
ODISET: On-line Distributed Session Tracing using Agents *

Salvador Mandujano (smv@itesm.mx) Arturo Gal van (agalvan@itesm.mx)

Center for Intelligent Systems
Instituto Tecnologico y de Estudios Superiores de Monterrey

Monterrey, Mexico

Abstract

When a security incident occurs it is sometimes
necessary to identify its causes for legal and
cautionary purposes. In an attempt to hide the
origin of her connection, a malicious user may
have jumped from a source host h8 into a series
of hosts h1 € H = {h1,h2,..., hn} before breaking
into final target ht. This connection sequence
describes a path that makes it difficult to find h8

given ht due, in part, to the prohibitive amount of
cooperation and synchronization that is required
in practice by administrators. This paper describes
a distributed rule-based model that automates this
tracing process on-line with a 0(\H\)) worst case
scenario. Autonomous agents collaborate on the
tracing and detection of the origin of an interactive
connection using a loop unwinding technique and
incorporating public key cryptography to create
ciphered channels that allow them for secure com­
munication. To meet the challenges of minimum
system workload and improved robustness, the
prototype features lightweight design and imple­
mentation as well as a dynamic port-allocation
scheme to prevent sniffing and denial of service
attempts. We describe the proposed model and
present the experimental results obtained with the
prototype system ODISET.

1 Introduction
Unauthorized access to computer systems is increasing in
parallel with the growth of the Internet (iRapalus, 2002]).
For purposes of protection, accountability and liability, the
need for connection back-tracing is a reality in the areas of
cybernetic-law enforcement and computer security. The au­
thentication structure of our networks as well as their dis­
tributed nature complicates the task of spotting the host from

*This project was supported by the INSYS Computer Security
Research Grant (Cdtedra INSYS de lnvestigacidn en Seguridad In-
formdtica) of Instituto Tecnol6gico y de Estudios Superiores de
Monterrey

MULTIAGENT SYSTEMS

which a connection sequence stems. If some sort of anoma­
lous activity is observed from one of our users, it may be nec­
essary to trace the origin of the session in order to identify the
person behind it. In most cases, this is not easy to accomplish
[Yoda and Etoh, 2001].

Within the domain of a LAN, it is rather straightforward to
perform this tracing given that system administrators usually
have access to all the hosts within their LAN. Unfortunately,
not all sessions come from the inside. If a connection is re­
ceived from the outside, we wil l have to contact the admin­
istrator of a remote host hr in order to discover the identity
of the user or the next link of the connection path or chain.
Our fellow administrator will have to look into her system
to realize that, perhaps, it has been compromised as well. It
is possible that the user we arc looking for is using hr as a
step-stone to reach our server. In that case, we will have to
contact some more system administrators within the country
and/or abroad [Cheswick and Bellovin, 1994] [Stoll, 1987].
This has obvious implications time and cost-wise.

Once a system has been compromised, the perpetrator may
have left back-doors installed to facilitate future access to the
system. Using interactive sessions, she may visit the system
again even when the software has been patched and her back-
door remains untouched. It is not necessary for the user to be
logged on in order to be detected. Audit trail files can be used
to do off-line tracing but this can be a tough task since audit
logs may have been tampered with or deleted.

In the case of connections to web servers through HTTP
and HTTPS, for instance, the hosts that compose the connec­
tion chain between client and server cannot be easily modi­
fied. Some components of the routing system would have to
be modified in order to force the packets to follow a particular
path. In the case of interactive sessions, however, applications
such as t e l n e t , l o g i n , r l o g i n and ssh allow a user
with suitable access permissions to connect from host to host
back and forth creating loops at wil l to scramble her connec­
tion path a little. This significantly complicates the structure
of the chain and the amount of effort required to detect the
root host h8 from where she is actually starting everything up.
In fact, the complexity of back-tracing a connection across a
set H of n hosts maybe small for a small n and a small num­
ber of connection hops, but it rapidly increases as n becomes
larger due to the number of hosts that a chain may contain.

