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Abstract 

This paper introduces the concept of Resource 
Temporal Network (RTN), a constraint network 
that subsumes both classical attributes used in A.I. 
Planning and capacity resources traditionally han­
dled in Scheduling. After giving a formal defini­
tion of RTNs, we analyze their expressive power 
and study complexities of several fragments of the 
RTN framework. We show that solving an RTN is 
in general NP-Complete - which is not surprising 
given the expressivity of the framework - whereas 
computing a Necessary Truth Criterion is polyno­
mial. This last result opens the door for promising 
algorithms to solve RTNs. 

1 Introduction 

Historically, Artificial Intelligence Planning focuses on ab­
solute changes (for instance change of the truth value of a 
predicate), conditions on the state of the world and symbol­
ical precedences between operations whereas Scheduling fo­
cuses on relative changes of the world (resource consump­
tion or production) and numerical time. Recent advances in 
both fields have enlarged their relative ambition: time and 
resources are increasingly being studied by the AI Planning 
community whereas conditions and absolute changes are nec­
essary to express complex scheduling problems involving for 
example alternative recipes or complex conditions and ef­
fects on the level of resources. This paper introduces and 
analyzes the computational complexity of a formalism that 
mixes on the same fluent the ingredients of Al Planning (ab­
solute changes, conditions) and the ones of Scheduling (rela­
tive changes, numerical time). There has been some recent 
work on the decidability of planning with numerical state 
variables [Helmert, 2002] but to the best of our knowledge, 
no computational complexity study has been published that 
analyzes a complex but realistic and useful fragment of the 
overall framework of planning with time and numerical state 
variables. This paper is a step in this direction. 

2 Resource Temporal Networks 
2.1 Definition 
Definition 1 (Resource) A resource is a numerical fluent 
whose value can vary over time. The value of this fluent at 
date t is called the resource level at date t and is denoted 

In this paper, we focus on time and resource levels belong­
ing to a dense set (rational numbers): Al­
though the framework can be extended to handle continuous 
changes, we only consider discrete changes. 

Definition 2 (Resource Statements) We define the follow­
ing statements on a resource where t, and denote vari­
able time-points and q some constant in 

• An absolute change is a statement denoted A(q, t) stat­
ing that because of this change at date t, the level of the 
resource changes from a current level I to q. 

• A relative change is a statement denoted R stat­
ing that because of this change at date t, the level of 
the resource changes from current level I to I This 
corresponds to a production of units if or 
consumption of units if 

• A lower-than condition is statement denoted 
L stating that the level of the resource 
must remain lower than or equal to q over time interval 

• A greater-than condition is statement denoted 
G(q,t8,te) stating that the level of the resource must 
remain greater than or equal to q over time interval 

respectively denote the sets of absolute, rela­
tive changes, lower-than and greater-than conditions. If 

is a resource change, we denote the time-point of 
and q(x) the resource quantity involved in If 

is a condition, we denote the start time-point of 
its end time-point and the resource quantity involved in 

Note that the above resource statements also allow for 
expressing equal conditions of the form E stating 
that the level of the resource remains equal to q over the time 
interval as the conjunction of a lower-than condition 
L and a greater-than condition G . The set 
of equal conditions is denoted £. Resource statements are 
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the basic ingredients for defining Resource Temporal Net­
works (RTNs). Informally, an RTN represents a set of pos­
sible evolutions of a given numerical variable (the level of the 
resource) over time. 
Definition 3 (Resource Temporal Network) A resource 
temporal network (R TN) is a tuple where: 

is set of time-point variables, and respectively 
denote set of absolute, relative changes, lower-than and 
greater-than conditions referring to time-points in is 
a Temporal Network using the formalism defined in 
[Gerevini and Cristani, 1997]1 on the time-points of 

In this paper, for simplicity reasons, we focus on decision 
problems and reasoning involving a unique resource. Our 
framework can naturally be extended toward (1) parametrized 
resources of the form Res where is a variable parameter 
describing which resource a given resource statement applies 
and (2) handling variable quantities q in resource statements. 
Those extensions are out of the scope of the paper. 
Definition 4 (Instantiation of an RTN) An instantiation of 
an RTN is function a : 

It is to be noted that in this paper, we assume that all the re­
source statements are known and the only decision variables 
of an RTN are the time-points in We do not handle, at 
this point, the complete Al Planning problem of generating 
an RTN given a partial RTN and a set of operators described 
as RTNs. 
Definition 5 (Time-consistent instantiation) An instantia­
tion a is said to be time-consistent iff is consistent with 
the STN 

