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Abstract 

We present a learning architecture for lexical se­
mantic classification problems that supplements 
task-specific training data with background data en­
coding general "world knowledge". The model 
compiles knowledge contained in a dictionary-
ontology into additional training data, and inte­
grates task-specific and background data through 
a novel hierarchical learning architecture. Experi­
ments on a word sense disambiguation task provide 
empirical evidence that this "hierarchical classifier" 
outperforms a state-of-the-art standard "flat" one. 

1 Introduction 
There is an increasing interest in natural language pro­
cessing (NLP) and information retrieval (IR) for research 
on lexical semantics, in particular with respect to word 
sense disambiguation [Yoong and Hwee, 2002], informa­
tion extraction [Riloff and Jones, 1999], named entity 
recognition [Collins, 2002], and automatic thesaurus exten­
sion [Hearst, 1992]. In general terms, the goal in these tasks 
is that of automatically associating words in text with seman­
tic labels. In information extraction and named-entity recog­
nition noun phrases or proper nouns are assigned to semantic 
categories such as "organization", "person", or "location". In 
word sense disambiguation and thesaurus extension the goal 
is to assign words to finer-grained categories defined by ex­
isting dictionaries and ontologies. 

Lexical semantic information can be useful in many NLP 
and IR applications such as text categorization, parsing, and 
language modeling for speech recognition. Furthermore it 
can be crucial for tasks that require complex inferences in­
volving world knowledge, such as question answering. 

One of the main difficulties in learning semantic annota­
tions stems from the fact that training instances are often nar­
rowly focused on very specific class labels and relatively few 
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in number. It thus seems intuitive to supplement task-specific 
training data, for example, sense-annotated training instances 
for a specific word, with background data encoding general 
"world knowledge". The latter are typically available in suf­
ficient quantities and need not to be generated separately for 
each classification task. To carry out this idea two crucial is­
sues need to be addressed: How exactly can world knowledge 
be compiled into additional training data, and how can task-
specific and background data be systematically integrated? 

To address the first challenge, we propose to generate ad­
ditional training data about broader semantic categories by 
extracting training sentences from a hierarchically structured 
ontology, WordNet1 [Fellbaum, 1998]. We assumed that each 
example sentence associated with a lexical entry provides ev­
idence for the kind of contexts in which that specific concept 
and all its ancestors in the hierarchy can appear. As far as the 
second challenge is concerned, we introduce a novel hierar­
chical learning architecture for semantic classification. More 
specifically, we present a simple and efficient on-line training 
algorithm generalizing the multiclass perceptron of [Cram­
mer and Singer, 2002]. 

Finally, we carry out an experimental evaluation on a word 
sense disambiguation task, providing empirical evidence that 
the hierarchical classifier outperforms a state-of-the-art stan­
dard "flat" classifier for this task. 

The paper is structured as follows. Section 2 introduces the 
main idea in more detail. In Section 3 we introduce WordNet 
and the simplified ontology derived from it that we used as 
the source of world knowledge. Section 4 deals with the ba­
sic multiclass perceptron and the proposed hierarchical mul-
ticomponent classifier. Finally, Sections 5 and 6 describe the 
data set used and the empirical results, respectively. 

2 Word Sense Disambiguation and World 
Knowledge 

Word sense disambiguation is the task of assigning to each 
occurrence of an ambiguous word in a text one of its possible 
senses. A dictionary is used to decide if a lexical entry is am­
biguous or not, and to specify its set of possible senses. The 
most widely used lexical resource for this task is WordNet, 
which we describe in detail in the next section. 

1 In this paper we always refer to WordNet version 1.71. 
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Figure 1. The simplified two-layer hierarchy for the noun chair. 

As an illustration consider the noun "chair", which accord­
ing to WordNet is ambiguous. Two possible senses are ex­
plained in the following WordNet entries: 

• chairi - a seat for one person, with a support for the 
back; 

• chairi - (president, chairman, chairwoman, chair, 
chairperson), the officer who presides at the meetings 
of an organization; 

Word sense disambiguation is often framed as a multi-
class pattern classification task. Useftil features include co-
occurring words, word bigrams or trigrams, and properties of 
the syntactic context that contains the target word. Most com­
monly systems are trained on labeled data for a specific word, 
for each and tested on unseen items of the same word. The set 
of possible labels is the set of senses of the ambiguous word. 
One limitation of such a strategy is that the system bases its 
decision exclusively on what it has been able to learn about a 
few very specific concepts; e.g., chair i and chair2. Further­
more, since manually sense-tagging words for the required 
training data is slow and expensive, the data is quite sparse. 

