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Abstract 

Default logic is used to describe regular behav­
ior and normal properties. We suggest to exploit 
the framework of default logic for detecting out­
liers - individuals who behave in an unexpected 
way or feature abnormal properties. The ability 
to locate outliers can help to maintain knowledge­
base integrity and to single out irregular individu­
als. We first formally define the notion of an out­
lier and an outlier witness. We then show that find­
ing outliers is quite complex. Indeed, we show that 
several versions of the outlier detection problem 
lie over the second level of the polynomial hierar­
chy. For example, the question of establishing if at 
least one outlier can be detected in a given propo-
sitional default theory is -complete. Although 
outlier detection involves heavy computation, the 
queries involved can frequently be executed off­
line, thus somewhat alleviating the difficulty of the 
problem. In addition, we show that outlier detec­
tion can be done in polynomial time for both the 
class of acyclic normal unary defaults and the class 
of acyclic dual normal unary defaults. 

1 Introduction 
Default logics were developed as a tool for reasoning with in­
complete knowledge. By using default rules, we can describe 
how things work in general and then make some assumptions 
about individuals and draw conclusions about their properties 
and behavior. 

In this paper, we suggest a somewhat different usage of 
default logics. The basic idea is as follows. Since default 
rules are used for describing regular behavior, we can exploit 
them for detecting individuals or elements who do not behave 
normally according to the default theory at hand. We call 
such entities outliers. An outlier is an element that shows 
some properties that are contrary to those that can be logically 
justified. 

Outlier detection can be useful in several application con­
texts, e.g., to single out exceptional behaving individuals or 
system components. Note that according to our approach, ex­
ceptions are not explicitly listed in the theory as uabnormals," 
as is often done in logical-based abduction fPoole, 1989; 

Console et ai, 1991; Eiter and Gottlob, 1995]. Rather, 
their "abnormality" is singled out exactly because some of 
the properties characterizing them do not have a justification 
within the theory at hand. For example, suppose that it usu­
ally takes about two seconds to download a one-megabyte 
file from some server. Then, one day, the system is slower 
- instead four seconds are needed to perform the same task. 
While four seconds may indicate a good performance it is 
helpful to find the source of the delay Another example might 
be that someone's car brakes are making a strange noise. Al ­
though they seem to be functioning properly, this is not nor­
mal behavior and the car should be serviced. In this case, the 
car brakes are outliers and the noise is their witness. 

Outlier detection can also be used for examining database 
integrity. If an abnormal property is discovered in a database, 
the source who reported this observation would have to be 
double-checked. 

Detecting abnormal properties, that is, detecting outliers, 
can also lead to an update of default rules. Suppose we have 
the rule that birds fly, and we observe a bird, say Tweety, that 
does not fly. We report this occurence of an outlier in the 
theory to the knowledge engineer The engineer investigates 
the case, finds out that Tweety is, for example, a penguin, and 
updates the knowledgebase with the default "penguins do not 
fly." 

In this paper, we formally state the ideas briefly sketched 
above within the context of Reiter's default logic. For sim­
plicity, we concentrate on the propositional fragment of de­
fault logic although the generalization of such ideas to the 
realm of first-order defaults also worth exploring. So, when­
ever we use a default theory with variables, as in some of the 
following examples, we relate to it as an abbreviation of its 
grounded version. 

The rest of the paper is organized as follows. In Section 
2, we give preliminary definitions as well as a formal def­
inition of the concept of an outlier. In Section 3, we de­
scribe the complexity of finding outliers in propositional de­
fault logic. Section 4 analyzes the complexity of detecting 
outliers in disjunction-free propositional default logics, and 
section 5 describes some tractable cases. Related work is dis­
cussed in Section 6. Conclusions are given in Section 7. 

Because of space limitations, throughout the paper proofs 
of results are sketched or omitted. Full proofs can be found 
in [Angiulli et a/., 2003J. 
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2 Definitions stand, we first look at an example. 
In this section we provide preliminary definitions for concepts 
we will be using throughout the paper. 

2.1 Preliminaries 
The following definitions will be assumed. Let T be a propo-
sitional theory. Then denotes its logical closure. If 5 is a 
set of literals, then ->S denotes the set of all literals that are 
the negation of some literal in S. 

Default logic was introduced by Reiter iReiter, 1980]. A 
propositional default theory is a pair (D, W) consisting of 
a set W of pmpositional formulas and a set D of default rules. 
A default rule has the form (or, equivalently 
where and \ a r e propositional formulas, called, respec­
tively, prerequisite, justification, and consequent of S. The 
prerequisite could be omitted, though justification and conse­
quent arc required. If the default rule is called normal. 
The informal meaning of a default rule is the following: if 

is known, and if it is consistent to assume , then we con­
clude . An extension is a maximal set of conclusions that 
can be drawn from a theory. An extension E of a proposi­
tional default theory = (D, W) can be finitely character­
ized through the set of generating defaults for E w.r.t. 

