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Abstract 
After many successes, statistical approaches that 
have been popular in the parsing community are 
now making headway into Natural Language Gen­
eration (NLG). These systems are aimed mainly at 
surface realization, and promise the same advan­
tages that make statistics valuable for parsing: ro­
bustness, wide coverage and domain independence. 
A recent experiment aimed to empirically verify 
the linguistic coverage for such a statistical surface 
realization component by generating transformed 
sentences from the Penn TreeBank corpus. This ar­
ticle presents the empirical results of a similar ex­
periment to evaluate the coverage of a purely sym­
bolic surface realizer. We present the problems fac­
ing a symbolic approach on the same task, describe 
the results of its evaluation, and contrast them with 
the results of the statistical method to help quan­
titatively determine the level of coverage currently 
obtained by NLG surface realizers. 

1 Introduction 
Like parsing, text generation offers enormous potential bene­
fits for more natural interaction with computers. Examples of 
applications which could be greatly improved include auto­
matic technical documentation, intelligent tutoring systems, 
and machine translation, among many others. Historically, 
natural language generation (NLG) has focused on the study 
of symbolic pipelined architectures which receive knowledge 
structures and goals from knowledge-based applications and 
which proceed to progressively add linguistic information. 

In the last few years, the same paradigm shift which 
occurred in the parsing community, the use of statisti­
cal/empirical methods, has begun to influence the NLG com­
munity as well. As with parsing, statistical generation 
promises benefits such as robustness in the face of bad data, 
wider coverage, domain and language independence, and less 
need for costly resources such as grammars. But unlike pars­
ing, which starts with a very flat representation (text) which 
is easily accessible in large quantities to both statistical and 
symbolic methods, the semantic input for NLG is typically 
associated with large knowledge-based systems. The types of 
corresponding corpora which would be necessary for using 

statistical processes, pairs of subgraphs of knowledge bases 
and their texts, do not currently exist in large quantities. 

Because of this representation problem, most statistical 
systems have concentrated on replacing existing individual 
components in the standard NLG pipelined architecture [Re-
iter, 1994] without changing the remaining original sym­
bolic modules. The most popular candidate has been the 
surface realization module [Elhadad, 1991; Bateman, 1995; 
Lavoie and Rambow, 1997; White and Caldwell, 1998], 
which is responsible for converting the syntactic representa­
tion of a sentence into the actual text seen by the user. Thus 
current statistical generators are still dependent on remaining 
architectural modules in a system to function and do not by 
themselves account for a large amount of linguistic phenom­
ena: pronominalization, revision, definiteness, etc. 

However, statistical surface realizers [Langkilde and 
Knight, 1998; Bangalore and Rambow, 2000; Ratnaparkhi, 
2000; Langkilde-Geary, 2002] have focused attention on a 
number of problems facing standard, pipelined NLG that 
have until now been generally considered future work: large-
scale, data-robust and language- and domain-independent 
generation. In addition, as Langkilde points out, empirical 
evaluation has not been standard practice in the NLG com­
munity, which has instead relied either on the software engi­
neering practice of regression testing with a suite of examples 
or theoretical evaluations [Robin and McKeown, 1995]. 

This paper presents the analogue of this recent statistical 
experiment using a well-known off-the-shelf symbolic sur­
face realizer, using an augmented generation grammar that 
includes support for dialogue and additional syntactic cov­
erage. We first describe in the following section the repre­
sentations and processes needed to understand its evaluation. 
We then detail our implemented system for converting sen­
tences from a large corpus into a systemic functional nota­
tion, present an evaluation of that system and the grammar 
itself using Section 23 of the Penn TreeBank [Marcus el al, 
1993], and finally discuss the implications of that evaluation. 

2 Sentence Representations 
To undertake a large-scale evaluation of a symbolic surface 
realizer, we must first find a large quantity of sentence plans 
with which to produce text. However, most text planners can­
not generate either the requisite syntactic variation or quan­
tity of text, and we thus cannot turn to implemented gener-
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Figure 1: A Perm TreeBank Annotated Sentence and Corresponding FUF/SURGE Functional Description 

ation systems as a source. To solve this problem, Langkilde 
trained a statistical algorithm [Langkilde-Geary, 2002] on a 
substitute set of sentence plans: the Penn TreeBank [Marcus 
et ai, 1993], a collection of sentences from newspapers such 
as the Wall Street Journal, which have been hand-annotated 
for syntax by linguists. An example sentence is shown on the 
left side of Figure 1. Hierarchical syntactic/semantic bracket­
ing is provided along with the syntactic categories of lexemes 
and symbols in the newspaper texts. 