One of the challenges of intrusion detection is to accu-

749

rately identify the main causes of an incident. The ultimate
goal is to catch intruders in real time and our objective is to
help intrusion detection systems do the part of session trac­
ing on-line. There are some intrusion detection and intrusion
response tools [Yoda and Eton, 2001] [Asaka et a/., 1999]
[Wang et al, 2001] that provide some sort of off-line con­
nection tracing that also performs data correlation with previ­
ously recorded user activity information.

This paper proposes an on-line approach that makes use of
intelligent agents to identify the origin of a live session by
unwinding connection loops. Instead of using historical au­
dit trails, this model relies on evidence captured on operating
system tables that are continuously refreshed by the system.
For this reason, it is not likely that these tables experience
changes that go unnoticed. The communication structure of
the agents uses RSA public-key cryptography [Rivest et al,
1979] [Schneier, 2001] to implement an encryption model
that protects all communications between agents. One of the
main issues of the multi-agent approach to automatic secu­
rity monitoring is the overhead imposed by this sort of tools
[Weiss, 1999] [Spafford and Zamboni, 2000]. Our prototype
system ODISET was built from a lightweight design that does
not represent a performance threat, making it ideal for wide
deployment through an open source operating system. We
present the design ideas behind the model, the tracing and
communication techniques, the loop-unwinding method, as
well as some experimental results of the first release of the
prototype.

The rest of this paper is organized as follows: Section 2
explains the problem of connection back-tracing. Section 3
discusses relevant related work in the area. Section 4 is a
description of our solution approach and the implementation
issues of the prototype. Section 5 includes experimental re­
sults and findings. Conclusions and future work are in section
6 right before the listing of bibliography and references.

2 The Problem of Connection Back-tracing
Given a set of hosts H = {h1, h2,..., hn), with a user
could create a connection chain of m hops as follows: from
host hi into from into from into
and so on, until finally connecting to target host ' The
problem of connection back-tracing is: given the set H, the
target host and username connected to find the
hosts that compose the connection chain and identify its root
host

For a small this problem is straightforward. Just a
few hosts need to be analyzed in order to identify the source
of a connection sequence. However, as n becomes larger (e.g.
n 2), the complexity of the problem increases since a
larger number of hosts in H multiplies the possibilities of cre­
ating a more confusing connection path.

System administrators have limited access to information
on who is connecting to one of their servers. On a LAN, ad­
ministrators typically have login access to all servers, which
makes the tracing process easier; however, for connections
coming from the outside of the LAN, they wil l be unable to
freely access all other servers for scrutiny. The visibility of
this type of connections reduces to one link of the connec-

750

tion chain. That is, an administrator can only see the terminal
number or the IP address/host-name of the immediate host
from where the users are logging on. She is unable to tell,
however, whether that host is in fact hi (the machine from
where the user is actually typing in commands). In order to
find out whether that is the root host or not, she will have to
contact the administrator of the remote system who, in turn,
wi l l have to perform a similar checking.

This job is cumbersome and requires time, communication,
and trust from the parties involved. For the case of a connec­
tion that has been closed already, audit information will have
to be examined in order to find the nodes of the chain that lead
to the origin of the connection. This off-line sort of tracing
has an important flaw: it counts on the existence and integrity
of audit log files. For clean systems this would not be a prob­
lem but, for systems that have been compromised, and, in the
case of a connection chain created to perpetrate an attack this
could probably be the case, these files could have been tam­
pered with during a previous break-in f Yoda and Etoh, 2001].
On the other hand, if a connection is still alive, i.e. there is a
flow of packets between source and destination, information
contained on system tables and network packets can be used
to trace the user while she is on-line. That is, precisely, our
approach.

3 Related Work
There are some projects that touch on the problem of con­
nection route tracing. One of them is the method proposed
in [Yoda and Etoh, 2001]. This model implements network
traffic monitors that perform session tracing once a server has
been compromised. A system that computes deviations from
the traffic observed at two different hosts helps determine if
these hosts were used in the same connection chain. Since
checking network traffic at a node involves huge amounts of
data, multiple packet monitors permanently filter and record
specific system activity to build their own logs. These files
are analyzed by a data correlator to identify the hosts of a con­
nection chain. It is important to notice that this system deals
with the problem of deleted logs by creating its own records.
These records, however, may be the target of the same type
of attack.

