
Abstract
The benefits of modular representations arc well
known from many areas of computer science. In
this paper, we concentrate on the benefits of mod­
ular ontologies with respect to local containment
of terminological reasoning. We define an archi­
tecture for modular ontologies that supports local
reasoning by compiling implied subsumption rela­
tions. We further address the problem of guaran­
teeing the integrity of a modular ontology in the
presence of local changes. We propose a strategy
for analyzing changes and guiding the process of
updating compiled information.

1 Introduction
Currently, research in the area of the semantic web is in
a state where ontologies are ready to be applied in real
applications such as semantic web portals, information
retrieval or information integration. In order to lower the
effort of building ontology-based applications, there is a clear
need for a representational and computational infrastructure
in terms of general purpose tools for building, storing and
accessing ontologies. A number of such tools have been
developed, i.e. ontology editors, reasoning systems and more
recently storage and query systems.1 Most of these tools,
however, treat ontologies as monolithic entities and provide
little support for specifying, storing and accessing ontologies
in a modular manner.

1.1 Why Modularization ?
There are many reasons for thinking about ontology modular­
ization. Our work is mainly driven by three arguments. These
also bias the solution we propose, as it is aimed at improving
the current situation with respect to the following aspects.
Distributed Systems: In highly distributed systems such as

the semantic web, modularity naturally exists in terms of
physical location. Providing interfaces and mechanisms

'An extensive overview is provided in the Onto Web deliv­
erable, available at http: //www.ontoweb.org/download/
deliverables/D13_vl-0.zip.

900

for connecting these natural modules is a prerequisite for
easy maintenance [Heflin and Hendler, 2000].

Large Ontologies: Modularization also helps to manage
very large ontologies we find for example in medicine
or biology. Here modularity helps to maintain and reuse
parts of the ontology as smaller modules are easier to
handle than the complete ontology [Rector, 2003].

Efficient Reasoning: A specific problem that occurs in the
case of distributed and large models is the problem of
efficient reasoning. The introduction of modules with
local semantics and clear interfaces will help to develop
efficient reasoning methods [Mcllraith and Amir, 2001].

1.2 Requirements
There are a couple of requirements a modular ontology archi­
tecture has to fulfill in order to improve ontology maintenance
and reasoning in the way suggested above. The requirements
will be the main guidelines for the design of our solution pro­
posed in this work.
Loose Coupling: In general, we cannot assume that two on­

tology modules have anything in common. This refers
to the conceptualization as well as the specific logical
language used for the interpretation of objects, concepts
or relations.

Self-Containment: In order to facilitate the reuse of individ­
ual modules we have to make sure that modules are self-
contained. In especially, the result of certain reasoning
tasks such as subsumption or query answering within a
single module should be possible without having to ac­
cess other modules.

Integrity: Having self-contained ontology modules may
lead to inconsistencies that arise from changes in other
ontology modules. We have to provide mechanisms for
checking whether relevant knowledge in other systems
has changed and for updating our modules accordingly.

1.3 Our Approach
In the following, we describe our approach to ontology modu­
larization on an abstract level. We emphasize the main design
decisions and motivate them on the basis of the requirements
defined above. The technical details of the approach will be
given in the following sections.

ONTOLOGIES AND FOUNDATIONS

Integrity and Change in Modular Ontologies

Heiner Stuckenschmidt and Michel Klein
Vrije Universiteit Amsterdam

de Boelelaan 1081a, 1081HV Amsterdam
{heiner, michel.klein}@cs.vu.nl

View-Based Mappings: We adopt the approach of view-
based information integration. In particular, ontology
modules are connected by conjunctive queries. This way
of connecting modules is more expressive than simple
one-to-one mappings between concept names but less
expressive than the logical language used to describe
concepts. We decide to sacrifice a higher expressiveness
for the sake of conceptual simplicity and desirable se­
mantic properties such as independence of the ontology
langauge used.

Compilation of Implied Knowledge: In order to make lo­
cal reasoning independent from other modules, we use
a knowledge compilation approach. The idea is to com­
pute the result of each mapping query off-line and add
the result as an axiom to the ontology module using the
result. During reasoning, these axioms replace the query
thus enabling local reasoning.

