovative characterization 
of strategy-proof protocols and the first attempt to 
characterize false-name-proof protocols. Such a 
characterization is not only theoretically significant 
but also useful in practice, since it can serve as a 
guideline for developing new strategy/false-name 
proof protocols. We present a new false-name-
proof protocol based on the concept of a PORF pro­
tocol. 

1 Introduction 
Internet auctions have become an integral part of Electronic 
Commerce and a promising field for applying AI technolo­
gies. Among various studies related to Internet auctions, 
those on combinatorial auctions have lately attracted consid­
erable attention (an extensive survey is presented in [de Vries 
and Vohra, 2003]). Although conventional auctions sell a sin­
gle item at a time, combinatorial auctions sell multiple items 
with interdependent values simultaneously and allow the bid­
ders to bid on any combination of items. In a combinatorial 
auction, a bidder can express complementary/substitutable 
preferences over multiple bids. By taking into account com­
plementary/substitutable preferences, we can increase the 
participants' utilities and the revenue of the seller. 
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One important characteristic of an auction protocol is that 
it is strategy-proof. A protocol is strategy-proof if, for each 
bidder, declaring his/her true evaluation values is a dominant 
strategy, i.e., an optimal strategy regardless of the actions of 
other bidders. In theory, the revelation principle states that in 
the design of an auction protocol, we can restrict our attention 
to strategy-proof protocols without loss of generality [Myer-
son, 1981]. In other words, if a certain property (e.g., Pareto 
efficiency) can be achieved using some auction protocol in a 
dominant-strategy equilibrium, i.e., a combination of domi­
nant strategies of bidders, the property can also be achieved 
using a strategy-proof auction protocol. 

Furthermore, a strategy-proof protocol is also practically 
useful for applying to Internet auctions. For example, if we 
use the first-price sealed-bid auction (which is not strategy-
proof), the bidding prices must be securely concealed until 
the auction is closed. On the other hand, if we use a strategy-
proof protocol, knowing the bidding prices of other bidders is 
useless; thus, such security issues become less critical. 

Also, the author pointed out the possibility of a new type 
of fraud called false-name bids, which utilizes the anonymity 
available in the Internet [Yokoo et al, forthcoming; 2001a; 
2000; Sakurai et ai, 1999]. False-name bids are bids sub­
mitted under fictitious names, e.g., multiple e-mail addresses. 
Such a dishonest action is very difficult to detect, since identi­
fying each participant on the Internet is virtually impossible. 

We say a protocol is false-name-proof if, for each bidder, 
declaring his/her true evaluation values using a single iden­
tifier (although the bidder can use multiple identifiers) is a 
dominant strategy. As for strategy-proof protocols, the reve­
lation principle holds for false-name-proof protocols [Yokoo 
et al% forthcoming; 2000]. Thus, we can restrict our attention 
to false-name-proof protocols without loss of generality. 

Given that strategy/false-name proof protocols are impor­
tant both in theory and practice, obvious questions we need 
to answer are, how can we design such protocols and what 
features do these protocols have in common, i.e., charac­
terization of the protocols. Although there have been sev­
eral works on characterizing strategy-proof protocols (e.g., 
[Roberts, 1979; Holmstrom, 1979]), as far as the author is 
aware, there is no work on characterizing false-name-proof 
protocols. 

In this paper, we introduce an innovative characterization 
of strategy/false-name proof protocols by introducing a new 

733 



distinctive class of combinatorial auction protocols called 
price-oriented, rationing-free (PORF) protocols. The outline 
of a PORF protocol is as follows. 

For each bidder, the price of each bundle of goods is 
determined independently of his/her own declaration, 
while it can depend on the declarations of other bidders. 

We allocate each bidder a bundle that maximizes his/her 
utility independently of the allocations of other bidders 
(i.e., rationing-free). 

A PORF protocol looks quite different from traditional 
protocol descriptions. In a traditional protocol, the alloca­
tions of goods are usually determined first, and then the pay­
ments of the winners are determined. On the other hand, in 
a PROF protocol, the prices of bundles for each bidder are 
determined first, and then the allocation is determined inde­
pendently based on these prices. 

However, surprisingly, a PORF protocol captures all the es­
sential features of a strategy-proof protocol, i.e., if a protocol 
can be described as a PORF protocol, it is strategy-proof, and 
vice versa. Also, if a protocol can be described as a PORF 
protocol that satisfies additional conditions, it is false-name-
proof, and vice versa. 