IDA (Intrusion Detection Agent system) [Asaka et al,
1999] is another system that detects the origin of an infor­
mation exchange related to an incident. It is primarily an in­
trusion detection system that employs mobile agents to detect
local attacks. From a main host, investigation agents are sent
over to the requester that needs an integrity check. These
agents use the MLSI (Marks Left by a Suspected Intruder)
strategy to reduce the amount of data needed to flag system
activity as anomalous. In order to collect further information
on a break-in, IDA does passive route tracing using audit log
data. The structure of the tracing method is not specified by
the authors but its agents broadcast connection evidence to
their peers as a way of identifying possible hosts involved in
the attack.

The TBAIR system (Tracing-based Active Intrusion Re­
sponse) [Wang et aL, 2001] is a network-based intrusion de­
tection tool that, unlike most traditionally-passive intrusion

MULTIAGENT SYSTEMS

detection systems, adds active response to security events us­
ing a technique called Based on Sleepy Watermark Tracing.
TBA1R tries to attack the root of the vulnerability exploit­
ing problem by locating the originators of the incident to
hold them accountable for their intrusions and their method
is based on the analysis of evidence collected from the net­
work.

Thumbprinting [Staniford-Chen and Heberlein, 1995] is a
technique that places several processes across the network in
order to capture activity signatures or "thumbprints". This
method does not require to have processes on all hosts and,
like in the case of [Yoda and Etoh, 2001], it replicates packet
information for future review. This system is based on the
fact that the packet content of a session passing though a set
of hosts is invariant and can be compared in order to identify a
host in the chain. This system is capable of detecting the root
of a connection but it is not designed to identify the exact
hosts that are part of the chain.

The approach that we present here through the implemen­
tation of the OD1SET system differs from these previous
projects in the following manner. It performs on-line rather
than off-line tracing (i.e., it does not use audit logs). The sys­
tem does not incorporate agent mobility. Instead, it uses a
distributed model using agents that communicate over secure
channels for sharing information. Unlike some other models,
ODISET is able to not only identify the origin of the con­
nection but also all the hosts that are part of the connection
chain.

Figure 1: Basic composition of an ODISET tracing agent:
public and private encryption keys, client functionality, server
functionality, rule base, and knowledge base (connection
chain tree + user data).

4 Solution Approach using Agents
"We require systems that decide for themselves what they
need to do in order to satisfy their design objectives. Such
computer systems are known as agents" [Weiss, 1999]. The
use of agents for performing system assurance activities
[Spafford and Zamboni, 2000] that typically require the skills
of a human (e.g. inference, learning and decision mak­
ing) makes possible the development of automatic or semi-
automatic tools that aid system administrators in their task of
securing a system.

The distributed nature of agents allows for more efficient,
parallel data processing. We take advantage of this feature

MULTIAGENT SYSTEMS

that perfectly fits into a network environment [Huhns and
Singh, 1998] in order to speed up connection back-tracing
using autonomous agents. This approach eliminates the need
for centralized data collection and analysis, a method that is
still in use and that represents a design deficiency by putting
the availability of a system in risk (monolithic systems typi­
cally suffer from having a single-point-of-attack).

In order to provide the agents with survivability features
that make them more resistant to attack, each agent owns a
digital certificate to create private communication channels
when interacting with its peers. With the intention of reduc­
ing the probability of Denial of Service (DoS) attacks targeted
toward the agents, a port-allocation scheme is used. This
scheme dynamically changes the socket port numbers used
by the agents in order to avoid being monitored or receiving
unfinished-protocol requests.

This system features rule-based agent behavior through
which individual agents are capable of detecting connection
loops in a chain. The approach deals with the problem of
deleted or damaged audit information by not using historical
audit data. Agents look up information on dynamic session
tables in order to extract data relevant to the tracing process.
The process table, for instance, is not easily modifiable as au­
dit logs are. The system might go down due to inconsistency
if changes are made to this type of file, which would make
the change evident.