Unfortunately, text planners currently in use do not gener­
ate representations of the form found in the Penn TreeBank, 
opting instead to use more fully-developed syntactic theories, 
such as HPSG [Pollard and Sag, 1994], from the linguis­
tics community. Because annotated texts do not exist in this 
form, Langkilde created a pre-processing system to translate 
from the TreeBank annotation into the language accepted by 
the HALOGEN statistical surface realizer [Langkilde-Geary, 
2002]. HALOGEN uses these translations to create a forest 
lattice whose paths from start to finish represent many possi­
ble versions of a single sentence. Separately, a larger corpus 
is processed to obtain bigram or trigram frequencies, which 
are then used to rank the possible sentence versions based 
on word adjacency. The highest ranked sentence is then pre­
sented as the final output of the system. 

In contrast, most deep surface realizers are symbolic rather 
than statistical, and consist of components that check gram­
matical constraints, appropriately linearize constituents, and 
adjust for morphology and formatting. One such system 
in wide use, FUF/SURGE [Elhadad, 1991], combines ideas 
from systemic functional grammars and head-driven phrase 
structure grammars. An example of the F U F representation, 
known as afunctional description is shown on the right side 
of Figure 1. SURGE is the largest generation grammar for En­
glish, and has the largest regression test suite available. But 
as Langkilde pointed out, 500 test examples are insufficient 
to empirically demonstrate the coverage of a grammar. 

To arrive at a set of sentence plans which is representa­
tive of English, as well as to evaluate the coverage of the 
FUF/SURGE surface realizer in a way which can be directly 
compared to the HALOGEN evaluation, we likewise used the 
Penn TreeBank as a sentence source. Because our represen­
tations are also different, we (as Langkilde) needed a pre­
processing system to convert from the TreeBank notation into 
the functional descriptions expected by the surface realizer. 

Our pre-processor thus performs top-down structure traver­
sal of a sentence annotated in Penn TreeBank format and 

Figure 2: Penn TreeBank Notation and Normalized Form 

builds the corresponding functional description. The pre­
processor is organized as a context-sensitive, proceduralized 
rewriting grammar which matches input symbols to output 
symbols. The resulting functional descriptions can then be 
given to the FUF/SURGE surface realizer, and the sentence 
string it produces can be lexically compared to the original 
sentence in various ways to determine how well the surface 
realizer performs at sentence generation. 

3 Implementation 
The implementation necessary for evaluating the coverage 
of FUF/SURGE comprised three processes: (1) normalizing 
the syntactic/semantic representations, (2) transforming the 
normalizations into functional descriptions, and (3) generat­
ing the sentence itself with a surface realizer. The normaliz­
ing phase is necessary to convert the original Penn TreeBank 
structures into a LlSP-readable format (Figure 2), which was 
accomplished with a series of regular expression transforma­
tions on the original text file. 

The most time-consuming aspect of the procedure was cre­
ating the transformation component, which was highly anal­
ogous to writing parsing rules by hand. The resulting com­
ponent contained 4000 lines of code and approximately 900 
rules, although most of the actual computational effort was 
spent instead in surface realization. Most of the problems 
encountered were the result of differences in the underlying 
grammars themselves. For example, the Penn TreeBank has 
a more hierarchical noun phrase structure than the flatter rep­
resentation of SURGE'S systemic functional grammar. 

The final task involved changing the surface realization 
component (1) to add additional branches and surface forms 
to the grammar that were not originally present in order to 
produce surface forms not previously possible, (2) to add new 
punctuation and capitalization rules1, and (3) to update irreg-

]The Penn TreeBank, because it is a newspaper corpus, contains 
many newspaper headlines and stock quotes with domain-specific 
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ular morphology due to the vast number of words the system 
had not previously seen. The principal linguistic problems 
uncovered by this phase include: 

• Quotations: Newspaper text generally contains large 
amounts of complex quotations, such as splitting a 
quoted phrase to insert the speaker in the middle, or 
merging a quote into an unquoted part of the sentence: 
"1 have this feeling that it's built on sand," she says, that 
the market rises "but there's no foundation to it." 

• Punctuation scoping: Problems related to the use of 
punctuation wi th tree structureslDoran, 19981. For ex­
ample, S U R G E has a flat representation for noun phrases, 
causing difficulties wi th phrases such as The major "cir­
cuit breakers" where SURGE cannot insert punctuation 
between the adjective and nominal classifier. 