, i.e., the set 
Indeed,  

Let A be a default theory and I a literal. Then means 
that / belongs to every extension of . Similarly, for a set of 
literals means that every literal belongs to 
every extension of . A default theory is coherent if it has at 
least one extension. 

We review some basic definitions about complexity theory, 
particularly, the polynomial hierarchy. The reader is referred 
to iGarey and Johnson, 1979] for more on complexity the­
ory. The classes and are defined as follows: = 

J and for all  
models computability by a nondeterministic polynomial-

time algorithm which may use an oracle, loosely speaking a 
subprogram that can be run with no computational cost, for 
solving a problem in . The class , is de­
fined as the class of problems that consists of the conjunction 
of two independent problems from , respectively. 
Note that for all A problem 
A is complete for the class C iff A belongs to C and every 
problem in C is reducible to A by polynomial-time transfor­
mations. A well known -complete problem is to decide the 
validity of a formula QBE , that is, a formula of the form 

, where Q is if k is odd 
and is if k is even, X1,..., Xk are disjoint set of variables, 
and f ( x 1 , . . . , Xk) is a propositional formula in X\,..., Xk-
Analogously, the validity of a formula that is a for­
mula of the form , where Q 
is if k is odd and is ~ if k is even, is complete for De­
ciding the conjunction where is a formula 
and is a formula, is complete for  

2.2 Defining outl iers 
Next we formalize the notion of an outlier in default logic. 
In order to motivate the definition and make it easy to under-

Example 2.1 Consider the following default theory which 
represents the knowledge that birds fly and penguins are birds 
that do not fly, and the observations that Twcety and Pini arc 
birds and Tweety does not fly. 

This theory has two extensions. One extension is the logical 
closure of and the other is 
the logical closure of 
If we look carefully at the extensions, we note that Tweety 
not flying is quite strange, since we know that birds fly 
and Tweety is a bird. Therefore, there is no apparent jus­
tification for the fact that Tweety does not fly (other than 
the fact Fly (Tweety) belonging to W). Had we been 
told that Tweety is a penguin, we could have explained 
why Tweety does not fly. But, as the theory stands now, 
we are not able to explain why l\veety docs not fly, and, 
thus, Tweety is an exception. Moreover, if we are trying to 
nail down what makes Tweety an exception, we notice that 
if we would have dropped the observation -*Fly(Twcety) 
from W, we would have concluded the exact opposite, 
namely, that Tweety does fly. Thus, Fly (Tweety) "in-
duces" such an exceptionality (we will call witness a literal 
like Fly (Tweety)). Furthermore, if we drop from W both 

Fly (Tweety) and Bird(Tweety), we are no longer able to 
conclude that Tweety flies. This implies that Fly (Tweety) 
is a consequence of the fact that Tweety is a bird, and thus 
Bird(Twcety) is the property of Tweety that behaves excep­
tionally (or the outlier). 

From the above example, one could be induced to define an 
outlier as an individual, i.e., a constant, in our case Tweety, 
that possesses an exceptional property, denoted by a literal 
having the individual as one of its arguments, in our case 
Bird(Tweety). However, for a conceptual viewpoint, it is 
much more general and flexible to single out a property of an 
individual which is exceptional, rather than simply the indi­
vidual. That assumed, we also note that within the proposi­
tional context we deal with here, we do not explicitly have 
individuals distinct from their properties and, therefore, the 
choice is immaterial. 

Based on the example and considerations mentioned 
above, we can define the concept of an outlier as follows. 

Definition 2.2 Let = (D,W) be a propositional default 
theory such that W is consistent and is a literal. If 
there exists a set of literals such that: 

where and , then we say that 
/ is an outlier in and S is an outlier witness set for I in  
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According to this definition, a literal I is an outlier if and only 
if there is an exceptional property, denoted by a set of literals 
5, holding in every extension of the theory. 

The exceptional property is the outlier witness for I. Thus, 
according to this definition, in the default theory of Example 
2.1 above we should conclude that Bird(Tweety) denotes 
an outlier and is its witness. Note that we 
have defined an outlier witness to be a set, not necessarily a 
single literal since in some theories taking a single literal does 
not suffice to form a witness for a given outlier being that all 
witnesses of such an outlier have a cardinality strictly larger 
than one. 

