
Evaluating Coverage for Large Symbolic NLG Grammars

Charles B. Callaway
ITC-irst Istituto per la Ricerca Scientifica e Tecnologica

via Sommarive, 18 - Povo
38050 Trento, Italy

callaway@itc.it

Abstract
After many successes, statistical approaches that
have been popular in the parsing community are
now making headway into Natural Language Gen­
eration (NLG). These systems are aimed mainly at
surface realization, and promise the same advan­
tages that make statistics valuable for parsing: ro­
bustness, wide coverage and domain independence.
A recent experiment aimed to empirically verify
the linguistic coverage for such a statistical surface
realization component by generating transformed
sentences from the Penn TreeBank corpus. This ar­
ticle presents the empirical results of a similar ex­
periment to evaluate the coverage of a purely sym­
bolic surface realizer. We present the problems fac­
ing a symbolic approach on the same task, describe
the results of its evaluation, and contrast them with
the results of the statistical method to help quan­
titatively determine the level of coverage currently
obtained by NLG surface realizers.

1 Introduction
Like parsing, text generation offers enormous potential bene­
fits for more natural interaction with computers. Examples of
applications which could be greatly improved include auto­
matic technical documentation, intelligent tutoring systems,
and machine translation, among many others. Historically,
natural language generation (NLG) has focused on the study
of symbolic pipelined architectures which receive knowledge
structures and goals from knowledge-based applications and
which proceed to progressively add linguistic information.

In the last few years, the same paradigm shift which
occurred in the parsing community, the use of statisti­
cal/empirical methods, has begun to influence the NLG com­
munity as well. As with parsing, statistical generation
promises benefits such as robustness in the face of bad data,
wider coverage, domain and language independence, and less
need for costly resources such as grammars. But unlike pars­
ing, which starts with a very flat representation (text) which
is easily accessible in large quantities to both statistical and
symbolic methods, the semantic input for NLG is typically
associated with large knowledge-based systems. The types of
corresponding corpora which would be necessary for using

statistical processes, pairs of subgraphs of knowledge bases
and their texts, do not currently exist in large quantities.

Because of this representation problem, most statistical
systems have concentrated on replacing existing individual
components in the standard NLG pipelined architecture [Re-
iter, 1994] without changing the remaining original sym­
bolic modules. The most popular candidate has been the
surface realization module [Elhadad, 1991; Bateman, 1995;
Lavoie and Rambow, 1997; White and Caldwell, 1998],
which is responsible for converting the syntactic representa­
tion of a sentence into the actual text seen by the user. Thus
current statistical generators are still dependent on remaining
architectural modules in a system to function and do not by
themselves account for a large amount of linguistic phenom­
ena: pronominalization, revision, definiteness, etc.

However, statistical surface realizers [Langkilde and
Knight, 1998; Bangalore and Rambow, 2000; Ratnaparkhi,
2000; Langkilde-Geary, 2002] have focused attention on a
number of problems facing standard, pipelined NLG that
have until now been generally considered future work: large-
scale, data-robust and language- and domain-independent
generation. In addition, as Langkilde points out, empirical
evaluation has not been standard practice in the NLG com­
munity, which has instead relied either on the software engi­
neering practice of regression testing with a suite of examples
or theoretical evaluations [Robin and McKeown, 1995].

This paper presents the analogue of this recent statistical
experiment using a well-known off-the-shelf symbolic sur­
face realizer, using an augmented generation grammar that
includes support for dialogue and additional syntactic cov­
erage. We first describe in the following section the repre­
sentations and processes needed to understand its evaluation.
We then detail our implemented system for converting sen­
tences from a large corpus into a systemic functional nota­
tion, present an evaluation of that system and the grammar
itself using Section 23 of the Penn TreeBank [Marcus el al,
1993], and finally discuss the implications of that evaluation.

2 Sentence Representations
To undertake a large-scale evaluation of a symbolic surface
realizer, we must first find a large quantity of sentence plans
with which to produce text. However, most text planners can­
not generate either the requisite syntactic variation or quan­
tity of text, and we thus cannot turn to implemented gener-

NATURAL LANGUAGE 811

Figure 1: A Perm TreeBank Annotated Sentence and Corresponding FUF/SURGE Functional Description

ation systems as a source. To solve this problem, Langkilde
trained a statistical algorithm [Langkilde-Geary, 2002] on a
substitute set of sentence plans: the Penn TreeBank [Marcus
et ai, 1993], a collection of sentences from newspapers such
as the Wall Street Journal, which have been hand-annotated
for syntax by linguists. An example sentence is shown on the
left side of Figure 1. Hierarchical syntactic/semantic bracket­
ing is provided along with the syntactic categories of lexemes
and symbols in the newspaper texts.