4.1 Proposed Mode l

Tracing method and security
The system is composed of a number of tracing agents (Fig­
ure 1) that communicate with each other sharing information
on user connections. There is an agent running at each host
hi and the ideal situation is having an agent running on every
host of the network. Every agent has client and server capa­
bilities that enable it to request information from other agents
and to supply information to them. An agent is not useful by
itself, it needs to collect information from the others in order
to identify the links of a connection chain. The agent at the
target host wil l eventually collect information from a number
of its peers and wil l inform to the local administrator about
the origin of the connection.

The perceptions of a tracing agent are received from two
main sources: 1) the state of the system regarding user ses­
sions and connections, and 2) messages from other agents re­
questing or providing information.

The environment an agent inhabits is highly dynamic and
provides the communication channel necessary for an agent
to stay in touch with its peers over the network. This envi­
ronment can also represent a threat to the tracing system if
malicious users gain access to it.

As a result of the changes perceived by an agent, it can
perform a number of different actions: a) send messages to
an agent, b) request messages from an agent, c) broadcast
messages to all agents, d) generate encryption keys, e) en­
crypt messages, f) decrypt messages, g) identify connection
loops, h) retrieve system status information, and h) save its
knowledge to a safe location.

The knowledge of an agent is stored on a repository known

751

as knowledge base (KB). This KB includes tracing host infor­
mation and user data. A tree structure stores the information
on the hosts that are part of a connection chain. Information
regarding user names, login times and dates is stored on a sep­
arate structure. These two elements represent all the knowl-
edge an agent has about the state of its environment. Should
this knowledge be lost, the agent would lose track of previous
events and would have to be updated by its peers.

The actions an agent takes depend on the information of the
state of the system and its perceptions [Russell and Norvig,
1995]. Embodied into the agent are a set of rules that enable
the agent to work autonomously deciding what to do. As new
knowledge is fed into the KB more rules from the rule base
need to be analyzed before making any conclusion and pro­
ceeding (the rule base is composed of 23 rules). The type
of perceptions and actions do not change but the state of the
environment does evolve hereby modifying the behavior of
agents. The type of rules that make up the rule base are of the
form:

R 1 :
IF ((HOW-CONNECTED(User)^Console) AND
(WHAT-DOING(Use r)=Ssh - t o (Ta rge t)))

TRACTNG-DONEO;
R 2 :

TF ((MESSAGE-TYPE (Message) t r a c i n g -
r e q u e s t) AND (VALID-PUBLIC-KEY(P-
k e y) = F a l s e))

DENY-CONNECTIONO AND BROADCAST-
TREE () AND ALERT() ;

In order to protect their information exchanges, all agents
have an RSA key-pair that is used to negotiate symmetric ses­
sion keys before encrypting their messages. Encryption at
this level guarantees that the information will not be visible
at any point before reaching the top of the IP stack of the
recipient party. This wil l deter sniffing attacks that arc other­
wise possible on plain text agent communications [Jansen et
al., 2000].

The tracing process starts when a connection needs to be
monitored. Agents at target host ht receives local informa­
tion from the system and checks for remote connections. If
there is a connection from a remote machine hr, A will con-
tact agent B at host hr in order to research the connection.
For this purpose, a private channel wil l be opened using the
asymmetric encryption keys of the agents. A symmetric ses-
sion key will be agreed upon and all messages will be en­
crypted with it for that exchange. The same procedure will
be followed if there are relevant connections from outside of
the host of hr coming into the server. A set of secure channels
wil l be setup by the agents in order to share the information
they have regarding connections and user activity. One hop at
a time, the links composing a connection chain wil l be found.

The tracing information obtained by an agent is shared with
the rest of the agents through broadcast communication (i.e.,
an agent sends a message to all existing agents). This guaran­
tees that the KB's of the agents are consistent with the state of
the environment and that, in the event of a security incident,
the knowledge acquired by an agent will not be lost as it has
been replicated and enriched by other agents.

752

Figure 2: Loop unwinding. If a user connects from host h8
into host ht doing a loop through hops 1, 2, 3, 4, 5 and 6 as
shown above, agent A at ht wil l start the tracing process and
will be able to identify the loop to reduce tracing time in the
future.