As far as the author is aware, a PORF protocol is an in­
novative characterization of strategy-proof protocols and the 
first attempt to characterize false-name-proof protocols. Such 
a characterization is not only theoretically significant but also 
useful in practice, since it can serve as a guideline for devel­
oping new strategy/false-name proof protocols. We present a 
new false-name-proof protocol based on the idea of a PORF 
protocol. 

2 Problem Settings 
Assume there are a set of bidders N = ~ and a 
set of goods M = { 1 , 2 , . . . , m } . Each bidder i has his/her 
preferences over Formally, we model this by sup­
posing that bidder i privately observes a parameter, or signal, 

, which determines his/her preferences. We refer to as the 
type of bidder i. We assume is is drawn from a set We 
assume a quasi-linear, private value model with no allocative 
externality, defined as follows. 

Definition 1 (utility of a bidder) 
The utility of bidder i, when i obtains a bundle, i.e., a subset 
of goods and pays , is represented as — 
PB t i. 

We assume evaluation value v is normalized by v(0,0{) = 0. 
Also, we assume for all , holds. Further­
more, we assume free disposal, i.e., for 
all  

In a traditional definition [Mas-Colell et al.9 1995], an auc­
tion protocol is (dominant-strategy) incentive compatible (or 
strategy-proof) if declaring the true type/evaluation values is 
a dominant strategy for each bidder, i.e., an optimal strategy 
regardless of the actions of other bidders. 

In this paper, we extend the traditional definition of incen­
tive compatibility so that it can address false-name bid manip­
ulations, i.e., we define that an auction protocol is (dominant-
strategy) incentive compatible if declaring the true type by 

734 

using a single identifier is a dominant strategy for each bid­
der. To distinguish between the traditional and extended def­
initions of incentive compatibility, we refer to the traditional 
definition as strategy-proof and to the extended definition as 
false-name-proof 

An auction protocol is individually rational if no partici­
pant suffers any loss in a dominant-strategy equilibrium, i.e., 
the payment never exceeds the evaluation value of the ob­
tained goods. In a private value auction, individual rationality 
is indispensable; no bidder wants to participate in an auction 
where he/she might be charged more money than he/she is 
willing to pay. Therefore, in this paper, we restrict our atten­
tion to individually rational protocols. Also, we restrict our 
attention to deterministic protocols, which always obtain the 
same outcome for the same input. 

We say an auction protocol is Pareto efficient when the sum 
of all participants' utilities (including that of the auctioneer), 
i.e., the social surplus, is maximized in a dominant-strategy 
equilibrium. The author has proved that there exists no false-
name-proof protocol that satisfies Pareto efficiency and indi­
vidual rationality at the same time [Yokoo et al., forthcoming; 
Sakurai et al., 1999]. Therefore, we need to sacrifice effi­
ciency to some extent when false-name bids are possible. 

3 Price-oriented, Rationing-Free (PORF) 
Protocol 

A PORF Protocol is defined as follows. 

Definition 2 (PORF Protocol) 

Each bidder declares his/her type , which is not nec­
essarily the true type  

For each bidder i, for each bundle the price 
PB, I is defined. This price must be determined indepen­
dently of 's declared type while it can be dependent 
on declared types of other bidders. 

We assume = 0 holds. Also, if , pB,  
PB',I holds. 
For bidder a bundle B is allocated, where = 
arg max Bidder i pays If 
there exist multiple bundles that maximize i 's utility, one 
of these bundles is allocated. 

The result of the allocation satisfies allocation-
feasibility, i.e., for two bidders and bundles allo­
cated to these bidders and holds. 

It is straightforward to show that a PORF protocol is strategy-
proof. The price of bidder i is determined independently of 
Vs declared type, and he/she can obtain the bundle that maxi­
mizes his/her utility independently of the allocations of other 
bidders, i.e., the protocol is rationing-free. 

On the other hand, in a PORF protocol, the prices must 
be determined appropriately to satisfy allocation-feasibility1. 

Since the price for each bidder can be different and the price 
of a bundle is not necessarily the sum of the prices of all goods in 
the bundle, there is no direct relation between the prices that achieve 
allocation-feasibility and equilibrium prices. 
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The definition of a PORF protocol requires that if there exist 
multiple bundles that maximize z's utility, then one of these 
bundles must be allocated, but it does not specify exactly 
which bundle should be allocated. Therefore, if there exist 
multiple choices, the auctioneer can adjust the allocation of 
multiple bidders in order to satisfy allocation-feasibility. 