Example 2.3 Consider the default theory 
where the set of default rules D conveys the following infor­
mation about weather and traffic in a small town in southern 
California: 

1. - that is, normally 
during a July weekend there are no traffic jams nor any 
rain. 

2. - in January it sometimes 
rains and sometimes it doesn't rain. 

3. If there is a traf­
fic jam in the weekend then normally it must be raining 
or there would have been an accident. 

Suppose also that  
Rain}. Then, the set is an 
outlier witness for both Weekend and July. Moreover, S 
is a minimal outlier witness set for either Weekend or July, 
since deleting one of the members from S will render S not 
being a witness set. 

Here is another example. 

Example 2.4 Consider the following default theory A: 

This theory claims that normally adults who have a monthly 
income work, and students who take flying lessons are inter­
ested in learning how to take off and navigate. The observa­
tions are that Johnny is an adult who has a monthly income, 
but he does not work. He is also a student in a flying school 
but he is not interested in learning how to take-off. Based on 
the events of September 11, 2001, we'd like our system to 
conclude that Johnny is the argument of two outliers. Indeed, 
the reader can verify that the following facts are true: 

Hence, both Wcrks( Johnny) and 
I nterestT akeO f f (Johnny) are outlier witnesses, 

while Adult (Johnny) and Flying S (Johnny) are outliers. 
Note that Income (Johnny) is also an outlier, with the 
witness Works(Johnny). 

2.3 Defining outl ier detection problems 

In order to state the computational complexity of detecting 
outliers, in the rest of the work we refer to the following prob­
lems (also referred to as queries) defined for an input default 
theory = ( D , W ) : 

: Given , does there exist an outlier in ? 

: Given and a literal , is there any outlier witness 
for in ? 

Given and a set of literals ', is S a witness for 
any outlier . in ' ? 

: Given , a set of literals and a literal , is 
S a witness for / in ? 

3 General complexity results 
In this section we analyze the complexity associated with de­
tecting outliers. First, we give some preliminary definitions 
involving notation. 

Let L be a set of literals such that implies that  
L. Then we denote by the truth assignment on the set 
of letters occurring in L such that, for each positive literal 

~~ ' " = t rue , and for each negative literal  

Let T be a truth assignment on the set of letters. 
Then we denote by Lit(T) the set of literals 
such that . is X{ if = t r ue and is -*Xi if T(xi) — 
false, for  

Theorem 3.1 -complete. 

Proof: (Membership) Given a a theory , we 
must show that there exists a literal / in W and a subset S = 
{ s 1 , . . . , sn) of W such that (D, Ws) 
(query q') and (query q"). Query 

-complete, while query -complete LGottlob, 
1992; Stillman, 1992]. Thus, we can build a polynomial-time 
nondeterministic Turing machine with a oracle, solving 
query as follows: the machine guesses both the literal I 
and the set S and then solves queries q' and q" using two 
calls to the oracle. 

(Hardness) Let be a quantified 
boolean formula, where X =  
and Z are disjoint set of variables. We associate with the 
default theory , where is the 
set \ > consisting of new letters distinct 
from those occurring in and  

NONMONOTONIC REASONING 835 



where also are new variables distinct from 
those occurring in Clearly, is consistent and  
can be built in polynomial time. We next show that ~ is valid 
iff there exists an outlier in  

In the rest of the proof we denote by I resp.) 
the literal Xi (Si resp.) and by resp.) the lit­
eral Letting 5 be a sub­
set of resp.), 
we denote by  

i . 

Suppose that is valid. Then we can show that 
/ is an outlier in As is valid, then there exists 
a truth assignment Tx on the set X of variables such that 
Tx satisfies It 
can be shown that we can associate to each truth assignment 
Ty on the set Y of variables, one and only one extension 
Ey of . In particular,  
Lit(Ty). As is valid, then and 

Furthermore, since there is no other extension 
of ' 

Consider now the theory . We note that 
the literal / appears in the precondition of rule whose con­
clusion g represents, in turn, the precondition of the rules 
in the set Z)5, rules that allow to conclude , and that / 
does not appear in the conclusion of any rule of Thus 

Hence / is an outlier in  
Suppose that there exists an outlier in . It can be 

shown that the outlier is /. Hence, there exists a nonempty set 
of literals such that 5 is an outlier witness 
for / i n . I t can then be shown that  
where s\ is either s, or , for i — 1 , . . . , n. Now we show that 

(5) satisfies , i.e. that $ is valid. For each 
set , where is either , for j = 
1 , . . . , m, there exists one extension EL of 
S) such that . We note also that Thus, 
in order for / to be an outlier in , it must be the case that 
for each set ., that satisfies 
f(X, Y, Z). Hence, we can conclude that is valid.  