Change Detection and Automatic Update: Once a query
has been compiled, the correctness of reasoning can only
be guaranteed as long as the concept hierarchy of the
queried ontology module does not change. In order to
decide whether the compiled axiom is still valid, we pro­
pose a change detection mechanism that is based on a
taxonomy of ontological changes and their impact of the
concept hierarchy.

The rest of the work is organized as follows. In section 2
we provide a definition of ontology modules based on a min­
imal notion of ontologies that fixes important properties we
will use later on while leaving as much freedom for specific
implementations as possible. Section 3 introduces our ap­
proach to self-containment in terms of compiled knowledge.
The remainder of the paper is devoted to the problem of de­
tecting changes and preserving integrity amongst modules in
a system.

2 Modular Ontologies
Before we start investigating the problem of change and in­
tegrity, we define the notion of modular ontology we will use
as a basis for our technical results.

2.1 Modules and Queries
A number of languages for encoding ontologies on the Web
have been proposed (see [Gomez-Perez and Corcho, 2002]
for an overview). In order to get a general notion of ontolog­
ical knowledge, we define the general structure of an onto­
logical module and its instantiation independent of a concrete
language.
Definition 1 (Ontology Module) A module is a triple M —

where C is set of concept definitions, 11 is a set of
relation definitions and is a set of object definitions. Fur­
ther, we define the signature of a module to be a
triple where CM is the set of all names of
concepts defined in C, TIM the set of all relation names in R
and Rthe set of all object names occurring in

Queries over ontological knowledge are defined as con­
junctive queries, where the conjuncts are predicates that cor­
respond to concepts and relations of an ontology. Further,

ONTOLOGIES AND FOUNDATIONS

variables in a query may only be instantiated objects in that
ontology.

The fact that all conjuncts relate to elements of the on­
tology allows us to determine the answer to ontology-based
queries in terms of instantiations of the query that are logical
consequences of the knowledge base.

2.2 Internal and External Definitions
The notion of module and query given above is a quite stan­
dard ones. What makes up a modular ontology now, is the
possibility to use ontology-based queries in order to define
concepts in one module in terms of a query over another mod­
ule. For this purpose, we divide the set of concepts in a mod­
ule into internally defined concepts C1 and externally defined
concepts CE resulting into the following definition of C:

(1)
Internally defined concepts are specified by using concept

expressions in the spirit of description logics [Baader et ai,
2003]. We do not require a particular logic to be used.
Definition 3 (Internal Concept Definition) An internal
concept definition is an axiom of one of the following forms

where and D is concept
expression of the form where the terms are
either concept names or concept expressions and is an
n-ary concept building operator

Besides this standard way of defining concepts, we con­
sider externally defined concepts that are assumed to be
equivalent to the result of a query posed to another module
in the modular ontology. This way of connecting modules
is very much in spirit of view-based information integration
which is standard technique in the area of database systems
[Halevy, 2001]. The choice of conjunctive queries for con­
necting different modules is motivated by the trade-off be­
tween expressiveness of the mapping and conceptual as well
as computational simplicity. Our approach is more expres­
sive than simple one-to-one mappings; having more complex
mappings would contradict the principle of loose coupling of
different modules.
Definition 4 (External Concept Definition) An external
concept definition is an axiom of the form: C = M :
Where M is a module and is an ontology-based query over
the signature of M.

A modular ontology is now simply defined as a set of mod­
ules that arc connected by external concept definitions. In
particular we require that all external definitions are contained
in the modular system.

2Note that this may include data-type expressions as the type
itself is can be considered to be a concept, the actual value a member
of that concept and the comparison operator a special relation.

901

Definition 5 (Modular Ontology) A modular ontology
is a set of modules such that for each

externally defined concept is also member
ofM.

We will use this notion of a modular ontology in the follow­
ing to investigate the problem of integrity of logical reasoning
across modules.