Unfortunately, text planners currently in use do not gener­
ate representations of the form found in the Penn TreeBank,
opting instead to use more fully-developed syntactic theories,
such as HPSG [Pollard and Sag, 1994], from the linguis­
tics community. Because annotated texts do not exist in this
form, Langkilde created a pre-processing system to translate
from the TreeBank annotation into the language accepted by
the HALOGEN statistical surface realizer [Langkilde-Geary,
2002]. HALOGEN uses these translations to create a forest
lattice whose paths from start to finish represent many possi­
ble versions of a single sentence. Separately, a larger corpus
is processed to obtain bigram or trigram frequencies, which
are then used to rank the possible sentence versions based
on word adjacency. The highest ranked sentence is then pre­
sented as the final output of the system.

In contrast, most deep surface realizers are symbolic rather
than statistical, and consist of components that check gram­
matical constraints, appropriately linearize constituents, and
adjust for morphology and formatting. One such system
in wide use, FUF/SURGE [Elhadad, 1991], combines ideas
from systemic functional grammars and head-driven phrase
structure grammars. An example of the F U F representation,
known as afunctional description is shown on the right side
of Figure 1. SURGE is the largest generation grammar for En­
glish, and has the largest regression test suite available. But
as Langkilde pointed out, 500 test examples are insufficient
to empirically demonstrate the coverage of a grammar.

To arrive at a set of sentence plans which is representa­
tive of English, as well as to evaluate the coverage of the
FUF/SURGE surface realizer in a way which can be directly
compared to the HALOGEN evaluation, we likewise used the
Penn TreeBank as a sentence source. Because our represen­
tations are also different, we (as Langkilde) needed a pre­
processing system to convert from the TreeBank notation into
the functional descriptions expected by the surface realizer.

Our pre-processor thus performs top-down structure traver­
sal of a sentence annotated in Penn TreeBank format and

Figure 2: Penn TreeBank Notation and Normalized Form

builds the corresponding functional description. The pre­
processor is organized as a context-sensitive, proceduralized
rewriting grammar which matches input symbols to output
symbols. The resulting functional descriptions can then be
given to the FUF/SURGE surface realizer, and the sentence
string it produces can be lexically compared to the original
sentence in various ways to determine how well the surface
realizer performs at sentence generation.

3 Implementation
The implementation necessary for evaluating the coverage
of FUF/SURGE comprised three processes: (1) normalizing
the syntactic/semantic representations, (2) transforming the
normalizations into functional descriptions, and (3) generat­
ing the sentence itself with a surface realizer. The normaliz­
ing phase is necessary to convert the original Penn TreeBank
structures into a LlSP-readable format (Figure 2), which was
accomplished with a series of regular expression transforma­
tions on the original text file.

The most time-consuming aspect of the procedure was cre­
ating the transformation component, which was highly anal­
ogous to writing parsing rules by hand. The resulting com­
ponent contained 4000 lines of code and approximately 900
rules, although most of the actual computational effort was
spent instead in surface realization. Most of the problems
encountered were the result of differences in the underlying
grammars themselves. For example, the Penn TreeBank has
a more hierarchical noun phrase structure than the flatter rep­
resentation of SURGE'S systemic functional grammar.

The final task involved changing the surface realization
component (1) to add additional branches and surface forms
to the grammar that were not originally present in order to
produce surface forms not previously possible, (2) to add new
punctuation and capitalization rules1, and (3) to update irreg-

]The Penn TreeBank, because it is a newspaper corpus, contains
many newspaper headlines and stock quotes with domain-specific

812 NATURAL LANGUAGE

ular morphology due to the vast number of words the system
had not previously seen. The principal linguistic problems
uncovered by this phase include:

• Quotations: Newspaper text generally contains large
amounts of complex quotations, such as splitting a
quoted phrase to insert the speaker in the middle, or
merging a quote into an unquoted part of the sentence:
"1 have this feeling that it's built on sand," she says, that
the market rises "but there's no foundation to it."

• Punctuation scoping: Problems related to the use of
punctuation wi th tree structureslDoran, 19981. For ex­
ample, S U R G E has a flat representation for noun phrases,
causing difficulties wi th phrases such as The major "cir­
cuit breakers" where SURGE cannot insert punctuation
between the adjective and nominal classifier.

