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Abstract 
In first-order logic, a theory T1 is considered 
stronger than another theory T2 if every formula 
derived from T2 is also derived from T1. Such 
an order relation is useful to know relative value 
between different theories. In the context of de­
fault logic, a theory contains default information 
as well as definite information. To order default 
theories, it is necessary to assess the information 
content of a default theory. To this end, we intro­
duce a multi-valued interpretation of default the­
ories based on a nine-valued bilattice. It distin­
guishes definite and credulous/skeptical default in­
formation derived from a theory, and is used for 
ordering default theories based on their informa­
tion contents. The technique is also applied to or­
der nonmonotonic logic programs. The results of 
this paper provide a method for comparing differ­
ent default theories and have important application 
to learning nonmonotonic theories. 

1 Introduction 
In knowledge representation based on logic, the relative value 
of a given theory is formally assessed by comparing the 
amount of information between theories. In first-order logic, 
a theory T1 is considered stronger than another theory T2 if 
every formula derived from T2 is also derived from T\ but 
not vice-versa For instance, the 
theory  

is stronger than the theory 

In the context of default logic [Reiter, 1980J, however, the 
problem is not so simple. For instance, consider the default 
theory: 

In this case, both T\ and T3 imply flies, but the fact flics 
from T\ is a conclusion from definite information, while 
the same fact from T3 is a conclusion from default infor­
mation. Introducing another fact flies to each theory, the 

conclusion flies is still derived from the inconsistent theory 
T\ U { - i f l ies }, while it is withdrawn from T3 U { - i f l ics }. 
Thus, two theories T] and T3 have the same extension, but 
conclusions derived from T\ are stronger than those of T3 . 

To compare and order default theories, it is necessary to 
distinguish different sorts of information derived from a the­
ory. Such consideration is meaningful and important with the 
following reasons. 

• Studies in nonmonotonic logics have been centered on 
answering the question: "What information is concluded 
from a theory (with common-sense)?" On the other 
hand, few studies answer the question: "What sort of 
information is concluded from a theory?" Since default 
theories contain definite and default information, distin­
guishing different sorts of information is meaningful to 
assess the information content of a theory. Default the­
ories contain incomplete information, so that the assess­
ment provides a theoretical ground to measure the de­
gree of "incompleteness" of a theory. These arguments 
are also effective in the field of nonmonotonic logic pro­
gramming [Baral and Gelfond, 1994]. 

• It is important to know relative value between theories. 
A theory is considered more valuable than another the­
ory if the former contains more information than the lat­
ter. Comparison of theories is especially important when 
there exist multiple sources of information as in multi-
agent systems. In first-order logic, theories are ordered 
by logical entailment. In default logic, however, exten­
sions of theories are not necessarily helpful forjudging 
relative strength between theories (as presented above). 
To order default theories, it is necessary to provide a bet­
ter ability of comparing default theories beyond their ex­
tensions. It should distinguish different sorts of informa­
tion in a default theory, and order theories according to 
their information contents. 

• In first-order logic, a theory is called more general than 
another theory if the former is stronger than the latter. 
Generality relations over first-order clauses have been 
extensively studied in the fields of machine learning and 
inductive logic programming [Nienhuys-Cheng and de 
Wolf, 1997]. In these fields, generalization is used as 
a basic operation for inductive learning, but it is un­
known how to extend the notion to nonmonotonic the-
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ones. To construct induction systems that learn non­
monotonic theories, it is necessary to extend the gen­
eralization operation and to build a theory for ordering 
nonmonotonic theories. Ordering default theories thus 
has potential application to the theory of induction in 
nonmonotonic logics and nonmonotonic inductive logic 
programming. 

With these background and motivation, this paper studies a 
method for ordering default theories. To this end, we first pro­
vide a multi-valued interpretation for default theories based 
on a nine-valued bilattice. It can distinguish different sorts 
of information derived from default theories. We then intro­
duce ordering over default theories, which orders different 
default theories based on the multi-valued interpretations of 
formulas. The techniques are also applied to order nonmono­
tonic logic programs under the answer set semantics. The 
rest of this paper is organized as follows. Section 2 reviews 
the framework of default logic. Section 3 develops a theory 
of ordering default theories. Section 4 applies the technique 
to nonmonotonic logic programming. Section 5 discusses re­
lated issues and Section 6 summarizes the paper. 