2.3 Semantics and Logical Consequence
We define a model-based semantics for modular ontologies
using the notion of a distributed interpretation proposed by
[Borgida and Scrafini, 2002] in the context of distributed de­
scription logics:

Definition 6 (Distributed Interpretation) A distributed in­
terpretation of modular ontology
consists of interpretations for the individual module M1
over domains such that:

The assumption of disjoint interpretation domains again
reflects the principle of loose coupling underlying our ap­
proach. Based on the notion of a distributed interpretation we
can define a model of a modular ontology as an interpretation
that satisfies the constraints imposed by internal and exter­
nal concept definitions. In contrast to [Borgida and Scrafini,
2002], we do not introduce special operators for defining the
relations between different domains, we rather interpret exter­
nal concept definitions as constraints on the relation between
the domains:

Definition 7 (Logical Consequence) A distributed interpre­
tation is a model for modular ontology , if for every
module Mt we have for every concept definition C in
M1 where is defined as follows.

Here denotes the interpretation of the set of answers to
query An axiom A logically follows from a set of axioms
S if S implies A for every model We denote
this fact by S A.

The actual definitions of concepts impose further con­
straints on the interpretation of a modular ontology. For the
case of internally defined concepts, these constraints are pro­
vided by the definition of concept building operators of de­
scription logics. For the case of externally defined concepts,
the situation is more complicated and will be discussed in
more details in the next section.

902

3 Compilation and Local Reasoning
Using the notion of logical consequence defined above, we
now turn our attention to the issue of reasoning in modular
ontologies. For the sake of simplicity, we only consider the
interaction between two modules in order to clarify the basic
principles. Further, we assume that only one of the two mod­
ules contains externally defined concepts in terms of queries
to the other module.

3.1 Implied Subsumption

As mentioned in the introduction, we are interested in the
possibility of performing local reasoning. For the case of
ontological reasoning, we focus on the task of deriving im­
plied subsumption relations between concepts within a single
module. For the case of internally defined concepts this can
be done using well established reasoning methods [Donini et
al., 1996]. Externally defined concepts, however, cause prob­
lems: being defined in terms of a query to the other module,
a local reasoning procedure will often fail to recognize an
implied subsumption relation between these concepts. Con­
sequently, subsumption between externally defined concepts
requires reasoning in the external module as the following
theorem shows.

Theorem 1 (Implied Subsumption) Let E1 and E2 be two
concepts in module Mt that are externally defined in module

by queries

The result presented above implies the necessity to decide
subsumption between conjunctive queries in order to identify
implied subsumption relations between externally defined
concepts. In order to decide subsumption between queries,
we translate them into internally defined concepts in the mod­
ule they refer to. A corresponding sound and complete trans­
lation is described in [Horrocks and Tessaris, 2000]. Using
the resulting concept definition, to which we refer as query
concepts, we can decide subsumption between externally de­
fined concepts by local reasoning in the external ontology.

3*2 Compilation and Integrity

We can avoid the need to perform reasoning in external mod­
ules each time we perform reasoning in a local module us­
ing the idea of knowledge compilation [Cadoli and Donini,
1997]. The idea of compilation is to perform the external
reasoning once and add the derived subsumption relations as
axioms to the local module. These new axioms can then be
used for reasoning instead of the external definitions of con­
cepts. This set of additional axioms can be computed using
Algorithm 1.

If we want to use the compiled axioms instead of external
definitions, we have to make sure that this will not invalidate
the correctness of reasoning results. We call this situation,
where the compiled results are correct as integrity. We for­
mally define integrity as follows:

ONTOLOGIES AND FOUNDATIONS

Definition 8 (Integrity) We consider integrity of two ontol­
ogy modules t o b e present i f w h e r e
Mc is the result of replacing the set of external concept defi­
nitions in M by compile

At the time of applying the compilation this is guaranteed
by theorem 1, however, integrity cannot be guaranteed over
the complete life-cycle of the modular ontology. The problem
is, that changes to the external ontology module can invalidate
the compiled subsumption relationships. In this case, we have
to perform an update of the compiled knowledge.

4 Change Robustness
In principle, testing integrity might be very costly as it re­
quires reasoning within the external ontology. In order to
avoid this, we propose a heuristic change detection procedure
that analyzes changes with respect to their impact on com­
piled subsumption relations. Work on determining the impact
of changes on a whole ontology is reported in [Heflin and
llcndler, 2000]. As our goal is to determine whether changes
in the external ontology invalidates compiled knowledge, we
have to analyze the actual impact of changes on individual
concept definitions. We want to classify these changes as
either harmless or harmful with respect to compiled knowl­
edge.