Theorem 3.2 Q\ is -complete. 

Proof: The proof is analogous to that used in Theorem 3.1. 

Theorem 3.3 Q2 is -complete. 

Proof: (Membership) Given a theory and 
a subset S = { .S i , . . . , s „ } W, we should verify that 
(D,Ws) ' (statement q') and there ex­
ists a literal / e W such that (D , Ws,i) 
(statement q"). Solving q' is in . As for statement q'', it 
can be decided by a polynomial time nondeterministic Tur­
ing machine, with an oracle in NP, that (a) guesses both the 
literal and the s e t o f generating defaults o f 
an extension E of (D, Wsi) together with an order of these 
defaults; (b) checks the necessary and sufficient conditions 
that DE must satisfy to be a set of generating defaults for E 
(see iZhang and Marek, 19901 for a detailed description of 
these conditions), by multiple calls to the oracle; and (c) ver­
ifies that -s1 by other calls to the oracle. 
It can be shown that the total number of calls to the oracle is 
polynomially bounded. Thus, Q2 is the conjunction of two 
independent problems, one in (q1) and the other in 
(g"), i.e. it is in _ . 

(Hardness) Let be 
two propositional default theories such that W\ and W2 are 
consistent, let .si, S2 be two letters, and let q be the statement 

W.l.o.g, we can assume that and 
contain different letters, the letter si occurs in but not 

in Wi (and, from the previous condition, not in , and the 
letter s2 occurs in D2 but not in W2 (and hence not in ). 
We associate with q the default theory (q) = (D(q), W(q)) 
defined as follows. Let and 
let be all the literals belonging 
to W1, then  

from those occurring in a n d a n d from s\ and s2- It 
can be shown that q is true iff \ is a witness for some 
outlier i n W e note that q is the conjunction of a  
hard and _ hard independent problems, thus this proves 
the hardness part. 

Theorem 3.4 is -complete. 

4 Disjunction-free theories 
Disjunction-free theories form a significant subset of proposi-
tional default theories because they are equivalent to extended 
logic programs under stable model semantics [Gelfond and 
Lifschitz, 1991]. A finite propositional theory = (D,W) 
is disjunction-free (DF in short), if W is a set of literals, and 
the precondition, justification and consequence of each de­
fault in D is a conjunction of literals. As we see below, outlier 
detection for DF theories is still quite complex. 

Theorem 4.1 Qo restricted to disjunction-free theories is 
Ep

2-complete. 
Proof: (Membership) The membership proof is analogous 
to that of Theorem 3.1. We note that when disjunction-free 
theories are considered, q' and q" are co-NP-complete and 
NP-complete, respectively. 

(Hardness) be a quantified 
boolean formula, where X = x 1 , . . . , x n and Y — 
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where also are new variables 
distinct from those occurring in $. Clearly, is consis­
tent and x f can be built in polynomial time. The rest of 
the proof is similar to that of Theorem 3.1.  

Theorem 4.2 Q\ restricted to disjunction-free theories is 
H2-complete. 
Theorem 4.3 Q2 and QZ restricted to disjunction-free theo­
ries are Dp-complete. 

5 Tractable Cases 
In this section, we look for some classes of default theories 
for which outlier detection is computationally tractable. 

Definition 5.1 A default theory is normal mixed unary 
(NMU in short) iff W is a set of literals and D is a set of 
defaults of the form where y is either missing or a literal 
and a: is a literal. 

Definition 5.2 An NMU default theory is normal unary (NU 
in short) iff the prerequisite of each default is either missing 
or positive. An NMU default theory is dual normal unary 
(DNU in short) iff the prerequisite of each default is either 
missing or negative. 

Thus, NMU, NU, and DNU theories have a quite simple 
structure. In spite of that, the complexity of detecting outliers 
from these theories remain often quite high, as demonstrated 
by the following results (proofs are omitted for the sake of 
brevity). 
Theorem 5.3 The following hold over NMU default theo­
ries: 

Theorem 5.4 The following hold over NU and DNU default 
theories: 

Thus, restricting our attention to NMU, NU, or DNU theo­
ries does not suffice to attain tractability of the most general 
queries QO and Q\. Some further restriction is needed, which 
is considered next. 
Theorem 5.5 (IKautz and Selman, 1991] [Zohary, 2002]) 
Suppose is a normal (dual normal) unary default theory. 
We can decide whether a literal belongs to every extension of 

in time , where n is the length of the theory. 