2 Default Logic 
A default theory is defined as a pair = (D, W) where D 
is a set of default rules and W is a set of first-order formulas 
(called facts). A default rule (or simply default) is of the form: 

where and are first-order formulas and re­
spectively called the prerequisite, the justifications and the 
consequent. In this paper, any default is assumed to have at 
least one justification . A default theory is called 
super-normal if every default is of the form As defaults 
and facts are syntactically distinguishable, we often write a 
default theory as a set as far as no confusion 
arises. Any variable appearing in D and W is free and any 
default/fact with variables represents the set of its ground in­
stances over the Herbrand universe of Throughout this 
paper we assume a default theory which is already ground-
instantiated, i.e., for any default theory (D , W), D and W 
contain no variable. Also, a formula means a propositional 
formula unless stated otherwise. 

A set E of formulas is an extension of (D,W) if it co­
incides with the smallest deductively closed set E1 of for­
mulas satisfying the conditions: , and (ii) for 
any ground default " " from D, and 

imply A default theory may 
have none, one or multiple extensions in general. The set of 
all extensions of is written as . Given a default 
theory , a formula is a credulous conclusion of if it be­
longs to some (but not all) extensions. By contrast, a formula 
is a skeptical conclusion of if it belongs to all extensions. 
An extension E is inconsistent if it is the set of all formulas 
in the language. 
Proposition 2.1 [Reiter, 1980] l A default theory = 
(£>, W) has the inconsistent extension iffW is inconsistent. 

'This property holds for defaults with non-empty justifications. 

Figure 1: A lattice for logic IX 

3 Ordering Default Theories 
In classical logic, a formula F is interpreted true/false if 

is a logical consequence of a theory; otherwise it is 
undefined. In default logic, on the other hand, a formula is 
either a definite consequence by W or a default consequence 
by D. Moreover, default consequences are brought by two 
different modes of inferences - skeptical or credulous reason­
ing. To characterize these different types of inferences, we 
first introduce a multi-valued logic for default reasoning. 

Definition 3.1 The logic IX has the nine truth values 
t , f , , d t s ,d f s ,d t c ,d f c , , which respectively mean 
true, false, contradictory, undefined, skeptically true by de­
fault, skeptically false by default, credulously true by default, 
credulously false by default, and contradictory by default. 

The truth values of IX constitute a bilattice under the 
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Under IX the interpretation of a formula in a default the­
ory is defined as follows. 

Definition 3.2 Given a default theory = (D, W), the 
mapping <j>A associates a propositional formula F with a truth 



The relation <DL is a pre-order, i.e., a reflexive and transi­
tive relation on the set of all default theories in the language. 
Throughout the paper, when we compare different default 
theories, we assume that they have the same underlying lan­
guage. 

Intuitively, a default theory A i is stronger than another de­
fault theory A2 if Ai entails more certain information than 
A 2 . In other words, when A2 <DL A I , conclusions derived 
from Ai are relatively more stable and reliable than those de­
rived from A 2 . The 'stronger' relation reduces to the relation 
between (propositional) first-order theories when default the­
ories have no defaults. 

Proposition 3.4 be 
two default theories. Then,  

Thus, the relation is a natural extension of the one for 
(propositional) first-order theories. 

Proposition 3.5 Given two default theories and  
implies , but not vice-

versa. 
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The introduction of new information may block the appli­
cation of some default rules, which would cause the with­
drawal of some default conclusions in a theory. This is a typ­
ical feature of default reasoning. 

We finally provide a connection between the order relation 
, and default extensions. 

Theorem 3.7 provides a sufficient condition to judge 
using extensions of default theories. 

4 Ordering Nonmonotonic Logic Programs 
In logic programming, default reasoning is realized by nega­
tion as failure (NAF). Logic programs containing NAF are 
called nonmonotonic logic programs. 