4.1 Determining Harmless Changes
As compiled knowledge reflects subsumption relations
between query concepts, a harmless change is a set of
modifications to an ontology that does not change these
subsumption relations. Finding harmless changes is therefore
a matter of deciding whether the modifications affect the
subsumption relation between query concepts. We first look
at the effect of a set of modifications on individual concepts:

Assuming that C represents the concept under considera­
tion before and the concept after the change there are four
ways in which the old version C may relate to the new version

1. the meaning of concept is not changed: (e.g.
because the change was in another part of the ontology,
or because it was only syntactical);

2. the meaning of a concept is changed in such a way that
concept becomes more general:

3. the meaning of a concept is changed in such a way that
concept becomes more specific:

4. the meaning of a concept is changed in such a way that
there is no subsumption relationship between C and

ONTOLOGIES AND FOUNDATIONS

The same observations can be made for a relation before
and after a change, denoted as R and R! respectively. The
next question is how these different types of changes influ­
ences the interpretation of query concepts. We take advantage
of the fact that there is a very tight relation between changes
in concepts of the external ontology and implied changes to
the query concepts using these concepts:

Proof 2 (Sketch) The idea of the proof is the following:
Queries contain conjuncts of the form Con-
juncts of the first form are interpreted as It
directly follows that changing the interpretation of the con­
cept C referred to in a conjunct of this type leads to the same
change on the interpretation of the conjunct and because con­
junction is interpreted as set intersection the whole query.
Conjuncts of the second type are interpreted as

The variable can be further constraint by
a conjunct of the first type. Again changes in the interpre­
tation of the concept that further restricts y have the same
effect on possible interpretations of and therefore also on
the interpretation of conjuncts of the second type. Using the
same argument, we see that making R more general/specific
(allowing more/less tuples in the relation) makes conjuncts
of the second form more general/specific. Using these ba­
sic conclusions, we can proof the lemma by induction over
the lengths of the path in the dependency graph of the query
where nodes represent conjuncts and arcs co-occurrence of
variables.

We can exploit this relation between the interpretation of
concepts and queries in order to identify the effect of changes
in the external ontology on the subsumption relations be­
tween different query concepts. First of all the above re­
sult directly generalizes to multiple changes with the same
effect, i.e. a query becomes more general(specific) or stays
the same if none of the elements in become
more specific(gencral). Further, the subsumption relation be­
tween two query concepts does not change if the more gen-
eral(specific) query becomes even more general(specific) or
stay the same. Combining these two observations, we derive
the following characterization of harmless change.

903

The theorem provides us with a correct but incomplete
method for deciding whether a change is harmless. This basic
method can be refined by analyzing the overlap of and

in combination with the relations they restrict. This
more accurate method is not topic of this paper, but it relies
on the same idea as the theorem given above.

4.2 Characterizing Changes

Now we are able to determine the consequence of changes
in the concept hierarchy on the integrity of the mapping, we
still need to know what the effect of specific modifications on
the interpretation of a concepts is (i.e. whether it becomes
more general or more specific). As our goal is to determine
the integrity of mappings without having to do classification,
we describe what theoretically could happen to a concept as
result of a modification in the ontology. To to so, we have
listed all possible change operations to an ontology according
to the OWL-lite3 knowledge model in the same style as done
in iBanerjce et al, 1987]. The list of operations is extend­
able to other knowledge models; we have chosen the OWL-
lite model because of its simplicity and its expected impor­
tant role on the Semantic Web. Apart from atomic change
operations to an ontology — like add range restriction or
delete subclass relation — the list also contains some com­
plex change operations, which consist of multiple atomic op­
erations and/or incorporate some additional knowledge. The
complex changes are often more useful to specify effects than
the basic changes. For example, for operations like concept
moved up, or domain enlarged, we can specify the effect
more accurately than for the atomic operations subclass rela­
tion changed and domain modified4. Atomic changes can be
detected without using the knowledge in the ontology itself,
only using the knowledge of the knowledge model, i.e. the
language. These changes are detected at a structural level.
To identify complex changes, we also need to use the con­
tent of the ontology itself. We are currently working on rules
and heuristics to distill complex changes from sets of atomic
changes [Klein and Noy, 2003]. Table 1 contains some ex­
amples of operations and their effect on the classification of
concepts. The table only shows a few examples, although our
full ontology of change operations contains around 120 oper­
ations. This number is still growing as new complex changes
arc defined. A snapshot of the change ontology can be found
online.5 The specification of effects is not complete, in the
sense that it describes "worst case" scenario's, and that for
some operations the effect is "unknown" (i.e. unpredictable).
In contrast to [Franconi et al., 2000] who provides complete
semantics of changes we prefer to use heuristics in order to
avoid expensive reasoning about the impact of changes.