If we have a set H of n hosts, and a user creates a connec­
tion chain C of m hops, the system wil l behave well with a
O(n) worst case scenario. Suppose m n. If the number q
(0 q m) of connections that go from host hx into host hy
- or vice versa - form a loop, the arrangement of the agents
will find at most two relevant connections between the hosts
hereby unwinding the loop. This is due to the fact that an
agent is capable of identifying repeated connections toward
itself by storing information on what users are connected. For
the case of loops passing through k hosts, the chain will be re­
duced to at most 2k hops. This makes a worst case scenario
of O(n) with n =

Several methods exist (see [Wolf and Lam, 2000] for a ref­
erence) for loop unwinding, mostly in the compilers and dis­
crete mathematics areas. In our model, we utilize a simple
technique based on observed activity. An agent first stores
user name and host-name information on its KB. When a trac­
ing process is started, an agent will engage in communication
with several neighbor agents in order to collect data that al­
low them to draw conclusions. Each time agent A receives
new information, it checks its KB for loops. This is done as
follows (see Figure 2). Al l tracing requests have an ID num­
ber w. Agent A initiates a tracing round. If while waiting for
news on a particular w the agent is being asked by a coop­
erating agent B for information to complete tracing round w
as well, the agent knows it is part of a loop since it is receiv­
ing information on a tracing round that it started (all agents,
including initiators have this property). The trace is stored
on its KB tree T and, if the user being traced repeats a loop
that passes through the same host where agent A is located,
this agent wil l reduce the tracing time by omitting a further
requests to follow a loop.

Dynamic port-allocation protocol
Network service daemons usually work on a particular port
listening for requests. Port-scan attacks try to reveal what are
the services listening on the ports of a host. Once this is done,
they look for vulnerabilities present on one of those services
and, if they find one, they are in a position to exploit such a

MULTIAGENT SYSTEMS

flaw on the port they have previously identified. DoS attacks
are started with port-scans to send a large number of request
for service to a vulnerable port so that, at the end, there are so
many requests pending to be answered - usually incomplete
requests at protocol level - that the machine slows down and
needs to be restarted. Additionally, if the service on that port
does not support encryption, the traffic going through it may
be observed by a network sniffer.

Al l network services using sockets on a port may suffer
from this sort of attacks. We propose a model to minimize
the likelihood of being a target. As we mentioned, all com­
munications between agents is encrypted, so sniffing of plain
text is impossible in practice. In order to deter attacks at the
service port, we propose a technique that can be used in real
life with radio equipment: channel switching (this is currently
being implemented on the prototype). Initially, all agents lis­
ten on a well-know port p. The requests for service on that
port do not allocate significant system resources according to
the implementation. This basic port is used just to agree on
the actual communication port q for the exchange (q p).
For this, the receiver proposes a valid port number that is
sent to the other party over a secure channel. They imme­
diately switch to that port for exchanging information. This
port switching is repeated during the session within a fixed
short period of time. In order to defeat this protection mecha­
nism, a port scan wil l have to be run again and, by the time it
succeeds, the communication may have moved to a different
port. Frequency of switching and encryption this mechanism
possible.

4.2 Implementat ion of the Mode l
As a proof of concept, the model was implemented on a pro­
totype system named ODISET (On-line Distributed SEssion
Tracing). Every agent is a stand-alone process implemented
with sockets for providing client and server functionality. It
can request information from others and it can share infor­
mation as well. A 1024-bit RSA key-pair {Kpub,Kpriv}
is generated before the agent is launched. Once the agent is
started up, it is ready to collaborate in the tracing of a ses­
sion. When contacting a peer agent, it exchanges public keys
and verifies the signature on the received key. The certifica­
tion must come from the ODISET master key whose public-
key is accessible to all agents. In order to speed up message
encryption, and given that encryption with public-key meth­
ods is much slower than the one using private-key algorithms
[Schneier, 2001], the agent that is to send a message does the
following: 1) it generates a session key KDES for symmetric
encryption, 2) it then encrypts the message M using KDES*
3) it encrypts KDES using the public key of the recipient,
and, finally, 4) it sends the encrypted session key and the en­
crypted message to their destination. The implementation of
the RSA and DES algorithms is based on version 2.0 of the
RSAREF™cryptographic library by RSA Laboratories.