Nonmonotonic logic programs considered in this paper are 
the class of extended logic programs (ELPs) iGelfond and 
Lifschitz, 1991], which contain two kinds of negation; ex­
plicit (or classical) negation -* and NAF (or default negation) 
not. An extended logic program (or simply a program) is a 
set of rules of the form: 

where each is a positive/negative literal and 
not represents NAF. The literal Lo is the head and the con­
junction . . . , not Ln is the body of 
the rule. A rule or a program is called not-free if it contains 
no NAF (i.e., m = n). Given an ELP 11, the set of not-
free rules from II is denoted by rule with the empty 
body is identified with the literal L. The head of any 
rule is non-empty.4 Like default theories, every variable in 
a program is interpreted as a free variable. A program II is 
semantically identified with its ground instantiation, i.e., the 
set of ground rules obtained from II by substituting variables 
with elements of the Herbrand universe of II in every possible 
way. We handle ground programs throughout the paper. 

The semantics of ELPs is given by the answer set se­
mantics [Gclfond and Lifschitz, 1991]. Let Lit be the set 
of all ground literals in the language of a program (called 
the literal base). Suppose an ELP II and a set of literals 

. Then, the reduct ITS is the program which con­
tains the ground rule iff there is a rule 

not Ln in the ground in­
stantiation of II such that . Given 
a not-free ELP I I , Cn(I I ) denotes the smallest set of ground 
literals which is (i) closed under , i.e., for every ground 
rule from the ground instantiation of H, 

implies and (ii) logi­
cally closed, i.e., it is either consistent or equal to Lit. Given 
an ELP II and a set S of literals, 5 is an answer set of II if 

Answer sets represent possible beliefs of a program, and an 
ELP may have none, one, or multiple answer sets. In particu­
lar, every not-free ELP has the unique answer set. An answer 
set is consistent if it is not Lit. The set of all answer sets of 
an ELP II is written as AS(U). 
Proposition 4.1 An ELP II has the unique answer set Lit iff 

4Under the answer set semantics which we consider in this paper, 
a rule with the empty head F is expressed by the semantically 
equivalent rule not L with a literal L. 
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The above proposition presents that the order-equivalence 
relation c ^ / , provides an equivalence relation which is 
stronger than the equivalence based on extensions. 

Example 3.5 (introductory example) Let and be two 
default theories: 

Theorem3.7 Let " _ = ( D i . W i ) and = (D2,W2) be 
two default theories. Then, if the following 
conditions are satisfied: 



According to [Gelfond and Lifschitz, 1991 ], the rule L0 <-
not Ln is interpreted as the 

default rule: 

where for a positive literal L. ln this case, there is 
a 1-1 correspondence between the answer sets of a program 
and the extensions of the corresponding default theory.5 

Proposition 4.2 [Gelfond and Lifschitz, 19911 Let II be an 
ELP and its corresponding default theory. If S is an an­
swer set ofU, then the deductive closure ofS is an extension 
of Conversely, every extension of is the deductive 
closure of exactly one answer set of II. 

Using the correspondence, a multi-valued interpretation for 
ELPs is defined under the logic IX. 

Definition 4.1 Given an ELP I I , the mapping <pu associates 
a positive literal L € Lit with a truth value of IX as follows: 

Precisely speaking, no/,-free rules in an ELP correspond to 
justification-free defaults. Although we supposed defaults with non­
empty justifications in the previous sections, the following discus­
sion is valid apart from the results of Section 3. 

The relation AS is a pre-ordcr on the set of all ELPs in 
the language. A program II j is stronger than if the answer 
sets of entail more certain information than . Different 
from the case of default logic, we compare programs in terms 
of literals included in answer sets. This is because in non­
monotonic logic programs the meaning of a program is deter­
mined not by individual rules in a program, but by consequent 
literals included in selected models of a program. Thus, we 
capture the information content of a program as consequences 
brought by answer sets. 

Proposition 4.3 Let and be two not-free ELPs which 
have the same literal base. Then,  

Proposition 4.4 Given two ELPs  
implies . , but not vice-versa. 
Example 4.3 Let and j be two programs: 

where I I i and U2 have the same answer set . Then, 
= dfs. 

It is easily verified that the order has nonmonotonic 
properties which correspond to Proposition 3.6 with respect 
to the introduction of new rules to a program. 

A connection between the order relation and answer 
sets is given as follows (The proof is similar to Theorem 3.7). 