3See http://www.w3 . org/TR/owl- features/.
4For a complete list, see http://wonderweb.man.ac.

uk/deliverables/D20.shtml.
5 h t t p : / / o n t o v i e w . o r g / c h a n g e s / 1 / 3 /

904

[Operation
Attach a relation to concept C
Complex. Change the superclass of concept
C to a concept lower in the hierarchy
Complex. Restnct the range of a relation R
(efleet on all C that have a restriction on R)
Remove a superclass relation of a concept C
Change the concept definition of C from
primitive to defined
Add a concept definition A

1 Complex Add a (not further specified) sub­
class A of C
Define a relation R as functional

| Effect
C: Specialized
C: Specialized

R: Specialized,
C: Specialized
C. Generalized
C: Generalized

C: Unknown
C: No effect

/?: Specialized

Table 1: Some modification to an ontology and their effects
on the classification of concepts in the hierarchy.

4.3 Update Management
With the elements that we described in this section, we now
have a complete procedure to determine whether compiled
knowledge in other modules is still valid when the external
ontology is changed. The complete procedure is as follows:

1. create a list of concepts and relations that are part of the
"subsuming" query of any compiled axiom;

2. create another list of concepts and relations that are part
of the "subsumed" query of any compiled axiom;

3. achieve the modifications that are performed in the ex­
ternal ontology;

4. use the modifications to determine the effect on the in­
terpretation of the concept and relations.

5. check whether there arc concepts or relations in the first,
"subsuming", list that became more specific, or concepts
or relations in the second, "subsumed", list that became
more general, or concepts or relations in any of the lists
with an unknown effect; if not, the integrity of the map­
ping is preserved.

Algorithm 2 Update
Require: Ontology Module M
Require: Ontology Module

for all compiled axioms _ do
for all X do

if effect on C is 'generalized' or 'unknown' then

end if
end for
for all X do

if effect on X is 'specialized' or 'unknown' then

end if
end for

end for

We describe the procedure in a more structured way in Al­
gorithm 2. The algorithm triggers a (re-)compilation step
only if it is require in order to resume integrity. Otherwise

ONTOLOGIES AND FOUNDATIONS

no action is taken, because the previously compiled knowl­
edge is still valid. All the steps can be automated. A tool that

1 Lutein et at.,
2002]. This tool will compare two versions of an ontology
and derive the list of change operations that is necessary to
transform the one into the other. It will also be able to detect
some of the complex operations. The tool will also annotate
the definitions in an ontology with the effect that the change
has on its place in the hierarchy.

5 Conclusions
There is a growing need for applying the principle of mod­
ularity to representations of ontological knowledge in order
to facilitate the creation, maintenance and re-use of knowl­
edge. This paper contributes to the development of a theory
of modular ontologies, focussing on the issue of reasoning in
modular ontologies that change over time. The contributions
of this paper is three-fold:

1. We propose an architecture for modular ontologies and
analyze the role of mappings in logical reasoning across
modules.

2. We describe a knowledge compilation approach that
makes local reasoning within modules possible and de­
fine the notion of integrity.

3. We develop an update strategy that preserves integrity by
identifying changes in ontology modules and deciding
whether the compiled knowledge has to be updated or
not.

We think that the approach described meets the practical
needs of creating and using ontologies without missing a for­
mal underpinning. It uses well-established representations of
ontological knowledge and a rather simple and intuitive rep­
resentation of mappings. Further, all of the supporting meth­
ods described can be automated in order to assist ontology
engineers and developers of ontology-based systems. We de­
liberately chose to make some simplifications in order to be
able to develop concise methods. First of all, these simplifica­
tions concern the restriction to a system of only two modules
and the use of a rather weak heuristic for determining the ef­
fect of changes on compiled knowledge. In future work, we
will investigate the impact of these simplifications and try to
develop a more complete theory of the interaction in com­
plex systems of modules and of the impact of changes on de­
rived knowledge. Further one can as well imagine an external
definition of relations using conjunctive queries with more
than one free variable and reducing implied subsumption to
the general problem of query containment under constraints
[Calvanese et al., 1998].