• Adverb and clause ordering: Because satellite clauses
in SURGE are placed using semantic information, they
sometime appear in different (though still grammatically
acceptable) positions than were specified in the original
sentence [Elhadad et ai, 2001 J. This can oftentimes
cause a perfectly acceptable sentence to be produced,
but highly skew automatic measurements of correctness
such as tree edit distance (simple string accuracy). For
example, contrast: "Exports fell 29% in the first few
months" vs. " In the first few months, exports fell 29%."

• Semantic roles: SURGE has a hybrid syntactic/semantic
representation, whereas the Penn TreeBank is purely
syntactic. Thus some guessing must be done to fill in
semantic roles in the corresponding functional descrip­
tion. Wrong guesses can lead to incorrect surface forms
even when the remainder of the transformation was ac­
complished successfully.

Whi le the normalization process is slow (10-12 hours each
for WSJ23 and WSJ24), it occurs offline and only once. The
transformation process is quite fast, requiring on average 0.12
seconds per sentence. Meanwhile, the FUF/SURGE system is
relatively slow, as it requires the use of functional unification,
a task of inherent complexity due to backtracking. Section
23 needed 8,397.2 seconds to generate 2372 sentences (with
a longest exact match of 48 words), while section 24 needed
5,590.4 seconds to generate 1,326 sentences (with a longest
exact match of 44), for a combined average of 3.72 seconds
per sentence.2 This contrasts wi th statistical approaches like
Langkilde's, which require 27.1-55.5 seconds depending on

formatting not typically used in NLG systems, such as: "8 13/16%
high, 8 1/2% low, 8 5/8% near closing bid, 8 3/4% offered."

Additionally, a compiled C version of FUF can produce sen­
tences using the same grammar on the order of 0.1 seconds.

algorithm parameters, and gets exponentially worse if it uses
trigrams or larger models in an attempt to improve quality.

4 Experiments and Results
In order to evaluate the coverage of the SURGE grammar, we
used the standard train and test methodology. Unlike typi­
cal machine learning experiments, adjustments to the trans­
formation rule set were done by hand, although the evalua­
tion of the resulting sentences was performed automatically.
Training took place over a period of several months, consist­
ing of multiple iterations over Penn TreeBank Sections 0-22
and 24 to both improve the number of sentences which could
be generated and to match as closely as possible the or igi­
nal sentences. These two goals were accomplished solely by
adding rules to the transformation set and by updating S U R G E
grammar rules, notably aspects pertaining to the stock market
domain, in addition to support for extended quotations which
was added in previous work iCallaway and Lester, 20021.

We considered two types of string matches: exact
matches that were identical character-by-character, and
"close" matches which were two words or less longer or
shorter than the original sentence. There were several motiva­
tions for this second choice: (1) many sentences were equiv­
alent except for a minor missing/extra punctuation mark or
wrongly capitalized word (especially wi th newspaper head­
lines); (2) as mentioned previously, movable clauses (so-
called circumstantials in SURGE nomenclature) could be put
in multiple acceptable locations; and (3) sentences with al­
most the exact number of words, especially sentences wi th
more than 15 words, were much more l ikely to at least have
all of the various phrases present when they were within
two words or the original sentence's length. We util ized the
N1ST Simple String Accuracy (SSA) as an automatic eval­
uation score (the same as used in Langkilde's work), where
the smallest number of Adds, Deletions, and Insertions were
used to calculate accuracy: 1 - (A + D + T)/#Characters.

The only previous measure of generation coverage for Sec­
tion 23 of the Penn TreeBank is that of [Langkilde-Geary,
2002], who defined coverage as the number of sentences for
which the surface realizer produced strings. As seen in Ta­
ble 1, our system achieved 87.8% on one of the training sets
and 88.7% on the test set compared to between 76.2% and
83.3% for HALOGEN depending on its algorithm parameters.

A more detailed examination of the coverage and accuracy
of the system is found in Table 2 for WSJ Section 24 and
Table 3 for Section 23. Both tables are broken down by sen­
tence length, which shows that the results are highly skewed
towards sentence of smaller length, as would be expected in
a test for exact matches. It should be noted, however, that
surface realizers are rarely called upon to generate sentences

NATURAL LANGUAGE 813

Table 1: Comparison with HALOGEN fLangkilde, 2002J

Table 3: Sentence coverage/accuracy for the unseen WSJ23 sentences grouped by word length

with the extended lengths and complexities found in highly
educated newspaper text. Finally, the "valid FD" column in­
dicates that the transformation program is very good at pro­
ducing valid functional descriptions, even if they eventually
are discarded by the grammar as being erroneous.