Computing a time-consistent instantiation of an RTN can 
be done in [Gerevini and Cristani, 1997]. We now de­
fine the notion of resource-consistent instantiation. In the def­
inition below, conditions [1] and [2] ensure that in a resource-
consistent instantiation, two absolute changes assigning dif­
ferent levels cannot be simultaneous and an absolute change 
cannot be simultaneous with a relative change. The ratio­
nale for this semantics is that, as in [Fox and Long, 2002], 
we allow simultaneity only for pair of changes that are 
commutative, that is such that applying just after leads to 
the same level as applying just after . Given a date point 
[3] defines the last date beforeat which an absolute 
change occurred and the resource level assigned by such 
an absolute change. Note that can be defined without 
ambiguity because two absolute changes assigning different 
levels cannot be simultaneous. Equation [4] defines the pro­
file of the resource level over time. Conditions [5] and [6] 
state that this profile must satisfy the lower-than and greater-
than conditions. 
Definition 6 (Resource-consistent instantiation) An in­
stantiation a is said to be resource-consistent iff the following 
conditions are satisfied: 

'This formalism allows for both the representation of metric con­
straints and unequations 

Definition 7 (Solution of a RTN) A solution to an RTN is an 
instantiation that is both time- and resource-consistent. 

3 Expressive Power 
In this section, we show that most of the classical attributes 
used in AI Planning as well as most of the resources used in 
Scheduling can be represented in the RTN framework. 

3.1 Planning Attributes 
STRIPS operators 
Let p be a STRIPS predicate. It can be represented by a 
resource for which level 0 means that p is false and level 1 
means that p is true. Let be an operator at time-point /. If p 

PLANNING 949 

Figure 2: Solution of an RTN 



is in the precondition of operator o, this can be captured by a 
greater-than condition with the constraint 
It is in the precondition of operator o, this can be cap­
tured by a lower-than condition If p is in the delete 
list of operator o, this can be captured by an absolute change 

stating that after will be false. is in the add 
list of operator o, this can be captured by an absolute change 

stating that after t, p will be true. 

IXTET attributes 
Let att be an IxTnT attribute [Ghallab and Laruelle, 1994]. 
We can build a mapping p,att that maps the possible values 
of attribute att to Q. Then, a hold predicate 
can be modeled by an equal condition E(uaU An 
event event by the conjunction of an equal con­
dition an absolute c h a n g e a n d 
a temporal constraint t' 

PDDL 2.1 
Let's consider a durative action of PDDL 2.1 [Fox and Long, 
2002]. This action can be represented by two time points ts 
(start) and (end) in our formalism. A condition at start on 
a non-numerical proposition can be captured by a greater-
than condition with the p r e c e d e n c e a n ef­
fect at start by an absolute change A(l, ta) (similar modeling 
for conditions and effects at end) and an invariant condition 
by a greater-than condition Conditions and in­
variants of the form and = on numeric variables can be 
captured by RTN conditions L, G and E. Numeric effects 
assign correspond to absolute changes, whereas increase 
and decrease correspond to relative changes. 

3.2 Scheduling Resources 
Discrete resources 
A discrete resource of maximal capacity Q [Laborie, 2003] 
can be captured by an RTN with a greater-than condition 

a lower-than condition 
and an initial production An activity requiring 
units of resource over the time interval is represented 
by a pair of relative changes If the 
discrete resource is given a varying maximal capacity pro­
file, this can be modeled as a set of lower-than conditions 

Reservoir 
A reservoir of maximal capacity and initial level L [La­
borie, 2003] can be captured by an RTN with a greater-
than condition a lower-than condition 

and an absolute change A 
production activity corresponds to a relative change R(q, t) 
where whereas a consumption activity corresponds to 
a relative change R(q, t) where 

State Resources 
In ILOG Scheduler [ILOG, 2002], state resources are defined 
as objects that at each timepoint can take only one possible 

denotes the constraint 
3 We assume that denotes a time-point before any other time-

point and denotes a time-point after any other time-point. 

state among a known set of possible states Ac­
tivities requiring different states of the state resource cannot 
overlap. We can build a mapping that maps the possible 
states of the state resource to Q. Then, the requirement of 
a given state s of a state resource by an activity executing on 
the time interval can be modeled as an absolute change 

and an equal condition 

Additional Expressivity 
The RTN framework allows for modeling complex resources 
and activities in scheduling. In manufacturing for instance, 
maintenance activities need to be executed as soon as the level 
of some numerical variable (measuring the "need for mainte­
nance") has reached a certain level. The level of this variable 
is increased (relative change) by production activities and is 
reset to 0 (absolute change) by maintenance activities. An­
other example is scheduling while ensuring some condition 
on a numerical variable during the execution of an activity 
(e.g. maintaining the temperature of a furnace within a suit­
able interval). Such kind of conditions are very important 
in process industry and chemistry. The conjunction of ab­
solute changes, relative changes and conditions holding over 
variable time intervals offers a powerful formalism for rep­
resenting complex scheduling problems. Additional features 
such as dependence between variable resource quantities 
and time-points t that do not directly fit into the RTN model 
can be handled by additional constraints in a constraint prop­
agation framework. 