References
[Baadert et al,,2003] F. Baader, D. Calvanese, D. McGui-

ness, D. Nardi, and P. Patel-Schneider, editors. The De­
scription Logic Handbook - Theory, Implementation and
Applications. Cambridge University Press, 2003.

[Banerjee et al, 1987] Jay Banerjee, Won Kim, Hyoung-Joo
Kim, and Henry F. Korth. Semantics and Implementa­
tion of Schema Evolution in Object-Oriented Databases.

ONTOLOGIES AND FOUNDATIONS 905

S1GMOD Record (Proc. Conf. on Management of Data),
16(3):311-322, May 1987.

[Borgida and Serafini, 2002] A. Borgida and L. Serafini.
Distributed description logics: Directed domain corre­
spondences in federated information sources. In Proceed­
ings of the Intenational Conference on Cooperative Infor­
mation Systems, 2002.

[Cadoli and Donini, 1997] M. Cadoli and F.M. Donini. A
survey on knowledge compilation. Al Communications,
10(3-4):137~150, 1997.

[Calvanese etai, 1998] Diego Calvanese, Giuseppe De Gi-
acomo, and Maurizio Lenzerini. On the decidability of
query containment under constraints. In Proc. of the 17th
ACM SIGACT S1GMOD S1GART Sym. on Principles of
Database Systems (PODS '98), pages 149-158, 1998.

[Donini et al, 1996] F.M. Donini, M. Lenzerini, D. Nardi,
and A. Schaerf. Reasoning in description logics. In Ger­
hard Brewka, editor, Principles of Knowledge Representa­
tion, pages 193-238. CSL1 Publications, 1996.

[Franconi et al, 2000] Enrico Franconi, Fabio Grandi, and
Federica Mandreoli. A semantic approach for schema
evolution and versioning in object-oriented databases. In
Computational Logic 2000, number 1861 in Lecture Notes
in Computer Science, pages 1048 - 1062, 2000.

[Gomez-Perez and Corcho, 2002] A. Gomez-Perez and
O. Corcho. Ontology langauges for the semantic web.
IEEE Intelligent Systems, January/February:54-60, 2002.

[Halevy, 2001] A.Y. Halevy. Answering queries using views:
A survey. The VLDB Journal, 10(4):270-294, 2001.

[Hefiin and Hendler, 2000] Jeff Hcflin and James Hcndlcr.
Dynamic ontologies on the web. In Proceedings of the
Seventeenth National Conference on Artificial Intelligence
(AAAI-2000), pages 443-449. AAA1/MIT Press, Menlo
Park, CA, 2000.

[llorrocks and Tessaris, 2000] 1. Horrocks and S. Tessaris. A
conjunctive query language for description logic aboxes.
In AAAI/IAAI, pages 399-404, 2000.

[Klein and Noy, 2003] Michel Klein and Natalya F. Noy.
A component-based framework for ontology evolution.
Technical Report IR-504, Department of Computer Sci­
ence, Vrije Universiteit Amsterdam, March 2003.

[Klein et al., 2002] Michel Klein, Atanas Kiryakov, Damyan
Ognyanov, and Dieter Fensel. Ontology versioning and
change detection on the web. In 13th International Con­
ference on Knowledge Engineering and Knowledge Man­
agement (EKAW02), Siguenza, Spain, October 1-4, 2002.

[Mcllraith and Amir, 2001] S. Mcllraith and E. Amir. Theo­
rem proving with structured theories. In B. Nebel, editor,
Proceedings ofIJCAI'01, pages 624-634, San Mateo, Au­
gust 2001. Morgan Kaufmann.

[Rector, 2003] A. Rector. Modularisation of domain ontolo­
gies implemented in description logics and related for­
malisms including OWL. In Proceedings of the 16th In­
ternational FLAIRS Conference. AAA1, 2003.