Theorem 4.5 Let and be two ELPs which have the 
same literal base. Then, if the following condi­
tions are satisfied: 

5 Discussion 
In the context of multi-valued logics, Ginsberg [19881 firstly 
introduces a bilattice for default logic. He distinguishes 
definite and default conclusions obtained from a (super­
normal) default theory using the bilattice of Figure 2. How­
ever, Ginsberg's bilattice is seven-valued and does not distin­
guish between skeptical and credulous default conclusions. 
For instance, suppose the super-normal default theory = 

which has two default extensions Th( 
and Then, dtc, and 

= d ts in our framework, while Ginsberg in­
terprets p as * but handles both q and as dt . Thus, to 
distinguish skeptical/credulous default inference, additional 
truth values are necessary as introduced in this paper. Dion-
isio etal. [1998] distinguish skeptical/credulous default in­
ference in super-normal default theories using modal logic. 
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Remark that literals L and L are included in every answer 
set of II iff they are in C n ( I I + ) (Proposition 4.1). So it does 
not happen that takes both dts and dfs for any L. 

The intuitive meaning of i is analogous to that of  

Example 4.1 Let II be the program: 

Example 4.2 Let II be the program: 

which has two answer sets {p\ and Then,  
has properties obtained from Proposition 3.2 by replac­

ing with and formulas with literals. 
Ordering between ELPs is defined as follows. 



Figure 2: Ginsberg's bilattice for default logic 

Their goal is reasoning about defaults and is not ordering de­
fault theories. 

In logic programming, Fitting [19911 uses bilattices to 
characterize the semantics of normal logic programs. He uses 
a four-valued logic and does not distinguish definite and de­
fault information. Dix [1992] uses the knowledge ordering 
under a three-valued logic to compare information obtained 
from a single normal logic program under different seman­
tics. This is in contrast to our approach in which we com­
pare different programs under the single answer set seman­
tics. Lattice-valued logics are also used for characterizing 
the "paraconsistenf semantics of logic programs [Damasio 
and Pereira, 1998]. To our best knowledge, however, the 9-
valued bilattice used in this paper never appears in the litera­
ture. Moreover, existing studies all use multi-valued logics to 
provide a semantics of a single program, while we use them to 
compare information between different programs. The order-
equivalence provides a stronger relation than the usual model-
based equivalence (Proposition 4.4). On the other hand, it 
is known another strong equivalence relation between logic 
programs [Lifschitz etal., 2001]. At the moment, we have 
an evidence that there is no stronger/weaker relation between 
the strong equivalence and the order-equivalence in general. 

From the computational viewpoint, there is a difficulty for 
directly computing for an arbitrary formula F. This is 
due to the fact that the interpretation of a formula F is 
generally not constructive by those of the sub-formulas of F 
(Proposition 3.3). The same problem happens in the restricted 
class of super-normal default theories [Ginsberg, 1988]. For 
checking an order between default theories, however, Theo­
rem 3.7 provides a sufficient condition to judge the relation 

using default extensions. In the context of logic 
programming, is checked by Theorem 4.5 using 
the existing procedures for computing answer sets. 

In the fields of machine learning and inductive logic pro­
gramming, a theory of generalization has been extensively 
studied in the context of first-order logic iNienhuys-Cheng 
and de Wolf, 1997]. However, generalization under logi­
cal entailment is not directly applicable to default theo­
ries and nonmonotonic logic programs. A default ordering 
introduced in this paper can order default theories and non­
monotonic logic programs, thereby could give a theoretical 

ground for inductive generalization in nonmonotonic logic 
programs. For instance, for the programs 
bird(x), bird(tweety) and  
bird(x), not abnormal(x), bird(twcety) , the rela­
tion holds (flics(twecty) has the value t in 
while it has the value dts in __ ;. Thus, if we read the order 

as "more general", is considered a generalization of 
. This coincides with the view in the ILP literature [Bain 

and Muggleton, 1992] in which is a specialization of . 

6 Conclusion 
In this paper, we introduced a multi-valued interpretation of 
default theories, which can distinguish definite and skepti­
cal/credulous default consequences. Based on this, we devel­
oped a theory for ordering default theories and applied the 
technique to ordering nonmonotonic logic programs. The 9-
valued bilattice is used for characterizing other nonmonotonic 
formalisms which have the same inference modes as default 
logic. The results of this paper provide a method of com­
paring default theories or nonmonotonic logic programs in 
a manner different from the conventional extension-based or 
model-based standpoint. The proposed framework is consid­
ered to have potential application to inductive learning in non­
monotonic logics, which we will investigate in future study. 
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