The test set had a slightly higher coverage than the train­
ing set shown above, as well as a higher number of perfect
matches and a better score using the NIST SSA measure. Al ­
though we trained on other sections of the Penn TreeBank,
time constraints due to the large amount of time required to
generate all test sentences prevented us from having a fuller
comparison set. Additionally, Section 24 was the first sec­
tion we trained on, and it is likely that later sections were
more similar to Section 23, or that the amount of domain-
specific stock market constructions were imbalanced. Finally,
the "close matches" column shows how many candidate sen­
tences might be nearly exactly matching, and the sum of these
two is reflected in the final category "combined."

One interesting observation is that this evaluation (and cor­
respondingly, the evaluation of HALOGEN) is not only an
evaluation of the underlying surface realizer, but also of the
accompanying transformation program that converts the Penn
TreeBank notation into the specifications it expects. We thus
set out to perform a minor, secondary evaluation to determine
if it were possible to find a baseline metric for how many sen­
tences could still be generated by the surface realizer even if
the corresponding FDs could not be produced for them by the
transformation program.

We thus randomly selected 25 sentences from each of the
two sections which were not either perfect matches or "close"

matches, i.e., they were not in the "combined" match cate­
gory. While these sets included some of the problems listed
in Section 3, 41 of the 50 were capable of being rendered by
hand as FDs which produced exact matches without changes
to the grammar, 6 required minor changes to the grammar
which were quickly performed, and the remaining 3 sen­
tences required major grammar changes which have still not
yet been made. The latter were sentences that still do not have
satisfactory linguistic analyses in the linguistic literature. We
thus conclude that with better transformation rules, we could
then obtain close to 95% coverage.

5 Discussion
Surface realization is probably the most understood and com­
petent task in NLG today. There is a high possibility that sur­
face realization can already be considered a solved problem,
except with regard to problems introduced by new languages
or highly specialized domains. However, there are two re­
lated unsolved problems inherent in the process described in
this paper.

5.1 Automatic Evaluat ion of Ou tpu t

Evaluation of NLG systems face the same problems as those
that confront Machine Translation systems: Given a set
of generated sentences, how do you tell how "good" they
are in general, and how often you can produce good sen­
tences in a given context or application. Work in machine
translation has shifted to large-scale evaluations which re­
quire automatic evaluation techniques [Papineni et al., 2001;

814 NATURAL LANGUAGE

Doddington, 2002] because human graders cannot hope to
examine all of the responses in a short enough period of time.

Yet current evaluation techniques are completely nu­
meric/statistical in nature and do not attempt to measure se­
mantic content (such as the well-known example of a missing
"not" in a system's output). Furthermore, these techniques
are ill-equipped to evaluate the types of sentences produced
by symbolic NLG systems. For example, by changing a fea­
ture specifying that, say, a particularly lengthy purpose clause
should go at the beginning rather than the end of a sentence, a
string edit distance metric will report a very large error when
in terms of the system's input, only one "error" has occurred.

As an example of this type of problem, consider that
the string edit distance between the following original sen­
tence and that produced by the transformation program and
FUF/SURGE with input from the Penn TreeBank would be
83, resulting in a N1ST SSA 50.4% match:

Freddie Mac said the principal-only securities
were priced at 58 1/4 to yield 8.45%, assuming an
average life of eight years and a prepayment of
160% of the PSA model.

Freddie Mac said assuming an average life
of eight years and a prepayment of 160% of
the PSA model, the principal-only securities were
priced at 58 1/4 to yield 8.45%.

Obviously 50.4% is a poor score for such sentences, but
many such examples were found in our corpus and their low
scores were factored into the NIST Simple String Accuracy
ratios in Tables 2 and 3.

5.2 Symbolic vs. Statistical Approaches
Almost all fully-developed NLG systems to-date operate on
data specified in a knowledge base from some other sys­
tem. The fact that this data has typically been represented
as highly-structured data has been an impediment to tradi­
tional machine learning techniques which have previously op­
erated mostly on fiat, unstructured text data. It is also gener­
ally stated that statistical methods are more robust than their
symbolic counterparts and more easily adapted to new data
sets. The data in the previous section seems to indicate that
HALOGEN, a statistical system, performs substantially better
on longer sentences, even if it has lower overall coverage. But
there are several advantages in favor of symbolic techniques.