Next, we provide some examples of PORF protocols. 
Since a PORF protocol is strategy-proof, in the rest of this 
paper, we assume each bidder i declares his/her true type 0i. 
Example 1 Let us consider the auction of a single unit of a 
single item. 

• The price of the only bundle B = M is defined as = 
max  

This protocol is identical to the Vickrey auction protocol 
[Vickrey, 1961]. 

More specifically, for the bidder with the highest evalua­
tion value, the price of the good is equal to the second highest 
evaluation value. On the other hand, for other bidders, the 
price is equal to the highest evaluation value, so nobody ex­
cept the bidder with the highest evaluation value is willing to 
buy the good. 

Example 2 Let us consider a combinatorial auction. To sim­
plify the protocol description, we introduce the following no­
tation. For a set of goods B and a set of bidders X, where 

is a set of types of bidders in X, we define 
as the sum of the evaluation values ofX when B is allocated 
optimally among X. 

To be precise, for an feasible allocation 
where and for all  

{X, B) is defined as max where is 
the type of bidder j. 

The price of bundle B for bidder i is defined as follows: 

This protocol is identical to the Vickrey-Clarke-Groves 
(VCG) mechanism LVickrey, 1961; Clarke, 1971; Groves, 
1973], i.e., if B is allocated to i in a Pareto efficient alloca­
tion, then is equal to the payment in the VCG; otherwise, 
PB,I is larger than  

Let us describe how this protocol works. Assume there 
are two goods 1 and 2, and three bidders, bidder 1, 2, and 3, 
whose types are , and , respectively. The evaluation 
value for a bundle ' ~ is determined as follows. 

Accordingly, the prices of these bundles for each bidder is 
given as follows. 

{1} {2} {1,2} 
bidder 1 3 8 8 
bidder 2 6 5 11 
bidder 3 8 2 8 

MULTIAGENT SYSTEMS 

As a result, bidder 1 obtains good 1 with price 3, and bidder 3 
obtains good 2 with price 2. 

4 Strategy-proof PORF 
A PORF protocol looks quite different from traditional proto­
col descriptions, in which the allocation of the goods/winners 
are determined, and then the payments of these winners are 
determined. In a PROF protocol, the prices of bundles for 
each bidder is determined first, and then the allocation is 
determined based on these prices. In a traditional protocol 
description, the payment of bidder i must be determined in­
dependently of ?''s type to make the protocol strategy-proof 
This is similar to the fact that the price of bidder i in a PORF 
protocol must be determined independently of z's declared 
type. The most distinctive characteristic of a PORF protocol 
is that it is rationing-free, i.e., each bidder can obtain the op­
timal bundle based on the prices, and the allocation for each 
bidder is done independently (except when a bidder is totally 
indifferent between multiple bundles). 

Surprisingly, a PORF protocol is not only a sufficient con­
dition that a protocol is strategy-proof, but it is also a neces­
sary condition, i.e., the following theorem holds. 

Theorem 1 If a protocol is strategy-proof then the protocol 
can be described as a PORF protocol. 
The argument presented in this section is very general and 
requires only the fact that a protocol is deterministic and in­
dividually rational. 

The outline of the proof in the remainder of this section 
can be summarized as follows. First, we show that if a bidder 
is single-minded (Definition 3), i.e., he/she is interested only 
in a particular bundle, any strategy-proof protocol can be de­
scribed as a PORF protocol (Lemma 3), i.e., the price of the 
bundle is determined and the bidder wil l obtain the bundle if 
his/her evaluation value is larger than the price. An intuitive 
explanation for this result is that if such a price does not exist, 
a single-minded bidder can have an incentive to under/over-
declare his/her evaluation value for the bundle. The only way 
to make the protocol strategy-proof is to set a fixed threshold 
based on other bidders' evaluation values, which determines 
whether the single-minded bidder wil l obtain the bundle or 
not. 

Next, we show that this result can be extended to the case 
where a bidder is A>minded (Definition 5), i.e., a bidder is in­
terested in multiple bundles at the same time (Lemma 5). An 
intuitive explanation for this result is as follows. A single-
minded bidder can pretend to be a A-minded bidder, and 
vice versa. Therefore, to a A-minded bidder, the protocol 
must give the results that are basically equivalent to a single-
minded bidder 

Any bidder can be represented as a j-minded bid­
der, where m is the number of goods and is the number 
of all possible bundles (except an empty set). Thus, we can 
show that any strategy-proof protocol can be represented as a 
PROF protocol. 