A great deal of information about objects like "chairs" 
is indirect and can be derived from more general world 
knowledge through generalization and inference processes. 
Suppose that the task is to disambiguate between the two 
simple senses of chair in the following context: 

1) "Here the quality of the finest chair components is 
merged with art." 

In this sentence components is a useful hint that we are 
dealing with the sense chairi. Chairs are artifacts, and 
artifacts can have components. Conversely, even though 
in principle people could "have components" as well, this 
sounds a little odd. Intuitively, if a word sense disambigua­
tion system had access to this type of information - that 
"chairs" are subordinates of broader concepts like "artifacts" 
and "people" - and some knowledge about these broader 
semantic categories, it might achieve a higher accuracy in 
disambiguating words. Notice that the system might never 
have previously observed any instance of the noun "chair", 
in either sense, as "having components". 

The goal hence is to complement specific but limited 
knowledge about narrow classes with richer, if less specific, 
knowledge about more general classes. We can easily recover 
the fact that chairs are kinds of furniture or people from dic­
tionaries and hierarchically organized ontologies like Word-
Net. Learning information about such general concepts, how­
ever, is complicated. One source of complication is the very 
problem we are trying to solve, lexical ambiguity. If we do 

not know whether something is a person or an artifact we 
cannot learn reliable information about those more general 
concepts. One way of addressing these problems is offered 
by WordNet itself. 

3 The Ontology 

3.1 WordNet 
WordNet is a broad-coverage, machine-readable dictionary 
widely used in NLP. The English version contains around 
150,000 entries, mostly nouns, but also verbs, adjectives, and 
adverbs. WordNet is organized as a network of lexical ized 
concepts, called synsets, that comprise sets of synonyms. For 
example, the nouns {president, chairman, chairwoman, chair, 
chairperson} form a synsct. A word that belongs to several 
synsets is ambiguous. Synsets are linked by semantic rela­
tions, the most important of which for nouns and verbs is the 
is-a relation, or hyponymy; e.g., "car" is a hyponym of "ve­
hicle". The verb and noun databases form is-a hierarchies 
with a few general concepts at the top and several thousand 
specific concepts at the leaf level. 

The hierarchical structure of the database has aroused some 
interest in NLP, because it can support interesting compu­
tational language learning models, for example, in learning 
predicate selectional preferences [Light and Greif, 2002]. We 
aim to use the hierarchy to improve lexical classification 
methods. The model we present here can in principle make 
use of the full hierarchy. However, for the sake of simplicity 
we have focused on a less complex hierarchy, which has been 
derived from WordNet as described below. 

3.2 A simple two-level h ierarchy 

WordNet was built, and is regularly updated, by lexicogra­
phers. Lexicographers group words together in synsets and 
individuate the relevant semantic relations between synsets. 
This process includes the classification of lexical entries into 
one of 26 broad semantic classes. In this paper we refer to 
these broad classes with the term supersenses. A few exam­
ples of supersense labels are person, animal, artifact, food, lo­
cation, time, plant, process, attribute, substance, and relation. 
This set of labels is fairly general and therefore small. At 
the same time the labels are not too abstract. In other words, 
these classes seem natural and easily recognizable, and that 
is probably why lexicographers use them. In fact the level of 
generality is very close to that used in named-entity recogni­
tion ("location", "person", "organization", etc.). 

Each synset in WordNet is associated with one supersense 
label. As a result the database implicitly defines, in addition 
to the full hierarchy, a simpler two-layer hierarchy. Figure 
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1 above illustrates the synsets and supersenses chair belongs 
to. 

3.3 The hierarchy as a source of world knowledge 
For a few thousand concepts WordNet lists, among other 
types of semantic information, one or more example sen­
tences. For the sense of chair above the example sentences 
are the following: 

• chairi - "he put his coat over the back of the chair and 
sat down" 

• chair2 - "address your remarks to the chairperson" 

Overall there are 9,258 of these sentences. Since each one 
is associated with one synset, that is in fact a sense-tagged 
instance of the word. In other words, WordNet provides a 
few thousand potential sense-tagged training instances. 