First, the transformation program presented above can be
tweaked to an arbitrary level of perfection by progressively
adding more rules. Most statistical and machine learning
systems however have eventually reached a boundary where
progress becomes seemingly exponentially more difficult.
Second, errors which are encountered during processing can
be examined and fixed because the grammars and other re­
sources are logically and semantically connected to the lan­
guage being generated, rather than being a set of numbers. If
however a statistical generator must create new output forms
not contained in the initial corpus or model, it must be re­
trained from scratch.

Finally, symbolic surface realizers allow a wide range of
optional operations which statistical programs currently can't

offer, for example, the capability of adding formatting state­
ments in HTML, modifying punctuation, generating dialect
differences, adding prosody for TTS, etc. While this may be
due to the multiple decades of history over which symbolic-
systems have been developed, it may also be due to the lack of
annotated corpora that support statistical algorithms, or even
potentially the impossibility of having a corpus at all, such as
in large narratives [Callaway and Lester, 2002].

Additionally, there are some disadvantages to the current
approaches undertaken in statistical NLG research. For in­
stance, symbolic NL generation systems are already consid­
ered slow, and FUF/SURGE is generally considered to be the
slowest in the NLG community. And yet the data from Ta­
ble 3 shows that HALOGEN is anywhere from 6.5 to 16 times
slower, and thus a 10-sentencc paragraph might need 4 min­
utes or longer to be generated. Moreover, these approaches
use techniques such as n-gram models, where n must be in­
creased to improve quality, but results in even slower genera­
tion times and exponentially larger storage space.

5.3 Potential Applications
The transformation program presented here has additional
side benefits besides helping calculate the coverage of a
grammar. For example, in generation systems where non-
linguists must maintain old data and add new data, such
a program allows them to write sample sentences in the
syntax-only TreeBank notation, which is much easier for
non-linguists, and then convert those sentences directly into
a more linguistically-manageable form for generation (e.g.,
functional descriptions). Graphical editing tools for linguistic
data such as G A T E [Bontcheva et a/., 2002] or similar author­
ing tools could quicken the process even more.

Additionally, the transformation program can be used as
an error-checker for the well-formedness of sentences con­
tained in the TreeBank. Rules could be (and have been) added
alongside the normal transformation rules that detect when er­
rors are encountered, categorize them, and make them avail­
able to the corpus creator for correction. This extends not
only to annotation errors by the corpus creator detectable at
the syntax tree level, but even morphology errors such as in-
correct verbs, typos, or British/American English differences
by the original author of the text. Both of these tasks are much
more difficult for a statistical system to accomplish, requiring
separate retraining in the first case and locating or creating a
corpus of possible mistakes in the second, much like what is
done with tutoring systems where databases of potential stu­
dent errors are painstakingly constructed.

6 Conclusions and Future Work
Recent years have seen the arrival of statistical approaches
to the field of Natural Language Generation, much as was
seen in parsing a decade ago. Of the many possible compo­
nents in the standard NLG pipelined architecture, almost all
of these statistical systems have focused on the surface real­
ization component, offering the same robustness, wide cover­
age, and domain- and language-independence as for parsing.

Recent experiments with one statistically-based system,
HALOGEN, showed that it could achieve respectable cover-

NATURAL LANGUAGE 815

age without the typical development costs inherent in pro­
ducing grammars for symbolic NLG. By taking as input sen­
tences from the Penn TreeBank, H A L O G B N was able to gen­
erate a substantial enough quantity of sentences to allow for
an empirical analysis of grammatical coverage of English.
This paper represents the analogous effort for a symbolic
generation system using the FUF/SURGH systemic realization
system, which includes the largest generation grammar.

We presented the results of a grammatical coverage eval­
uation experiment that showed the symbolic system had a
higher level of coverage of English as represented by the Penn
TreeBank. We also contrasted the statistical and symbolic
methodologies and concluded with ideas for future applica­
tions for easier creation of NLG systems and automatic error-
checking for large-scale corpora. We also plan to further de­
velop our Italian generation grammar developed at ITC-irst
[Novello and Callaway, 2003J with a similarly annotated cor­
pus of Italian newspaper text.

7 Acknowledgements
This work was funded by the PEACH project, granted by the
Autonomous Province of Trento in Italy.

References
[Bangalore and Rambow, 2000] Srinivas Bangalore and

Owen Rambow. Exploiting a probabilistic hierarchical
model for generation. In COLING-2000: Proceedings
of the 18th International Conference on Computational
Linguistics, Saarbruecken, Germany, 2000.