• Adverb and clause ordering: Because satellite clauses 
in SURGE are placed using semantic information, they 
sometime appear in different (though still grammatically 
acceptable) positions than were specified in the original 
sentence [Elhadad et ai, 2001 J. This can oftentimes 
cause a perfectly acceptable sentence to be produced, 
but highly skew automatic measurements of correctness 
such as tree edit distance (simple string accuracy). For 
example, contrast: "Exports fell 29% in the first few 
months" vs. " In the first few months, exports fell 29%." 

• Semantic roles: SURGE has a hybrid syntactic/semantic 
representation, whereas the Penn TreeBank is purely 
syntactic. Thus some guessing must be done to fill in 
semantic roles in the corresponding functional descrip­
tion. Wrong guesses can lead to incorrect surface forms 
even when the remainder of the transformation was ac­
complished successfully. 

Whi le the normalization process is slow (10-12 hours each 
for WSJ23 and WSJ24), it occurs offline and only once. The 
transformation process is quite fast, requiring on average 0.12 
seconds per sentence. Meanwhile, the FUF/SURGE system is 
relatively slow, as it requires the use of functional unification, 
a task of inherent complexity due to backtracking. Section 
23 needed 8,397.2 seconds to generate 2372 sentences (with 
a longest exact match of 48 words), while section 24 needed 
5,590.4 seconds to generate 1,326 sentences (with a longest 
exact match of 44), for a combined average of 3.72 seconds 
per sentence.2 This contrasts wi th statistical approaches like 
Langkilde's, which require 27.1-55.5 seconds depending on 

formatting not typically used in NLG systems, such as: "8 13/16% 
high, 8 1/2% low, 8 5/8% near closing bid, 8 3/4% offered." 

Additionally, a compiled C version of FUF can produce sen­
tences using the same grammar on the order of 0.1 seconds. 

algorithm parameters, and gets exponentially worse if it uses 
trigrams or larger models in an attempt to improve quality. 

4 Experiments and Results 
In order to evaluate the coverage of the SURGE grammar, we 
used the standard train and test methodology. Unlike typi­
cal machine learning experiments, adjustments to the trans­
formation rule set were done by hand, although the evalua­
tion of the resulting sentences was performed automatically. 
Training took place over a period of several months, consist­
ing of multiple iterations over Penn TreeBank Sections 0-22 
and 24 to both improve the number of sentences which could 
be generated and to match as closely as possible the or igi­
nal sentences. These two goals were accomplished solely by 
adding rules to the transformation set and by updating S U R G E 
grammar rules, notably aspects pertaining to the stock market 
domain, in addition to support for extended quotations which 
was added in previous work iCallaway and Lester, 20021. 

We considered two types of string matches: exact 
matches that were identical character-by-character, and 
"close" matches which were two words or less longer or 
shorter than the original sentence. There were several motiva­
tions for this second choice: (1) many sentences were equiv­
alent except for a minor missing/extra punctuation mark or 
wrongly capitalized word (especially wi th newspaper head­
lines); (2) as mentioned previously, movable clauses (so-
called circumstantials in SURGE nomenclature) could be put 
in multiple acceptable locations; and (3) sentences with al­
most the exact number of words, especially sentences wi th 
more than 15 words, were much more l ikely to at least have 
all of the various phrases present when they were within 
two words or the original sentence's length. We util ized the 
N1ST Simple String Accuracy (SSA) as an automatic eval­
uation score (the same as used in Langkilde's work), where 
the smallest number of Adds, Deletions, and Insertions were 
used to calculate accuracy: 1 - ( A + D + T)/#Characters. 

The only previous measure of generation coverage for Sec­
tion 23 of the Penn TreeBank is that of [Langkilde-Geary, 
2002], who defined coverage as the number of sentences for 
which the surface realizer produced strings. As seen in Ta­
ble 1, our system achieved 87.8% on one of the training sets 
and 88.7% on the test set compared to between 76.2% and 
83.3% for HALOGEN depending on its algorithm parameters. 

A more detailed examination of the coverage and accuracy 
of the system is found in Table 2 for WSJ Section 24 and 
Table 3 for Section 23. Both tables are broken down by sen­
tence length, which shows that the results are highly skewed 
towards sentence of smaller length, as would be expected in 
a test for exact matches. It should be noted, however, that 
surface realizers are rarely called upon to generate sentences 
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Table 3: Sentence coverage/accuracy for the unseen WSJ23 sentences grouped by word length 

with the extended lengths and complexities found in highly 
educated newspaper text. Finally, the "valid FD" column in­
dicates that the transformation program is very good at pro­
ducing valid functional descriptions, even if they eventually 
are discarded by the grammar as being erroneous. 