Definition 5.6 The atomic dependency graph of an NMU de­
fault theory is a directed graph whose nodes are all atoms 
in the language of , and such that there is an arc directed 
from p to q iff there is a default in in which p or is a 
prerequisite and q or q is a consequence. 

Definition 5.7 A normal (dual normal) unary default theory 
is acyclic iff its atomic dependency graph is acyclic. 

Theorem 5.8 Queries QO, Ql, Q2 and Q'X restricted to the 
class of acyclic NU or acyclic DNU default theories can be 
solved in polynomial time in the size of the input theory. 

Proof: It can be shown that for any acyclic NMU default 
theory = (D , W) such that W is consistent and for any 
literal I in W', any minimal outlier witness set for / in is 
at most 1 in size. Theorem's statement then follows from 
Theorem 5.5.  

6 Related Work 
The research on logical-based abduction [Poole, 1989; Con­
sole et «/., 1991; Eiter and Gottlob, 1995] is related to out­
lier detection. In the framework of logic-based abduction, the 
domain knowledge is described using a logical theory T. A 
subset X of hypotheses is an abduction explanation to a set 
of manifestations is a consistent theory that en­
tails M. Abduction resembles outlier detection in that it deals 
with exceptional situations. 

The work most relevant to our study is perhaps the paper by 
Eiter, Gottlob, and Leone on abduction from default theories 
[Eiter et al, 19971. There, the authors have presented a basic 
model of abduction from default logic and analyzed the com­
plexity of the main abductive reasoning tasks. They presented 
two modes of abductions: one based on brave reasoning and 
the other on cautious reasoning. According to these authors, 
a default abduction problem (DAP) is a tuple (H, M, W, D) 
where H is a set of ground literals called hypotheses, M is 
a set of ground literals called observations, and (D, W) is a 
default theory. Their goal, in general, was to explain some 
observations from M by using various hypotheses in the con­
text of the default theory (D , W). They suggest the following 
definition for an explanation: 

Definition 6.1 ([Eiter etai, 1997])  
be a DAP and let Then, E is a skeptical explanation 
for P iff 

There is a close relationship between outliers and skeptical 
explanations, as the following theorem states. The theorem 
also holds for ordered semi-normal default theories [Ether-
ington, 1987]. 
Theorem 6.2 Let be a normal default theory, 
where W is consistent. Let is an out­
lier witness set fori iff{1} is a minimal skeptical explanation 
for Sin the DAP P =  

Hence, we can say that S is an outlier witness for / if _ 
/ is a skeptical explanation for 5, but still S holds in every 
extension of the theory. 
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Table 1: Complexity results for outlier detection 

Despite the close relationship between outlier detection 
and abduction demonstrated by the above theorem (especially 
for normal defaults) we believe that there is a significant dif­
ference between the two concepts. In abduction, we have to 
single out a set of manifestations and a set of potential expla­
nations. Outlier detection, on the other hand, has much more 
to do with knowledge discovery. The task in outlier detection 
is to learn who the exceptionals (the outliers), or the suspects, 
if you wish, are, and to justify the suspicion (that is, list the 
outlier witnesses). 

It also turns out that reducing outlier detection queries to 
abduction and vice versa is not straightforward, and therefore, 
when analyzing the computational complexities involved in 
answering outlier detection queries we have preferred to use 
the classical Boolean formula satisfiability problems. 

7 Conclusion 
Suppose you are walking down the street and you see a blind 
person walking in the opposite direction. You believe he is 
blind because he is feeling his way with a walking stick. Sud­
denly, something falls out of his bag, and to your surprise, he 
finds it immediately without probing about with his fingers, 
as you would expect for a blind person. This kind of behavior 
renders the "blind" person suspicious. 

The purpose of this paper has been to formally mimic this 
type of reasoning using default logic. We have formally de­
fined the notion of an outlier and an outlier witness, and 
analyzed the complexities involved, pointing out some non-
trivial tractable subsets. The complexity results are summa­
rized in Table 1, where C-c stands for C-complete. As ex­
plained in the introduction, outlier detection can also be used 
for maintaining database integrity and completeness. 

This work can be extended in several ways. First, we can 
develop the concept of outliers in other frameworks of de­
fault databases, like System Z [Pearl, 1990] and Circumscrip­
tion [McCarthy, 1980]. Second, we can look for intelligent 
heuristics that wil l enable us to perform the involved heavy 
computational task more efficiently. Third, we can study the 
problem from the perspective of default theories as a "seman­
tic check toolkit" for relational databases. 

Acknowledgements. The authors gratefully thank Michael 
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paper. 
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