In the following, we show the detailed proof of Theorem 1. 
To derive the theorem, we introduce notions such as single-
minded bidder, monotone allocation rule, and critical-value, 
which are used in [Lehmann et ai, 2002; Mu'alem and Nisan, 
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2002]. The proofs of Lemma 1 and 2 are basically due to 
[Lehmann et al.y 2002; Mu'alem and Nisan, 2002]. 

Definition 3 (single-minded bidder) 
We say bidder i is single-minded ifi requires only one bundle 

. , i.e., for any bundle then  
otherwise,  

Definition 4 (monotone allocation rule) 
We say a protocol is monotone for a single-minded bidder i if 

the following condition is satisfied, assuming the set of other 
bidders and their types are fixed. 
If bundle Bt (or a superset of Bi) is allocated to bidder i 
when i 's evaluation value for , then Bx (or a superset 
of B{) is also allocated when i 's evaluation value for Bi is 

The following lemma holds. 

Lemma 1 If a protocol is strategy-proof then the protocol is 
monotone for a single-minded bidder. 

Proof: If a protocol is not monotone, there exists a case 
where (or a superset) is allocated to bidder z when z 's eval­
uation value for Bi is _, while (or a superset) is not allo­
cated to bidder z when z's evaluation value for Bi is 
Since the protocol is individually rational, the payment when 
z's evaluation value is must be less than or equal to v%. 
Therefore, when z's true evaluation value is if z truthfully 
declares his/her type, z's utility is 0, since neither nor a 
superset is allocated. However, if z declares a false type as a 
single-minded bidder where the evaluation value for. is 
z can obtain a positive utility. This contradicts the assumption 
that the protocol is strategy-proof. 

Furthermore, the following lemma holds. 

Lemma 2 If a protocol is monotone for a single-minded bid­
der, then there exists critical-value c that satisfies the follow­
ing condition, assuming the set of other bidders and their 
types are fixed: if Bi (or a superset) is allocated 
to i, while if no good is allocated. 

Proof: Let us assume that no critical value exists. Then, for 
an arbitrary value , either one of the following two cases 
holds. 

case i: there exists where bidder ' cannot obtain B1 
when z's evaluation value is  

case i i : there exists where bidder z can obtain Bi 

when z's evaluation value is  
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• For bidder , which is the price of , is defined. If 
, then Bi (or a superset of is allocated 

to bidder z and i pays pi. If then no 
good is allocated. If then either Bi (or a 
superset of Bi) is allocated and i pays pi or no good is 
allocated. 

If bidder z is single-minded, i.e., the declared type of z can 
be considered to be single-minded, then a PORF protocol can 
be described as follows, assuming the set of other bidders 
and their types are fixed. We denote this protocol as a PORF 
protocol for a single-minded bidder. 

If we set case ii cannot be true so case i must hold. 
Let us re-assign as and repeat this procedure until case 
ii occurs ( i f case ii never occurs, then becomes a critical 
value). In this case, bidder z cannot obtain when the eval­
uation value is _ , while i can obtain Bi when the evaluation 
value is This contradicts the assumption that the 
protocol is monotone. 

Next, we show that the following lemma holds. 
Lemma 3 If a protocol is strategy-proof then, for a single-
minded bidder, the protocol can be described as a PORF pro­
tocol for a single-minded bidder, i.e., if i's evaluation value 
for Bi is larger than a given value pi, then Bi (or a superset) 
is allocated and i 's payment is pi If i's evaluation value for 
Bi is smaller than pi no good is allocated. 

Proof: From Lemma 1 and 2, the protocol is monotone and 
there exists critical-value c, i.e., Bi (or a superset) is allocated 
when the evaluation value is larger than c, while no good is 
allocated when the evaluation value is smaller than c. The 
only thing we need to show is that the payment is equal to c 
when B1 (or a superset) is allocated. Let us assume that the 
payment is and derive a contradiction. 

First, let us consider the case ' ., when the evalua­
tion value of i is obtains B1 (or a superset) but the 
payment is When the evaluation value of i is  
if i declares the true type, no good is allocated and the ob­
tained utility is 0, while if z declares a false type where the 
evaluation value is can obtain B1 (or a superset) and the 
payment is c', thus the obtained utility becomes positive. This 
contradicts the assumption that the protocol is strategy-proof. 