Unfortunately, this additional data in itself would not be of 
much help: for most of the synsets there are no sentences2, 
and typically the sentences are very short and do not provide 
much context. However, the situation appears in a different 
light if we take into account the hierarchy. Considering an ex­
ample sentence for a synset also as an example sentence for 
its ancestors (synsets at higher levels in the hierarchy), the 
number of sentences grows larger at the superordinate lev­
els. If we consider the supersense level, the set of example 
sentences constitutes in fact a small corpus of supersense-
annotated data. Our hypothesis is that the several hundred 
sentences associated with each supersense can provide a use­
ful source of general world knowledge. In the next section we 
describe a general multicomponent learning architecture that 
can be used to exploit this supplementary training data. 

4 Multicomponent Learning Architecture 
The idea of using the hierarchical structure of a domain to 
overcome sparseness problems has been explored in text cat­
egorization. These methods show improved accuracy and ef­
ficiency [Toutanova et al., 2001; Dumais and Chen, 2000]. 
In NLP the hierarchical structure of WordNet has been used 
to overcome sparseness data problems for estimating class 
distributions [Clark and Weir, 2002], and to exploit morpho­
logical information to improve lexical acquisition [Ciaramita, 
2002]. 

4.1 Mult ic lass perceptron 
The architecture we propose is a generalization of "ultra-
conservative" on-line learning [Crammer and Singer, 2002], 
which is itself an extension of perceptron learning to the mul­
ticlass case. We describe this "flat" version of the classi­
fier first. For each noun w we are given a training set S = 

, where each instance and  
Y(w) is the set of synsets that WordNet assigns to w. Thus 
5 summarizes n instances of noun w, where each instance 
i is represented as a vector of features X{ extracted from the 
context in which w occurred; d is the total number of features 
and yi is the true label of  

2Therc are in total around 75,000 synsets in the noun database. 
3Since some instances are labeled with multiple senses, in cases 

where the taggers were uncertain, y» may actually be a set of labels. 

Algorithm 1 Multiclass Perceptron 

In general, a multiclass classifier for word it; is a function 
that maps feature vectors to one of 

the possible senses of . In the multiclass perceptron, one 
introduces a weight vector for every and 
defines implicitly by the so-called winner-take-all rule: 

(1) 

Here refers to the matrix of weights, every col­
umn corresponding to one of the weight vectors  

The learning algorithm works as follows: Training patterns 
arc presented one at a time in the standard on-line learning 
setting. Whenever an update step is per­
formed; otherwise the weight vectors remain unchanged. To 
perform the update, one first computes the error set El con­
taining those class labels that have received a higher score 
than the correct class: 

(2) 

An ultraconservative update scheme in its most general form 
is then defined as follows: U p d a t e w i t h learn­
ing rates fulfilling the constraints  
and Hence changes are lim­
ited to . The sum constraint ensures 
that the update is balanced, which is crucial to guaranteeing 
the convergence of the learning procedure (cf. [Crammer and 
Singer, 2002]). We have focused on the simplest case of uni­
form update weights, . The algorithm 
is summarized in Algorithm 1. 

Notice that the presented multiclass perceptron algorithm 
learns all weight vectors in a coupled manner, in contrast to 
methods that perform multiclass classification by combining 
binary classifiers, for example, training a classifier for each 
class in a one-against-the-rest manner. 

4.2 Hierarchical multiclass perceptron 
The hierarchical multiclass perceptron is inspired by the 
framework for learning over structured output spaces intro­
duced in [Hofmann et al., 2002]. The key idea is to intro­
duce a weight vector not only for every (leaf-level) class, but 
also for every inner node in a given class taxonomy. In the 
current application to word sense disambiguation, the inner 
nodes correspond to the 26 supersenses 5 and we wil l hence 
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introduce additional weight vectors for , where 
S(w) refers to the subset of supersenses induced by 
We wil l use the notation to refer to the supersense corre­
sponding to a synset y. Then discriminant functions 
can be defined in an additive manner by 

(3) 
If one thinks o f / in terms of a compatibility function between 
an observation vector x and a synset y, then the compatibility 
score is simply the sum of two independent contributions, one 
stemming from the supersense level and the other one coming 
from the more detailed synset level. The multiclass classifier 
is then again defined using the winner-take-all rule, 

(4) 