The first release of the ODISET prototype was developed
on a RedHat Linux 8.0 box. Although agent templates can
be easily obtained from multiple agent-generator systems and
for different compilers and interpreters, they typically put un­
necessary functionality into the agent that produces heavy
agents. For this reason, and with the intention of providing

MULTIAGENT SYSTEMS

the best performance possible, the implementation was made
in C by minimizing the number of libraries to include. Con­
sidering that programs and data files may be damaged after
a security incident and that a security tool can not rely on
them, our agents do not use the output of programs such as
w, who and ps to read system tables like utmp and wtmp.
They incorporate this functionality into its own body, which
gives them extended independence. The size of each agent
is around 20 Kbytes to which we add two encryption keys
that need to be uploaded at certain point (around 4 additional
Kbytes) as well as the knowledge and rule bases that are never
uploaded entirely into memory.

The knowledge base of each agent includes a tree structure
T where all connection chains are stored. Whenever a host has
received all the information regarding a particular session, it
stores the connection chain c = [hi h2 ... hri] into
T and sends it to all available agents. Every agent reads c and
finds the hosts in c that match its own tree. It then creates new
branches to keep its KB up-to-date. The rule base is encoded
along with the body of the agent. Being an static structure, it
is not necessary to keep it as a separate entity.

5 Experimental Results
In order to evaluate the efficiency of the method, multiple ex­
periments were prepared. After some implementation cor­
rections, all of them were successful after the unwinding
technique was incorporated. The testing facility is a set of
seven Linux machines running kernels 2.1 and above on Red-
hat 7.2, RedHat 7.3, RedHat 8.0 and Mandrake 8.0 operat­
ing system installations. The general structure of the ex­
periments consists of creating connection chains of length
m {2,4,8,16,32} using n hosts where n {3,5, 7}.
This maximum number of machines was selected since our
experience tells it is highly improbable that, for session per­
formance purposes, an attacker uses much more step-stone
hosts. Al l cases where there is no loop in the chain, that
is, where m = n are easily resolved so we prepared con­
nections that include a series of loops along the chain. For
instance, in the three-server setup, the connection goes in cir­
cles from host hi into h2< from host h2 into host h3, from host
h3 back into host h3 and so on for a total number of m hops.
The experiments show that the algorithm effectively unwinds
the loops. When an agent finds the same loop repeated sev­
eral times, it wil l not try to solve it over and over again. Its
KB contains user and connection information that allows it to
conclude that a user is creating a loop.

Part of the contribution of this method is the fact that by
using loop unwinding, the performance of the algorithm has
an upper threshold that is, at most, linear on the number of
hosts n through which the user connects. A set of n agents
wil l be in charge of tracing the connection and even for a
very long chain, an agent located on each hosts guarantees
that loops wil l not delay the tracing process in any way.

Table 1 includes tracing numbers with and without encryp­
tion. Both columns indicate that the growth of the tracing
time is below linear time with respect to the number of hops
m (this makes us think this model should escalate well to large
networks). The time difference from tracing with and without

753

Table 1: Tracing time with and without encryption (RSA key
exchange + DES chaining block ciphering) with seven hosts
(/i=7); m corresponds to the number of connection hops.

encryption is significant. This only reminds us of the perfor­
mance cost of using cryptographic algorithms to protect our
data. It is not likely that a connection chain extends over more
than thirty hosts, for instance. It follows that, even with 1024-
bit keys, the use of encrypted communication is the way to go
regarding agent communication for this problem.

The strengths of this model are its unwinding algorithm,
the possibility of performing on-line tracing and the structure
of an autonomous lightweight agent. The proposed dynamic
port-allocation method can effectively deter communication
sniffing and promises to be effective for the case of agent-
based applications as well. A disadvantage of the system
is that it works exclusively with alive connections. If, for
one reason, the user disconnects the session from our host,
the agents will go blind and wil l not be able to trace the in­
truder. The model, however, can be easily extended toward
off-line tracing, but there are already other systems, like the
ones highlighted in Section 3, that cover that case. Another
improvement area is the fact that an agent wil l see only users
that are connected to a host through an interactive session us­
ing commands that update system tables. If an intruder ex­
ploits a vulnerability and gets to spawn a shell session at the
host without having to run a remote connection command,
she wil l not be seen. That is because these connection com­
mands like r l o g i n and ssh write system activity informa­
tion to system tables. If none of this programs is used by an
intruder, the host will not record her presence and she will be
able to go unnoticed.