Next, let us consider the case when the evalu­
ation value of z is obtains B1 (or a superset) but the 
payment is If i declares a false type where the evalu­
ation value is can obtain B1 (or a superset) because c 
is a critical value. Since the protocol is individually rational, 
the payment must be less than or equal to which is less 
than , i.e., the payment when i declares the true type. This 
contradicts the assumption that the protocol is strategy-proof. 

From the above, the protocol can be described as a PORF 
protocol for a single-minded bidder where  

Definition 5 (k-minded bidder) 
We say bidder i is a k-minded bidder ifi requires exactly one 

bundle from k bundles . Let us repre­
sent i 's evaluation value for ~ . For notation simplic­
ity, let us assume and The evaluation value 
of i for bundle B is defined as follows. 

= max, , where  

From Lemma 3, if bidder z is a single-minded bidder who 
requires only , then a strategy-proof protocol must be a 
PORF protocol for a single-minded bidder. Let us represent 
the price for bidder z of in this protocol as  

First, we show that the following lemma holds. 
Lemma 4 If a protocol is strategy-proof then, for k-minded 
bidder i , the payment when i obtains B is given b y = 
max , where   
Proof: Let us assume that = argmax where 

We derive a contradiction assuming 
First, let us consider the case Assume that z is a 
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single-minded bidder who requires only, and Vs evalua­
tion value for is pi ,. In this case, if i declares the true 
type, the obtained utility is 0. On the other hand, if i declares 
his/her type as a fc-minded bidder, i can obtain 
and the payment is , thus i can obtain a positive 
utility. This contradicts the assumption that the protocol is 
strategy-proof. 

Next, let us consider the case If i declares 
its type as a single-minded bidder who requires only 
can obtain (or a superset) and the payment is , which 
is less than i.e., the payment when he/she declares the 
true type. This contradicts the assumption that the protocol is 
strategy-proof.  

Finally, we show that the following lemma holds. 

Lemma 5 If a protocol is strategy-proof, then, for a k-
minded bidder i, the protocol can be described as a PORF 
protocol for a k-minded bidder, i.e., for each which 
is the price for bidder i, is defined, and the protocol assigns 

(or a superset), where = argmax i. 
The payment is  

Proof: We derive a contradiction assuming that a strategy-
proof protocol assigns for fc-minded bidder i. Let 
us choose = arg max , where From 
the definition of a fc-minded bidder, holds. 
Furthermore, from the fact that 

holds.  
From Lemma 4, the payment when i obtains B is given by 

=- max where Obviously,  
holds. Thus,  

holds. This formula represents the fact that the utility when 
i declares the true type is less than the 
utility when i declares a false type, where i is a single-minded 
bidder that requires only . This contra­
dicts the assumption that the protocol is strategy-proof. D 

Any bidder can be represented as a -minded bid­
der, where m is the number of goods and is the number 
of all possible bundles (except an empty set). Since Lemma 5 
holds for all fc, from Lemma 5, we can derive Theorem 1. 

5 PORF with additional conditions 
False-name-proof 

From the definition, if a protocol is false-name-proof, it is 
also strategy-proof. Therefore, it is obvious that false-name-
proof PORF holds. On the other hand, PORF false-
name-proof does not hold in general. For example, the VCG 
mechanism is strategy-proof, so it can be described as a 
PORF protocol, but it is not false-name-proof, as shown in 
[Yokoo et al.9 forthcoming; Sakurai et al., 1999]. 

In this section, we limit our attention to protocols that sat­
isfy the following condition. 

Definition 6 (weakly-anonymous pricing rule (WAP)) 
For bidder i, the price of bundle B is given as a function 
of types of other bidders, i.e., the price can be described as 
p where X is the set of bidders except i, andis  
the set of types of bidders in X. 
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The above condition requires that if two bidders are facing the 
same types of opponents, their prices must be identical for all 
bundles. The WAP condition is intuitively natural and virtu­
ally all well-known protocols, including the VCG, satisfy this 
condition. 

For a PORF protocol that satisfies the WAP condition, we 
define the following additional condition. 