Algorithm 2 Hierarchical Multiclass Perception 

The complete algorithm is summarized in Algorithm 2. 
The first part of the algorithm concerns the different nature 
of the two types of training data. As we explained in Sec­
tion 3, the supplementary data derived from WordNet only 
provides annotations at the supersense level. We cannot use 
this information to perform updates for weight vectors vy, but 
only to adjust the weights . Hence for supersense-annotated 
training instances we compute the error set on the 
supersense level as and 
perform the standard multiclass update step tor all with 

The second part concerns training on the task specific data 
. If the classifier makes a mistake on pattern error 

sets are computed for its individual components both at the 
synset and supersense levels (lines 15 and 19 above), which 
are updated according to the standard multiclass update rule. 

As an example, suppose that given a pattern Xi of chair the 
synset error set is 
while the correct label is  
PERSON. The update vector is subtracted from the 
vectors relative to the labels in Ei while is added to 
If at the supersense level the error set Ef = {ARTIFACT}, 
Xi is subtracted from the vector for ARTIFACT and added 
to . Therefore, through the supersense weight vectors, the 
background data affects classification at the synset level. 

5 Data Set and Features 
5.1 The Senseval data 
We tested our system on a standard word sense disambigua­
tion data set. The training and test data are those used in the 
last Senseval workshop (Senseval-2/ACL-01, 2001), which 
focused exclusively on word sense disambiguation. The train­
ing set consists of 8,611 paragraphs that contain an ambigu­
ous word whose sense has been manually annotated. The 
inventory of senses is taken from WordNet. Similarly, the 
test set consists of 4,328 unlabeled pairs. We only ran ex­
periments on the noun data, which consists of 3,512 training 
instances and 1,754 test instances. Each instance consists of 
a short passage taken from one of various sources: e.g., the 
Wall Street Journal, British National Corpus, and web pages. 
The task-specific training data, T y , is typically smaller than 
the general one, Ts> The average ratio is equal to 
20.3. 

5.2 Features 
We used the same feature set described in [Yoong and Hwee, 
2002], which is compact but includes most of the features 
that have been found useful in this task: surrounding words, 
bigrams and trigrams, and syntactic information. Yoong and 
Hwee report results for several classifiers broken down by 
part of speech, which makes it possible to compare our sys­
tem's performance with that of several others. 

There are four types of features. The following sentence 
serves to illustrate them: "the dinner table and chairs are ele­
gant yet comfortable". The feature set is described in greater 
details in [Yoong and Hwee, 2002]: 

• p a r t of speech of the neighboring w o r d s : = CC, 
= NNS, P+ 1 = AUX,... 

• single words in the surrounding context: C == elegant , 
C = d inner , C = t a b l e , C = the, . . . 

• bigrams and trigrams: C_i,+i = and.are, 

• head of the syntactic phrase that governs the tar­
get: 
G_RELP0S = l e f t . 

Syntactic features and part of speech tags were extracted 
from the syntactic parse trees of the Senseval-2 training and 
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Figure 2. Test accuracy of the flat multiclass perceptron 
(dashed line) and the hierarchical multiclass perceptron (con­
tinuous line) on the word sense evaluation data set. 

test data produced using Charniak's parser LCharniak, 2000]. 
In this way we created the training data Ty from the Senseval 
data. In exactly the same way we extracted features from 
the example sentences in WordNet to produce the additional 
training set for the supersense-level classes, Ts. Overall there 
are around 250,000 features. 

6 Experiments 
6.1 Experimental setup 
We tested two models described in Section 4: the flat multi-
class perceptron, trained and tested at the synset level, and the 
hierarchical one, trained on both the standard synset data and 
the training data for the supersenses extracted from WordNet. 
We also trained and tested a simple "flat" naive Bayes clas­
sifier. A different classifier was trained and tested for each 
word. We treated compounds such as easy chair and chair as 
different words. 

Al l the results we report are given as accuracy: 

6.2 Results 
Figure 2 shows the performance of the flat perceptron (dotted 
line) during each iteration. The perceptron in fact converges 
very quickly. This is probably due to the fact that there are 
relatively few training items: Normally the size of Ty is be­
tween one and two hundred. To check whether an improve­
ment was due to the algorithm alone and not to the combina­
tion of the algorithm and the additional, supersense data set, 
we also trained a hierarchical perceptron exclusively on the 
synset data. Figure 2 also plots the performance of the hier­
archical perceptron trained only on Ty. The two curves are 
virtually indistinguishable, meaning that without additional 
information not much can be gained from using the hierarchi­
cal classifier alone. In other words, with "flat" data a "flat" 
classifier is as good as a "hierarchical" one. 