[Bateman, 1995J John A. Bateman. KPML: The KOMET-
penman (multilingual) development environment.
Technical Report Release 0.8, Institut fiir Integrierte
Publikations- und Informationssysteme (IPS1), GMD,
Darmstadt, 1995.

[Bontcheva^/a/., 20021 K. Bontchcva, H. Cunningham,
V. Tablan, D. Maynard, and H. Saggion. Development of
reusable and robust language processing components for
information systems using gate. In Proceedings of the 3rd
International Workshop on Natural language and Infor­
mation Systems, 2002.

[Callaway and Lester, 2002J Charles B. Callaway and
James C. Lester. Narrative prose generation. Artificial
Intelligence, 139(2):213-252,2002.

[Doddington, 20021 George Doddington. Automatic eval­
uation of machine translation quality using n-gram co­
occurrence statistics. In Proceedings of the 2002 Confer­
ence on Human Language Technology, San Diego, CA,
March 2002.

[Doran, 1998] Christine Doran. Incorporating Punctuation
into the Sentence Grammar: A Lexicalized Tree Adjoining
Grammar Perspective. PhD thesis, University of Pennsyl­
vania, Philadelphia, PA, 1998.

[Elhadad, 1991] Michael Elhadad. FUF: The universal uni­
fier user manual version 5.0. Technical Report CUCS-038-
91, Department of Computer Science, Columbia Univer­
sity, 1991.

[Elhadad etal, 2001] Michael Elhadad, Yacl Netzer, Regina
Barzilay, and Kathleen McKeown. Ordering circumstan­
tials for multi-document summarization. In Proceedings
of the Bar-1 Ian Symposium on the Foundations of Artifi­
cial Intelligence, Jerusalem, Israel, June 2001.

[Langkilde and Knight, 1998] Irene Langkilde and Kevin
Knight. Generation that exploits corpus-based statistical
knowledge. In COLING-ACL-98: Proceedings of the Joint
36th Meeting of the Association for Computational Lin­
guistics and the 17th International Conference on Com­
putational Linguistics, pages 704-710, Montreal, Canada,
August 1998.

[Langkilde-Geary, 2002] Irene Langkilde-Geary. An empir­
ical verification of coverage and correctness for a general-
purpose sentence generator. In Second International Nat­
ural Language Generation Conference, pages 17-24, Har-
riman, NY, July 2002.

[Lavoie and Rambow, 1997] Benoit Lavoie and Owen Ram­
bow. A fast and portable realizer for text generation sys­
tems. In Proceedings of the 5th Conference on Applied
Natural Language Processing, 1997.

[Marcus et ai, 19931 M. Marcus, B. Santorini, and
M. Marcinkiewicz. Building a large annotated cor­
pus of English: The PennTreeBank. Computational
Linguistics, 26(2), 1993.

[Novello and Callaway, 2003] Alessandra Novello and
Charles Callaway. Porting to an italian surface realizer: A
case study. In Proceedings of the 9th European Workshop
on NLG, Budapest, Hungary, April 2003.

[Papineni et ai, 2001] K. Papineni, S. Roukos, T. Ward, and
W. J. Zhu. BLEU: A method for automatic evaluation of
mt. Technical Report RC22176, IBM Research Division,
T. J. Watson Research Center, New York, September 2001.

[Pollard and Sag, 1994] C. Pollard and 1. Sag. Head-Driven
Phrase Structure Grammar. The University of Chicago
Press, Chicago, 1994.

[Ratnaparkhi, 2000] Adwait Ratnaparkhi. Trainable meth­
ods for surface natural language generation. In Proceed­
ings of the First North American Conference of the ACL,
Seattle, WA, May 2000.

[Reiter, 1994] Ehud Reiter. Has a consensus NL generation
architecture appeared, and is it psycholinguistically plau­
sible? In Proceedings of the Seventh International Work­
shop on Natural Language Generation, pages 163-170,
Kennebunkport, ME, 1994.

[Robin and McKeown, 1995] Jacques Robin and Kathy
McKeown. Empirically designing and evaluating a new
revision-based model for summary generation. Artificial
Intelligence, 85(1-2), 1995.

[White and Caldwell, 1998] Michael White and Ted Cald­
well. EXEMPLARS: A practical, extensible framework
for dynamic text generation. In Proceedings of the Ninth
International Workshop on NLG, pages 266-275, Niagara-
on-the-Lake, Ontario, August 1998.

816 NATURAL LANGUAGE