Definition 7 (no super-additive price increase (NSA)) 
For all subset of bidders _ and . and for 

let us denote Bi as a bundle that maximizes i 's utility, 
then  

An intuitive meaning of this condition is that the price of buy­
ing a combination of bundles (the right side of the inequality) 
must be smaller than or equal to the sum of the prices for 
buying these bundles separately (the left side). 

The next theorem states that for a PORF protocol with the 
WAP, the NSA is a sufficient condition for a protocol to be 
false-name-proof. 

Theorem 2 If a PORF protocol with the WAP satisfies the 
NSA condition, then the protocol is false-name-proof. 

Proof: The proof is rather clear. If a bidder uses a set of 
identifiers 5, then from the NSA condition, the bidder can 
obtain the same set of goods by using a single identifier, while 
the payment becomes smaller (or remains the same). □ 

We can show that for a PORF protocol with WAP, the NSA 
is not only a sufficient condition but also a necessary condi­
tion, i.e., the following theorem holds. 

Theorem 3 If a protocol is a PORF protocol with the WAP 
and is false-name-proof, then it satisfies the NSA condition. 

Proof: Let us assume that there exists a false-name-proof 
protocol that can be described as a PORF protocol with the 
WAP but does not satisfy the NSA condition. More pre­
cisely, for a set of identifiers and for 

is the bundle that maximizes i's utility, but 

Let us assume the case where bidder i' is facing oppo­
nents whose types are Also, let us assume bidder i' is 
single-minded for bundle and the evaluation value 
is . If bidder declares his/her true type, 
the obtained utility is 0 (since if can obtain the bundle, the 
payment is equal to his/her evaluation value). On the other 
hand, if i' uses a set of identifiers 5, and for each 
he/she declares the type as then for each identifier z, Bi is 
obtained. 

The sum of the payment is  
which is less than the evaluation value of , i.e., 

] Thus, bidder can obtain positive utility 
by utilizing false-name bids. This contradicts the assumption 
that the protocol is false-name-proof.  

For the protocols that are strategy-proof (SP), false-name-
proof (FP), PORF, WAP, and NSA, the subset/superset rela­
tions can be illustrated as Figure 1. The VCG mechanism can 
be described as a PORF protocol with WAP, but it does not 
satisfy the NSA condition. Therefore, it is not false-name-
proof. One example of a false-name-proof protocol that does 
not use the WAP rule is a dictatorial protocol where all goods 
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are allocated to one special bidder (the dictator) regardless of 
other bidders' evaluation values. 

Figure 1: Relations of Protocols 

Due to space limitations, we omit detailed descriptions, but 
all existing false-name-proof protocols developed so far, e.g., 
the LDS [Yokoo et al, 2001a], the IR [Yokoo et al, 2001b], 
and the GAL protocol [Terada and Yokoo, 2003], can be de­
scribed as a PORF protocol that satisfies the NSA condition. 

6 New False-name-proof Protocol 
In this section, we develop a new false-name-proof protocol 
based on the concept of the PORF protocol. To simplify the 
protocol description, we introduce a concept called a minimal 
bundle. 
Definition 8 (minimal bundle) Bundle B is called minimal 
for bidder i if for all and  

i holds. 
In this new protocol, the price of bundle B for bidder i is 
defined as follows: 

; where " and 
is minimal for bidder j. 

In short, the price of bundle B is equal to the highest evalua­
tion value of a bundle, which is minimal and conflicting with 
bundle B. 

Compared with the LDS protocol [Yokoo et al., 2001a], 
this protocol is much simpler and does not require any pa­
rameters to be set by the auctioneer, while in the LDS proto-
col, the auctioneer must carefully determine the reservation 
price and the way of dividing goods into multiple bundles. If 
all bidders are single-minded, this protocol is one example of 
greedy protocols described in [Lehmann et al, 2002]. 

Let us describe how this protocol works. Let us assume 
there are three goods 1,2, and 3, and two bidders, bidder 1 
and bidder 2, whose types are , respectively. The evalu­
ation value for a bundle is determined as follows. 

These evaluation values mean that bidder 1 is 2-minded foi 
bundles {1,2} and {3} , while bidder 2 is 2-minded for bun-
dles {2} and {3} . These bundles are minimal bundles. The 
prices of these bundles are given as follows. 
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{1} {2} {3} {1,2} {2,3} {1,3} {1,2,3} 
bidder 1 0 110 110 110 110 110 110 
bidder 2 210 210 60 210 210 210 210 

As a result, bundle is allocated to bidder 1 and bundle 
{3} is allocated to bidder 2. 