6 Conclusions and Future Work
This model proves the feasibility of performing on-line con­
nection back-tracing using lightweight autonomous agents in
a distributed fashion. It also proposes two security mech-
anisms that can be implemented on other software agents
to make their communication structure more robust (these
mechanisms are random port-switching and encrypted agent
communication using certificates). We conclude that the
adoption of a tracing system like this by multiple operating
systems through a sort of agent sand box per host would in­
deed contribute to solve security incidents more rapidly.

Future work includes a) the integration of the ODISET
tracing tool into an agent-based intrusion detection system,
b) the development of survivability methods for agents using
replication, mobility and zero-loss mechanisms, and c) the
extension of the tracing space to include dial-up connections.

754

References
[Asaka et al, 1999] M. Asaka, M. Tsuchiya, T. Onabuta,

S. Okasawa, and S. Goto. Local attack detection and intru­
sion route tracing. IE1CE Trans. Commun. New Paradigms
in Network Management, E82-B(l 1), November 1999.

iCheswick and Bellovin, 1994] W.R. Cheswick and S.M.
Bellovin. Firewalls and Internet Security: Repelling the
Wily Hacker. Addison Wesley, 1994.

[Huhns and Singh, 1998] M.N. Huhns and M.P. Singh.
Agents and multiagent systems: Themes, approaches, and
challenges. Readings in Agents, pages 1-23, Morgan
Kaufmann, San Francisco, CA 1998.

[Jansen etal, 2000] W. Jansen, P. Mell, T. Karygiannis, and
D. Marks. Mobile agents in intrusion detection and re­
sponse. June 2000.

[Rapalus, 2002] P. Rapalus. Computer security survey 2002.
Technical Report 1, Computer Security Institute, CSI, and
the Federal Business of Investigations, FBI, April 2002.

[Rivest et al, 1979] R.L. Rivest, A. Shjamir, and L.M. Adle-
man. On digital signatures and public key cryptosystems.
MIT Laboratory for Computer Science, (MIT/LCS/TR-
212, technical report), January 1979.

[Russell and Norvig, 1995] P. Russell and E. Norvig. Arti­
ficial Intelligence: A Modern Approach. Prentice Hall,
Englewood Cliffs, New Jersey, 1995.

LSchneier, 2001] B. Schneier. Managed security monitoring:
Network security for the 21st century. Computer Security
Journal, 77.2,2001.

[Spafford and Zamboni, 2000] E. H. Spafford and D. Zam-
boni. Intrusion detection using autonomous agents. Com­
puter Networks, 34:547-570,2000.

[Staniford-Chen and Heberlein, 1995] S. Staniford-Chen
and L.T. Heberlein. Holding intruders accountable on the
internet. IEEE Symposium on Security and Privacy, 1995.

[Stoll, 1987] C. Stoll. The Cukoo's Egg. Double Day, 1987.

iWang era/., 2001] X. Wang, D. Reeves, and S. Wu.
Tracing-based intrusion response. Journal of Information
Warfare, 1(1), September 2001.

[Weiss, 1999] G. Weiss. Multiagent Systems: A modern
Introduction to Distributed Artificial Intelligence. MIT
Press, 1999.

[Wolf and Lam, 2000] M.E. Wolf and M.S. Lam. A loop
transformation theory and an algorithm to maximize par­
allelism, volume 2, pages 452-471, October 2000.

[Yoda and Etoh, 2001] K. Yoda and H. Etoh. Finding a con­
nection chain for tracing intruders. 6th European Sympo­
sium on Research in Computer Security (ESORICS 2000),
pp. 191-205, October 2001.

MULTIAGENT SYSTEMS