The test set had a slightly higher coverage than the train­
ing set shown above, as well as a higher number of perfect 
matches and a better score using the NIST SSA measure. Al ­
though we trained on other sections of the Penn TreeBank, 
time constraints due to the large amount of time required to 
generate all test sentences prevented us from having a fuller 
comparison set. Additionally, Section 24 was the first sec­
tion we trained on, and it is likely that later sections were 
more similar to Section 23, or that the amount of domain-
specific stock market constructions were imbalanced. Finally, 
the "close matches" column shows how many candidate sen­
tences might be nearly exactly matching, and the sum of these 
two is reflected in the final category "combined." 

One interesting observation is that this evaluation (and cor­
respondingly, the evaluation of HALOGEN) is not only an 
evaluation of the underlying surface realizer, but also of the 
accompanying transformation program that converts the Penn 
TreeBank notation into the specifications it expects. We thus 
set out to perform a minor, secondary evaluation to determine 
if it were possible to find a baseline metric for how many sen­
tences could still be generated by the surface realizer even if 
the corresponding FDs could not be produced for them by the 
transformation program. 

We thus randomly selected 25 sentences from each of the 
two sections which were not either perfect matches or "close" 

matches, i.e., they were not in the "combined" match cate­
gory. While these sets included some of the problems listed 
in Section 3, 41 of the 50 were capable of being rendered by 
hand as FDs which produced exact matches without changes 
to the grammar, 6 required minor changes to the grammar 
which were quickly performed, and the remaining 3 sen­
tences required major grammar changes which have still not 
yet been made. The latter were sentences that still do not have 
satisfactory linguistic analyses in the linguistic literature. We 
thus conclude that with better transformation rules, we could 
then obtain close to 95% coverage. 

5 Discussion 
Surface realization is probably the most understood and com­
petent task in NLG today. There is a high possibility that sur­
face realization can already be considered a solved problem, 
except with regard to problems introduced by new languages 
or highly specialized domains. However, there are two re­
lated unsolved problems inherent in the process described in 
this paper. 

5.1 Automatic Evaluat ion of Ou tpu t 

Evaluation of NLG systems face the same problems as those 
that confront Machine Translation systems: Given a set 
of generated sentences, how do you tell how "good" they 
are in general, and how often you can produce good sen­
tences in a given context or application. Work in machine 
translation has shifted to large-scale evaluations which re­
quire automatic evaluation techniques [Papineni et al., 2001; 
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Doddington, 2002] because human graders cannot hope to 
examine all of the responses in a short enough period of time. 

Yet current evaluation techniques are completely nu­
meric/statistical in nature and do not attempt to measure se­
mantic content (such as the well-known example of a missing 
"not" in a system's output). Furthermore, these techniques 
are ill-equipped to evaluate the types of sentences produced 
by symbolic NLG systems. For example, by changing a fea­
ture specifying that, say, a particularly lengthy purpose clause 
should go at the beginning rather than the end of a sentence, a 
string edit distance metric will report a very large error when 
in terms of the system's input, only one "error" has occurred. 

As an example of this type of problem, consider that 
the string edit distance between the following original sen­
tence and that produced by the transformation program and 
FUF/SURGE with input from the Penn TreeBank would be 
83, resulting in a N1ST SSA 50.4% match: 

Freddie Mac said the principal-only securities 
were priced at 58 1/4 to yield 8.45%, assuming an 
average life of eight years and a prepayment of 
160% of the PSA model. 

Freddie Mac said assuming an average life 
of eight years and a prepayment of 160% of 
the PSA model, the principal-only securities were 
priced at 58 1/4 to yield 8.45%. 

Obviously 50.4% is a poor score for such sentences, but 
many such examples were found in our corpus and their low 
scores were factored into the NIST Simple String Accuracy 
ratios in Tables 2 and 3. 

5.2 Symbolic vs. Statistical Approaches 
Almost all fully-developed NLG systems to-date operate on 
data specified in a knowledge base from some other sys­
tem. The fact that this data has typically been represented 
as highly-structured data has been an impediment to tradi­
tional machine learning techniques which have previously op­
erated mostly on fiat, unstructured text data. It is also gener­
ally stated that statistical methods are more robust than their 
symbolic counterparts and more easily adapted to new data 
sets. The data in the previous section seems to indicate that 
HALOGEN, a statistical system, performs substantially better 
on longer sentences, even if it has lower overall coverage. But 
there are several advantages in favor of symbolic techniques. 