4 Complexity 
In this section, we analyze the algorithmic complexity of 
solving and providing necessary truth criteria for general 
RTNs and particular fragments of the RTN formalism. By 
NP-Complete we mean NP-Complete in the strong sense. 

4.1 Notations 
Let us consider the following notations about temporal con­
straints: PA denotes the point algebra of [Vilain and Kautz, 
1986] which is a restriction of that only consists of 
the set of qualitative relations be­
tween timepoints. denotes a general . We 
write to express the fact that the corre­
sponding relation is subsumed by the temporal network. We 
use the following notations about resource statements: 
denote any set of relative changes x such that 0 
(producers). denote any set of pairs of resource state­
ments where denotes 
the lower-than condition denotes any 
set of pairs where and 
with A fragment of the complete RTN framework 
is denoted (X|y) where X is the set of changes and con­
ditions allowed in this fragment and Y the type of tempo­
ral constraints, denotes the number of resource statements 
in the RTN, the number of temporal constraints between 
time-points and maxflow the complexity of comput­
ing a maximum flow on a graph with n nodes and arcs4. 

4State-of-the-art maximum flow algorithms do it in O 
in worst case [Hochbaum, 1998]. 
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4.2 Finding a solution 
Complexity 1 The problem of finding a solution to an RTN 
is in NR 
Proof: The time-consistency of an instantiation a can be 
checked in polynomial time and, given its definition, the func­
tion can be build and the resource-consistency checked in 
polynomial time. A simple algorithm to check that an instan­
tiation is a solution runs in 0\ 

The proof of the three poly normality results below is omit­
ted because trivial. 
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of the resource is equal to the weight of the maximum inde­
pendent set of G. Furthermore G is a comparability graph 
as the edges involving at least one relative change can nat­
urally be oriented with the direction of a path containing an 
absolute change between them and the remaining of the edges 
(between pairs of absolute changes) forms a clique. Comput­
ing the maximum weight independent set of a comparability 
graph is polynomial and can be solved as a min-flow problem 
[Golumbic, 1980]. Thus, the NTC only needs to compare the 
weight of the maximum weight independent set of G with the 
maximal resource level Q. 

Proof: The theorem gives a necessary condition for 
NTC(U) to be true because if the condition is not met, a 
time-consistent instantiation can be built that is not resource-
consistent. Reciprocally, if NTC(U) is false, it means 
that there exists a time-consistent instantiation that is not 
resource-consistent. This time-consistent instantiation vio­
lates at least one condition statement 

The following complexity results use Theorem 1 to extend 
Lemmas 1 and 3 to the more general case of any set of condi­
tion statements. For each of these results, one can show that 

The following lemma is a generalization of Lemma 2 when 
all changes are allowed including consumers 



problem Uy can be transformed into one of the corresponding 
lemma and thus, its time complexity is polynomial. 

5 Conclusion and Future Work 
In this paper, we introduce the notion of RTN to express a 
large panel of possible evolutions of a given numerical state 
variable over time. RTNs allow modeling on the same flu­
ent features of classical Al Planning (absolute changes, con­
ditions) and Scheduling (relative changes). We show that 
computing a solution to an RTN is in general NP-Complete 
whereas determining whether all time-consistent instantia­
tions of an RTN are solutions is polynomial. This last result 
indicates that efficient solving methods based on such poly­
nomial Necessary Truth Criteria can be developed. Indeed, 
when an RTN does not satisfy the NTC, all the algorithms we 
mention can exhibit a subset of changes sufficient to explain 
why some time-consistent instantiations are not a solution. 
Just like in classical planning or scheduling, these potential 
conflicts can be used to branch in a search tree until the NTC 
is true and to perform constraint propagation. 

A direction for future work will consist in studying the 
complexity of the only problem whose complexity is still 
open: NTC for , Based on the fairly 
optimistic results described in this paper, we also plan to 
work on the development of practical and efficient algo­
rithms for solving NTC and for finding solutions (branching 
schemes, heuristics, computation of resource envelopes, con­
straint propagation). We think that the numerous and well-
studied combinatorial problems we found tightly related with 
RTNs (one-machine scheduling problems, subset sum, bin 
packing, sequencing to minimize maximum cumulative costs, 
maximum weight closure, maximum weight independent set, 
maximum weight convex set) can also help to solve RTNs. 
For instance, state-of-the-art bin packing algorithms could be 
a source of inspiration for Extension 
of the framework to integrate and mix continuous relative 
changes (see continuous reservoirs [1LOG, 2002]) and abso­
lute changes (see [Pcnberthy and Weld, 1994; Trinquart and 
Ghallab, 2001]) is also clearly of interest. 
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