Figure 3. Test accuracy of the hierarchical (continuous line) 
vs. flat (dashed line) multiclass perceptron. The hierarchical 
multiclass perceptron was trained using supplementary super-
sense training data. 

Figure 3 plots the performances of the flat and the hierar­
chical perceptron when also trained on Ts- The two patterns 
are very different. The hierarchical model converges only af­
ter more than 350 iterations. 

Table 1. Test accuracy on the Senseval-2 test data. 

This might be due to several facts. First, the amount of 
data is much greater due to the addition of Ts, and it takes 
longer to learn. Second, the supersense data and the synset 
data are probably very different and noisy; as a consequence 
the weight vectors are continually readjusted, possibly along 
very different dimensions. The interesting thing, though, is 
that even in the midst of very wide oscillations there is a clear 
improvement, particularly between 50 and 100 iterations. 

We present also a comparative table. Table 1 illustrates the 
results of our systems and other state-of-the-art word sense 
disambiguation ones. We set the number of iterations to a 
fixed number for all words equal to 100. Given that we set 
this value "knowing" that it is a good one for both our sys­
tems, our results and those of other systems are not really 
comparable. However, it is reasonable to expect that it is 
possible to set this stopping criterion well enough using held 
out data. Thus this comparison gives us an approximate idea 
of where our systems stand with respect to state-of-the-art 
ones in terms of performance. AdaBoost is the classifier that 
gave the best result on nouns in [Yoong and Hwee, 2002], 
Best S2 [Mihalcea and Moldovan, 2001] refers to the best-
performing system on nouns among the Senseval-2 workshop 
systems. These results show that our systems' performance is 

NATURAL LANGUAGE 821 



Table 2. Example results on a few words. F = flat, H = hierar­
chical. 

comparable to that of state-of-the-art ones and that our hier­
archical model trained on background and specific data out­
performs the flat one. 

Results for a few individual words are presented in Table 2. 
They show that the improvements are not uniform, but vary 
from word to word. Overall we identified 105 nouns. The 
great majority of these are compounds that typically occur 
only once in the test data. Both systems achieve approxi­
mately the same score on these data. On the bulk of the test 
data, however, the systems perform differently. Of the 21 test 
words on which the classifiers achieve different scores, the 
hierarchical perceptron is more accurate than the flat one on 
15 words, or 71.5% of the time. 

This f inding suggests a simple improvement for the hierar­
chical system. The contribution of the individual components 
of the classifier could be weighted setting the weights, after 
training, using held out data. In the simplest setting binary 
weights could be used; e.g., either the background informa­
tion is used or not. Thus the background model would be 
used only when useful, otherwise its contributions would be 
ignored. 

7 Conclusion 
We have presented a learning architecture for lexical seman­
tic classification that supplements task-specific training data 
wi th background data encoding general "wor ld knowledge" 
extracted f rom a widely used broad-coverage, machine-
readable dictionary. The model integrates task-specific and 
general information through a novel hierarchical learning ar­
chitecture based on the multiclass perceptron. Experiments 
on a word sense disambiguation task showed that the hierar­
chical model achieves improved performance over a state-of-
the-art standard " f la t " system. 

This new framework has a number of promising exten­
sions. Addit ional accuracy gains are expected by using 
more sophisticated perceptron learning algorithms such as the 
voted perceptron [Freund and Schapire, 1998] and by using 
the dual perceptron wi th non-linear kernels. We have only 
made use of the simplest possible form of hierarchy (two-
stage), in reality the hierarchical structure of WordNet is very 
complex and much more informative. The model presented 
here can be extended to include this type of structure as wel l 
as other sources of information. In addition, the two-layer 
model can be applied to all other open-class words in Word-
Net and a ftill-hierarchy-based model could be applied to 
verbs and nouns. There is also more information to extract 
f rom WordNet, for example, f rom the glosses, which can po­
tentially be uti l ized as additional training data. Lastly, the 

ideas we presented here might be used wi th other learning 
methods. We leave these topics for future research. 
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