First, the transformation program presented above can be 
tweaked to an arbitrary level of perfection by progressively 
adding more rules. Most statistical and machine learning 
systems however have eventually reached a boundary where 
progress becomes seemingly exponentially more difficult. 
Second, errors which are encountered during processing can 
be examined and fixed because the grammars and other re­
sources are logically and semantically connected to the lan­
guage being generated, rather than being a set of numbers. If 
however a statistical generator must create new output forms 
not contained in the initial corpus or model, it must be re­
trained from scratch. 

Finally, symbolic surface realizers allow a wide range of 
optional operations which statistical programs currently can't 

offer, for example, the capability of adding formatting state­
ments in HTML, modifying punctuation, generating dialect 
differences, adding prosody for TTS, etc. While this may be 
due to the multiple decades of history over which symbolic-
systems have been developed, it may also be due to the lack of 
annotated corpora that support statistical algorithms, or even 
potentially the impossibility of having a corpus at all, such as 
in large narratives [Callaway and Lester, 2002]. 

Additionally, there are some disadvantages to the current 
approaches undertaken in statistical NLG research. For in­
stance, symbolic NL generation systems are already consid­
ered slow, and FUF/SURGE is generally considered to be the 
slowest in the NLG community. And yet the data from Ta­
ble 3 shows that HALOGEN is anywhere from 6.5 to 16 times 
slower, and thus a 10-sentencc paragraph might need 4 min­
utes or longer to be generated. Moreover, these approaches 
use techniques such as n-gram models, where n must be in­
creased to improve quality, but results in even slower genera­
tion times and exponentially larger storage space. 

5.3 Potential Applications 
The transformation program presented here has additional 
side benefits besides helping calculate the coverage of a 
grammar. For example, in generation systems where non-
linguists must maintain old data and add new data, such 
a program allows them to write sample sentences in the 
syntax-only TreeBank notation, which is much easier for 
non-linguists, and then convert those sentences directly into 
a more linguistically-manageable form for generation (e.g., 
functional descriptions). Graphical editing tools for linguistic 
data such as G A T E [Bontcheva et a/., 2002] or similar author­
ing tools could quicken the process even more. 

Additionally, the transformation program can be used as 
an error-checker for the well-formedness of sentences con­
tained in the TreeBank. Rules could be (and have been) added 
alongside the normal transformation rules that detect when er­
rors are encountered, categorize them, and make them avail­
able to the corpus creator for correction. This extends not 
only to annotation errors by the corpus creator detectable at 
the syntax tree level, but even morphology errors such as in-
correct verbs, typos, or British/American English differences 
by the original author of the text. Both of these tasks are much 
more difficult for a statistical system to accomplish, requiring 
separate retraining in the first case and locating or creating a 
corpus of possible mistakes in the second, much like what is 
done with tutoring systems where databases of potential stu­
dent errors are painstakingly constructed. 

6 Conclusions and Future Work 
Recent years have seen the arrival of statistical approaches 
to the field of Natural Language Generation, much as was 
seen in parsing a decade ago. Of the many possible compo­
nents in the standard NLG pipelined architecture, almost all 
of these statistical systems have focused on the surface real­
ization component, offering the same robustness, wide cover­
age, and domain- and language-independence as for parsing. 

Recent experiments with one statistically-based system, 
HALOGEN, showed that it could achieve respectable cover-
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age without the typical development costs inherent in pro­
ducing grammars for symbolic NLG. By taking as input sen­
tences from the Penn TreeBank, H A L O G B N was able to gen­
erate a substantial enough quantity of sentences to allow for 
an empirical analysis of grammatical coverage of English. 
This paper represents the analogous effort for a symbolic 
generation system using the FUF/SURGH systemic realization 
system, which includes the largest generation grammar. 

We presented the results of a grammatical coverage eval­
uation experiment that showed the symbolic system had a 
higher level of coverage of English as represented by the Penn 
TreeBank. We also contrasted the statistical and symbolic 
methodologies and concluded with ideas for future applica­
tions for easier creation of NLG systems and automatic error-
checking for large-scale corpora. We also plan to further de­
velop our Italian generation grammar developed at ITC-irst 
[Novello and Callaway, 2003J with a similarly annotated cor­
pus of Italian newspaper text. 
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