It is clear that this protocol satisfies the allocation-
feasibility. For each good /, let us choose bidder and bun­
dle that maximize where and is 
minimal for bidder j. Then, only bidder is willing to ob­
tain a bundle that contains good I. For all other bidders, the 
price of a bundle that contains / is higher than (or equal to) 
his/her evaluation value. 

Furthermore, it is clear that this protocol satisfies the 
NSA condition. In this pricing scheme, 
max holds for all , and  
Therefore, the following formula holds. 

Furthermore, in this pricing scheme, prices increase mono-
tonically by adding opponents, i.e., for all  

holds. Therefore, for each i,  
holds. Therefore, 

the NSA condition, i.e.,  
holds. 

7 Discussions 
As far as the author is aware, a PORF protocol is an innova­
tive characterization of strategy-proof protocols and the first 
attempt to characterize false-name-proof protocols. Here, we 
discuss several previous works on characterizing strategy-
proof protocols. 

In [Lehmann et a/., 2002; Mu'alem and Nisan, 2002], it 
is shown that if there exist only single-minded bidders, a 
strategy-proof protocol is monotonic and has a critical value. 
Since their motivation is to develop computationally efficient 
strategy-proof protocols that can achieve semi-optimal allo­
cations, they do not extend their results to more general cases 
such as k-minded bidders. 

In [Roberts, 1979], a characterization of strategy-proof 
mechanisms is shown for general social choice problems. It 
is shown that any strategy-proof protocol can be described as 
a variation of the Groves mechanisms [Groves, 1973]. On 
the other hand, in the model used in this paper, we assume 
that the evaluation values of each bidder satisfy no allocative-
externality condition. Therefore, the results described in 
[Roberts, 1979] cannot be applied, i.e., a PORF protocol is 
not necessarily to be a variation of the Groves mechanisms. 

In [Holmstrom, 1979], a characterization of strategy-proof 
mechanisms is described. It is shown that with the assump­
tion that the preferences of each participant satisfy a condition 
called smoothly-connected, any strategy-proof protocol that 
satisfies Pareto efficiency must be an instance of the Groves 
mechanisms. This result can be applied to the model used in 
this paper since the smoothly-connected condition still holds. 
Therefore, if we require that a protocol be Pareto efficient, it 
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is likely that the pricing scheme described in Example 2 is the 
only way to make a PORF protocol Pareto efficient2. 

As well as a PORF protocol is theoretically significant, 
since it is an equivalent class of strategy-proof protocols, it 
has practical importance since it can serve as a guideline for 
developing new strategy/false-name proof protocols. Design-
ing a strategy/false-name proof protocol has been a difficult 
task. As shown in Section 6, we successfully developed a 
new false-name-proof protocol based on the idea of a PORF 
protocol. The simplicity of this newly developed protocol 
compared with the LDS protocol illustrates the expressive 
power of a PORF protocol. Of course, we need to prove that a 
PORF protocol satisfies allocation-feasibility. However, this 
tends to be much easier than directly proving a protocol is 
strategy/false-name proof, since we can assume each bidder 
declares his/her true type by using a single identifier. 

As for the computational cost of executing a protocol, a 
naive implementation of a PORF protocol requires calculat­
ing prices for all bundles of all bidders. However, as in the 
case of the VCG, we can describe a protocol cither as a PORF 
protocol or in a traditional manner in which an allocation of 
goods is determined, and then the payments are calculated 
based on the allocation. We can assume that the description 
of a PORF protocol is not for actual implementation but for 
serving as a normative guideline in proving characteristics of 
a protocol. 

8 Conclusions 
In this paper, we introduced a new distinctive class of combi­
natorial auction protocols called PORF protocols. Although 
a PORF protocol looks quite different from traditional proto­
col descriptions, surprisingly, it is a sufficient and necessary 
condition for a protocol to be strategy-proof. Furthermore, we 
showed that a PORF protocol satisfying additional conditions 
is false-name-proof; at the same time, any false-name-proof 
protocol can be described as a PORF protocol that satisfies 
the additional conditions. 

A PORF protocol is not only theoretically significant but 
also useful in practice, since it can serve as a guideline for 
developing new strategy/false-name proof protocols. We suc­
cessfully developed a new false-name-proof protocol based 
on the idea of a PORF protocol. We are currently extending 
the obtained results to combinatorial exchange. 
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